JPH05304097A - Manufacture of insb thin film - Google Patents

Manufacture of insb thin film

Info

Publication number
JPH05304097A
JPH05304097A JP4107369A JP10736992A JPH05304097A JP H05304097 A JPH05304097 A JP H05304097A JP 4107369 A JP4107369 A JP 4107369A JP 10736992 A JP10736992 A JP 10736992A JP H05304097 A JPH05304097 A JP H05304097A
Authority
JP
Japan
Prior art keywords
film
insb
thin film
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4107369A
Other languages
Japanese (ja)
Other versions
JP3063378B2 (en
Inventor
Akihiro Korechika
哲広 是近
Tetsuo Kawasaki
哲生 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4107369A priority Critical patent/JP3063378B2/en
Publication of JPH05304097A publication Critical patent/JPH05304097A/en
Application granted granted Critical
Publication of JP3063378B2 publication Critical patent/JP3063378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a method of manufacturing an InSb thin film through which a magnetoelectric conversion element excellent in temperature characteristics and reliability and hardly deteriorated in characteristics at a high temperature is realized. CONSTITUTION:An InSb pre-film 2 is evaporated on a glass substrate 1 increasing the ratio of the number of Sb particles to the number of In particles with a deposition time, an InSb proper film 3 is evaporated thereon at a higher substrate temperature, and an InSb film 4 is formed thereon. An InSb thin film formed by this method is excellent in crystal orientation property, large in electron mobility, and excellent in temperature characteristics. Therefore, a short-circuit electrode 5 and a protective film 6 are formed on the InSb film 4 for the formation of a magnetoresistive element, where the glass substrate 1 is hardly separated off from the InSb thin film 4 at a high temperature of 150 deg.C, so that the magnetoresistive element excellent in temperature characteristics and reliability at a high temperature can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体磁気抵抗素子や
ホール素子などの磁電変換素子に用いられるInSb薄
膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an InSb thin film used for a magnetoelectric conversion element such as a semiconductor magnetoresistive element or a Hall element.

【0002】[0002]

【従来の技術】近年、磁電変換素子は回転数や回転角、
位置変位等の検出用センサとして、ビデオテープレコー
ダ等の民生用機器や工作機械等の産業用機器に幅広く使
用されている。特に最近では自動車の電子化に伴って自
動車用センサへの需要が増大し、中でも鉄製歯車と組み
合せて回転数を検出するギアセンサへの利用が増えつつ
ある。
2. Description of the Related Art In recent years, magnetoelectric conversion elements have been
As a sensor for detecting positional displacement, it is widely used in consumer equipment such as video tape recorders and industrial equipment such as machine tools. In particular, recently, the demand for sensor for automobiles has increased along with the computerization of automobiles, and in particular, the use for gear sensor for detecting the number of revolutions in combination with an iron gear has been increasing.

【0003】磁電変換素子に使用される半導体材料とし
ては、InSb、InAs、GaAsなどの化合物があ
るが、一般には電子移動度が大きくて高い信号出力が得
られ、かつ安価なInSbが多用されている。このよう
なInSbを用いた磁電変換素子には、単結晶から切り
出し研磨して作製した薄板を絶縁基板に貼り付けて使用
するバルク型のものと、絶縁基板に蒸着等により直接I
nSb薄膜を形成するか、または他の基板に蒸着等によ
り形成したInSb薄膜を絶縁基板に転写接着して使用
する薄膜型のものとの2種類のタイプのものがある。
Compounds such as InSb, InAs, and GaAs are available as semiconductor materials used for the magnetoelectric conversion element. In general, InSb is used because it has a large electron mobility and a high signal output is obtained. There is. As the magnetoelectric conversion element using such InSb, a bulk type in which a thin plate prepared by cutting out and polishing a single crystal is attached to an insulating substrate, and a bulk type in which the thin plate is used directly on the insulating substrate by vapor deposition or the like.
There are two types, namely, a thin film type in which an nSb thin film is formed, or an InSb thin film formed by vapor deposition or the like on another substrate is transferred and adhered to an insulating substrate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来のI
nSb磁電変換素子は、自動車用ギアセンサのように−
50〜+150℃の広い温度範囲や高温で使用される用
途においては、以下に述べる理由によりその使用が困難
であった。
However, the conventional I
The nSb magnetoelectric conversion element is like a gear sensor for automobiles.
In a wide temperature range of 50 to + 150 ° C. or in an application used in a high temperature, it is difficult to use due to the following reasons.

【0005】その理由をInSb磁気抵抗素子の例で説
明すると、まずバルク型のものは、その電子移動度は、
低温域では不純物散乱、高温域では極性光学散乱により
支配され、それら各々の存在する領域の境界に電子移動
度のピーク値をとる。ピーク値から高温側では、ほぼ電
子移動度は温度の−1.7乗に沿って変化し、また、通
常70K付近の極低温で急峻なピークを有する。したが
って、常用温度領域では電子移動度は勾配の大きな低下
傾向を示し、それと相関関係にある信号出力も温度上昇
とともに大きく低下する。
The reason will be explained using an example of an InSb magnetoresistive element. First, the bulk type has an electron mobility
It is dominated by impurity scattering in the low temperature region and polar optical scattering in the high temperature region, and electron mobility peaks at the boundaries of the regions in which they exist. On the high temperature side from the peak value, the electron mobility changes substantially along the -1.7th power of the temperature, and usually has a sharp peak at an extremely low temperature around 70K. Therefore, in the normal temperature region, the electron mobility shows a large decreasing tendency of the gradient, and the signal output correlated therewith also greatly decreases with increasing temperature.

【0006】また、バルク型のものはInSb薄板を絶
縁基板に接着樹脂等で貼り付けているため、高温になる
と接着剤とInSb薄板との熱膨張係数の差によりIn
Sb薄板に亀裂が生じて使用不能となる。
Further, in the bulk type, since an InSb thin plate is attached to an insulating substrate with an adhesive resin or the like, due to a difference in thermal expansion coefficient between the adhesive and the InSb thin plate at high temperature, In
The Sb thin plate is cracked and becomes unusable.

【0007】これに対して、薄膜型の場合には、転位等
の欠陥に起因する散乱因子や粒界散乱、表面散乱等の別
の散乱因子が付加されるため、電子移動度のピークは高
温側にシフトし、室温付近で比較的ブロードなピークを
有するため、−50〜+150℃という温度範囲を考え
た場合、温度に対する信号出力の変化が小さくて温度依
存性の点で好ましい。これに加え、薄膜型の磁気抵抗素
子は、高抵抗化が容易で、磁気抵抗素子の駆動電圧を高
くでき(信号出力は、電子移動度および駆動電圧に比例
する)、低消費電力化、小型化が可能であるという長所
がある。
On the other hand, in the case of the thin film type, since a scattering factor caused by defects such as dislocations and another scattering factor such as grain boundary scattering and surface scattering are added, the peak of electron mobility is high. Since it shifts to the side and has a relatively broad peak near room temperature, when considering the temperature range of −50 to + 150 ° C., the change in signal output with respect to temperature is small, which is preferable in terms of temperature dependence. In addition to this, the thin-film type magnetoresistive element can easily be made high in resistance, the driving voltage of the magnetoresistive element can be increased (the signal output is proportional to the electron mobility and the driving voltage), low power consumption, and small size. It has the advantage that it can be realized.

【0008】しかしながら、絶縁基板に直接InSb薄
膜を蒸着して形成したものは、InSb薄膜をエピタキ
シャル成長させるために、成長基板としてたとえば、C
dTe、PbTe単結晶基板を用いれば、電子移動度の
十分大きな薄膜を得ることが可能であるものの、これら
の基板は、極めて高価なものである。また、ガラス基板
のような安価な基板を用いれば、コストダウンはできる
が、この際、薄膜がランダムに成長し、いわゆる多結晶
タイプの膜となり、結果的に電子移動度の大きな薄膜を
得ることは難しく、信号出力の大きなものが得られな
い。
However, an InSb thin film formed by vapor deposition directly on an insulating substrate is used as a growth substrate for epitaxial growth of the InSb thin film.
Although it is possible to obtain a thin film having a sufficiently high electron mobility by using a dTe or PbTe single crystal substrate, these substrates are extremely expensive. In addition, if an inexpensive substrate such as a glass substrate is used, the cost can be reduced, but at this time, the thin film grows randomly and becomes a so-called polycrystalline type film, and as a result, a thin film with high electron mobility can be obtained. Is difficult and you can't get a big signal output.

【0009】これに対しては、へき開マイカ基板を用い
れば、単結晶並の電子移動度が得られることが明らかに
なっている。しかしこの方法では、高温用途で使用可能
なInSb薄膜を得ることは、困難である。それは、I
nSb薄膜とマイカ基板の密着性が悪いため、このIn
Sb薄膜を別の絶縁基板上にエポキシ等の接着層を介し
て転写して用いなければならないためである。したがっ
て、出来上がった磁気抵抗素子においては、高温時、あ
るいは、低温〜高温の温度サイクルを繰り返した際、接
着層とInSb薄膜間の熱膨張係数の差が大きく、In
Sb薄膜に亀裂が生じる等、特に、前述した−50〜+
150℃の温度範囲において、実用に耐える信頼性を有
していなかった。
On the other hand, it has been clarified that an electron mobility equivalent to that of a single crystal can be obtained by using a cleaved mica substrate. However, with this method, it is difficult to obtain an InSb thin film that can be used in high temperature applications. That is I
Since the adhesion between the nSb thin film and the mica substrate is poor, this In
This is because the Sb thin film must be transferred and used on another insulating substrate via an adhesive layer such as epoxy. Therefore, in the completed magnetoresistive element, the difference in the thermal expansion coefficient between the adhesive layer and the InSb thin film is large when the temperature is high or when the temperature cycle of low temperature to high temperature is repeated,
In particular, the Sb thin film is cracked.
In the temperature range of 150 ° C, it was not reliable enough for practical use.

【0010】本発明は、自動車用ギヤセンサ等の高温用
途においても、温度特性が良好で十分な信頼性を有する
InSb薄膜の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing an InSb thin film having good temperature characteristics and sufficient reliability even in high temperature applications such as gear sensors for automobiles.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明のInSb薄膜の製造方法は、絶縁物よりなる
基板上または表面絶縁化基板上に、InとSbとからな
る予備膜を基板に到達するこのSbとInとの粒子数の
比を堆積時間の経過とともに大きくしながら形成する工
程と、この予備膜の形成工程における基板温度よりも高
温に加熱してさらにInSb薄膜を予備膜上に形成する
工程とを備えた構成とする。
In order to achieve the above object, a method of manufacturing an InSb thin film according to the present invention comprises a substrate made of an insulating material or a surface-insulated substrate, and a preliminary film made of In and Sb formed on the substrate. Which is reached while increasing the ratio of the number of particles of Sb and In while increasing the deposition time, and heating the substrate to a temperature higher than the substrate temperature in the step of forming the preliminary film to further deposit the InSb thin film on the preliminary film. And a step of forming.

【0012】[0012]

【作用】この構成によれば、低温(たとえば室温)で予
備形成されたInとSbとからなる予備膜は、基板側か
ら上層に向かうに従ってSbとInとの粒子数比が大き
くなり、この後に加熱昇温して形成するInSb薄膜の
結晶成長の核となり、得られるInSb薄膜は、極めて
鋭く(111)面方向に優先配向(C軸配向)し、結晶
性の優れたものとなる。この結晶性に優れたInSb薄
膜は、単に低温でInとSbとからなる薄膜を形成し、
これに熱処理を加えただけでは得られず、また、予備膜
を設けずに基板を加熱昇温し、InSb薄膜を形成した
場合にも得られない本発明特有のものである。
According to this structure, the preliminary film made of In and Sb preformed at a low temperature (for example, room temperature) has a particle number ratio of Sb and In that increases from the substrate side to the upper layer. It becomes a nucleus of crystal growth of the InSb thin film formed by heating and raising the temperature, and the obtained InSb thin film is extremely sharply preferentially oriented in the (111) plane direction (C-axis orientation) and has excellent crystallinity. This InSb thin film having excellent crystallinity forms a thin film composed of In and Sb at a low temperature,
This is peculiar to the present invention, which cannot be obtained only by applying heat treatment thereto, and cannot be obtained even when an InSb thin film is formed by heating and heating the substrate without providing a preliminary film.

【0013】これにより、表面性が良く、かつ電子移動
度が大きく、さらに絶縁性基板への密着性も良好なIn
Sb薄膜を得ることができる。
As a result, In having a good surface property, a high electron mobility, and a good adhesion to an insulating substrate can be obtained.
An Sb thin film can be obtained.

【0014】[0014]

【実施例】以下、本発明の一実施例におけるInSb薄
膜の製造方法について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing an InSb thin film in one embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は、本実施例のInSb薄膜を用いた
薄膜磁気抵抗素子の断面図である。本実施例では、絶縁
性基板として、ガラス基板1(CGW#7059(コー
ニング社製))を用いた。このガラス基板1を有機洗浄
した後、直ちに真空蒸着装置内に導入し、真空度1×1
-5Torr以下に真空排気した後、図2のガラス基板
1の加熱温度プロファイルに示すように、まずInとS
bとからなる予備膜(以降InSb予備膜と呼ぶ)2を
室温にて、ガラス基板1に到達するSb/In粒子数比
を2以上に保ちながら、かつSb/In粒子数比をIn
Sb予備膜2の上層に行くに伴い大きくしながらIn累
積膜厚がガラス基板1上で10nmになるまで蒸着して
形成する。
FIG. 1 is a sectional view of a thin film magnetoresistive element using the InSb thin film of this embodiment. In this example, the glass substrate 1 (CGW # 7059 (made by Corning)) was used as the insulating substrate. After the glass substrate 1 is organically washed, it is immediately introduced into a vacuum vapor deposition apparatus, and the degree of vacuum is 1 × 1.
After evacuation to 0 -5 Torr or less, as shown in the heating temperature profile of the glass substrate 1 in FIG.
The preliminary film 2 (hereinafter referred to as an InSb preliminary film) made of b is kept at room temperature while maintaining the Sb / In particle number ratio reaching the glass substrate 1 at 2 or more, and the Sb / In particle number ratio is In.
The Sb preliminary film 2 is formed by vapor deposition while increasing as it goes to the upper layer of the Sb preliminary film 2 until the cumulative In film thickness becomes 10 nm on the glass substrate 1.

【0016】この後、ガラス基板1を加熱昇温して基板
温度を450℃に保持し、InSb本形成膜3をSb/
In粒子数比2以上で形成し、InSb薄膜4とした。
なお、比較のために、InSb予備膜2を形成せずに、
直接InSb本形成膜のみを形成してInSb薄膜4と
したもの(以降、従来方式と呼ぶ)も作製した。
Thereafter, the glass substrate 1 is heated and heated to maintain the substrate temperature at 450 ° C., and the InSb main forming film 3 is subjected to Sb / Sb /
The InSb thin film 4 was formed with an In particle number ratio of 2 or more.
For comparison, without forming the InSb preliminary film 2,
An InSb thin film 4 was formed by directly forming only the InSb main formation film (hereinafter referred to as a conventional method).

【0017】図3(a),(b)にそれぞれ従来方式お
よび、本実施例の作製方式により作製したInSb薄膜
4の結晶性について、薄膜X線回折で測定した結果を示
す。従来方式の場合には、各結晶面の回折強度は、ラン
ダムであり、特定面の配向を示す結果は得られていな
い。すなわち、無配向状態である。
3 (a) and 3 (b) show the results of thin film X-ray diffraction measurement of the crystallinity of the InSb thin film 4 manufactured by the conventional method and the manufacturing method of this embodiment. In the case of the conventional method, the diffraction intensity of each crystal plane is random, and the result showing the orientation of the specific plane has not been obtained. That is, it is in a non-oriented state.

【0018】一方、本実施例の作製方式で作製したIn
Sb薄膜4では、(111)面の回折強度が極めて強
く、この面方向に優先配向していることがわかる。すな
わち、結晶性が改善されている。
On the other hand, In produced by the production method of this embodiment
In the Sb thin film 4, it can be seen that the diffraction intensity of the (111) plane is extremely strong and preferentially oriented in this plane direction. That is, the crystallinity is improved.

【0019】また、これら二つの方式で作製したInS
b薄膜4の表面状態を金属顕微鏡で観察すると、従来方
式で作製したInSb薄膜4では、極めて、膜の表面の
凹凸が大きいのに比して、本実施例の作製方式によるも
のでは、比較的膜の表面がスムーズであることがわか
る。InSb薄膜4の表面のスムーズさは、磁気抵抗素
子にする場合、微細加工をする際に極めて有利であり、
形成不良(信頼性に関わる)をもたらしたり、InSb
薄膜4の均一性(磁気抵抗素子の中点電位の変動に影響
を与える)に難がある等の従来方式の問題点を解決す
る。さらに、本実施例の方式で作製したInSb薄膜4
は、極めて、ガラス基板1等下地に対する密着性が良好
である。
InS produced by these two methods
When observing the surface state of the b thin film 4 with a metallographic microscope, the InSb thin film 4 produced by the conventional method has extremely large unevenness on the surface of the film, whereas the InSb thin film 4 produced by the present example has a relatively large unevenness. It can be seen that the surface of the film is smooth. The smoothness of the surface of the InSb thin film 4 is extremely advantageous when performing microfabrication when forming a magnetoresistive element,
It may cause formation failure (related to reliability) or InSb
The problems of the conventional method such as difficulty in the uniformity of the thin film 4 (which affects the fluctuation of the midpoint potential of the magnetoresistive element) are solved. Furthermore, the InSb thin film 4 manufactured by the method of this embodiment.
Has extremely good adhesion to the substrate such as the glass substrate 1.

【0020】次いで、従来方式、本実施例の作製方式の
各々で作製したInSb薄膜4の電子移動度をファンデ
ル・パウ法で測定した。また、図1に示すように、In
Sb薄膜4の上に短絡電極5を形成し、多数の短絡電極
5を有する磁気抵抗素子構造となるようパターン形成
(単位素子のL/W=10程度)した後、保護膜6を形
成して実際の半導体薄膜磁気抵抗素子にした後、3kG
の磁場での抵抗変化を測定した。これらの結果を(表
1)に示す。
Next, the electron mobility of the InSb thin film 4 manufactured by the conventional method and the manufacturing method of this embodiment was measured by the Van der Pauw method. In addition, as shown in FIG.
After forming the short-circuit electrode 5 on the Sb thin film 4 and performing pattern formation (L / W = about 10 for unit element) so as to form a magnetoresistive element structure having a large number of short-circuit electrodes 5, a protective film 6 is formed. 3kG after making the actual semiconductor thin film magnetoresistive element
The resistance change in the magnetic field was measured. The results are shown in (Table 1).

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)に示す通り、従来方式では、3μ
mの膜厚においても、電子移動度は1〜1.5m2/V・
sec.程度が得られる最大値で、抵抗変化も1.3〜
1.5倍程度であるのに対して、本実施例の作製方式を
用いることにより、1.5μmの膜厚においても、電子
移動度は2.5〜3.5m2/V・sec.、抵抗変化も
2.5〜3.0倍と、極めて大きく良好な特性を有して
いると言える。
As shown in (Table 1), in the conventional method, 3 μ
Even with a film thickness of m, the electron mobility is 1 to 1.5 m 2 / V ·
sec. The maximum value that can obtain the degree, the resistance change is also 1.3 ~
Although it is about 1.5 times, by using the manufacturing method of this embodiment, the electron mobility is 2.5 to 3.5 m 2 / V · sec even when the film thickness is 1.5 μm. It can be said that the resistance change is 2.5 to 3.0 times, which is extremely large and has good characteristics.

【0023】ところで、本実施例の作製方式において重
要なのは、図1の室温において、InSb予備膜2を形
成する際の膜厚およびSbとInとの粒子数比である。
したがって、この点に着目して、これらを変化させた際
のInSb薄膜4の結晶配向性を求め、図4にその結果
を示した。同図では、ガラス基板1上でのIn累積膜厚
を5nm、10nm可変として、横軸にはSb/In粒
子数比、縦軸にはInSb(111)面の回折線強度に
対する(220),(311),(422)各々の結晶
面での回折線強度の比をとっている。また、従来方式と
本実施例により作製したInSb薄膜4の回折線強度比
を(表2)に示している。
By the way, what is important in the fabrication method of this embodiment is the film thickness and the particle number ratio of Sb and In when the InSb preliminary film 2 is formed at room temperature in FIG.
Therefore, paying attention to this point, the crystal orientation of the InSb thin film 4 when these were changed was obtained, and the results are shown in FIG. In this figure, the cumulative In film thickness on the glass substrate 1 is variable between 5 nm and 10 nm, the horizontal axis represents the Sb / In particle number ratio, and the vertical axis represents the diffraction line intensity of the InSb (111) plane (220), The ratio of the diffraction line intensities at the crystal planes of (311) and (422) is taken. Further, (Table 2) shows the diffraction line intensity ratio of the InSb thin film 4 produced by the conventional method and this example.

【0024】[0024]

【表2】 [Table 2]

【0025】(表2)に示す通り、従来方式では、前述
したように回折線強度は、ランダムであるが、本実施例
の作製方式では、鋭く(111)面が配向していること
がわかる。これをベースにして、図4を見ると、ガラス
基板1上のIn累積膜厚が5nmの場合を、点線で示す
が、Sb/In粒子数比が大きい程、InSb薄膜4の
配向性は、良好になることがわかる。すなわち、Sb/
In粒子数比が8以上必要であることがわかる。
As shown in (Table 2), in the conventional method, the diffraction line intensity is random as described above, but in the manufacturing method of this embodiment, the (111) plane is sharply oriented. .. Based on this, when FIG. 4 is viewed, the case where the cumulative In film thickness on the glass substrate 1 is 5 nm is shown by a dotted line. As the Sb / In particle number ratio increases, the orientation of the InSb thin film 4 becomes It turns out that it becomes good. That is, Sb /
It is understood that the In particle number ratio needs to be 8 or more.

【0026】一方、ガラス基板1上のIn累積膜厚10
nmの場合には、Sb/In粒子数比2以上で、鋭く配
向する。すなわち、ガラス基板1上のIn累積膜厚が増
加する(膜厚が厚くなる)のに伴いSb/In粒子数比
を小さくとっても良好に配向し、あるIn累積膜厚下
で、Sb/In粒子数をある限界値以上に設定すれば、
良好に配向する。これは、ある限界値以上では、もは
や、InSb予備膜2形成後の基板加熱過程においてS
bが蒸発し、本形成時にInSb予備膜2に残るSbの
量がほぼ一定になるためである。ここで、ガラス基板1
上のIn累積膜厚を5nmより小さくした場合には、も
はやInSb薄膜4は、(111)面方向に優先配向し
なくなる。これは、あまり膜厚が薄い場合には、下地の
ガラス基板1の影響を大きく受けるためである。したが
って、再現性よく配向させるためには、ガラス基板1上
のIn累積膜厚は、10nm以上にすることが好まし
い。
On the other hand, the cumulative In film thickness on the glass substrate 1 is 10
In the case of nm, it is sharply oriented at a Sb / In particle number ratio of 2 or more. That is, as the In cumulative film thickness on the glass substrate 1 increases (the film thickness becomes thicker), the Sb / In particle number ratio is favorably oriented even if the Sb / In particle number ratio is small. If you set the number above a certain limit,
Orients well. This is because, above a certain limit value, S is no longer present in the substrate heating process after the InSb preliminary film 2 is formed.
This is because b is evaporated and the amount of Sb remaining in the InSb preliminary film 2 during the main formation becomes almost constant. Here, the glass substrate 1
When the above In cumulative film thickness is made smaller than 5 nm, the InSb thin film 4 is no longer preferentially oriented in the (111) plane direction. This is because when the film thickness is too thin, it is greatly affected by the underlying glass substrate 1. Therefore, in order to orient with good reproducibility, the In cumulative film thickness on the glass substrate 1 is preferably 10 nm or more.

【0027】一方、In累積膜厚を1μm以上にする
と、InSb予備膜2形成後の加熱昇温過程で、InS
b予備膜2に亀裂が入るとともに、本形成後も、InS
b予備膜2が、特性の阻害要因となる。これらの点を考
慮すると、In累積膜厚は、10nm〜1μm程度の範
囲とすることが好ましい。
On the other hand, when the In cumulative film thickness is 1 μm or more, InS is increased in the heating and heating process after the InSb preliminary film 2 is formed.
b When the preliminary film 2 is cracked, the InS
b The preliminary film 2 becomes a factor that hinders the characteristics. Considering these points, the In cumulative film thickness is preferably in the range of about 10 nm to 1 μm.

【0028】また、InSb予備膜2を形成する際にそ
の上層に行くのに伴いSb/In粒子数比を大きくする
ことで、再現性良くInSb薄膜4の結晶配向性を向上
させることができる。これは、InSb予備膜2を形成
した後にガラス基板1を加熱昇温する過程で、InSb
予備膜2の上層程、Sbが再蒸発し易く、したがって上
層程Sbが欠乏し易い(In過剰になる)ためであり、
上層にいく程Sbを相対的に多く被着させる必要があ
る。
Further, when the InSb preliminary film 2 is formed, the crystal orientation of the InSb thin film 4 can be improved with good reproducibility by increasing the Sb / In particle number ratio as it goes to the upper layer. This is a process in which the glass substrate 1 is heated and heated after the InSb preliminary film 2 is formed.
This is because Sb is more likely to be re-evaporated in the upper layer of the preliminary film 2, and thus Sb is more likely to be deficient in the upper layer (In is excessive).
It is necessary to apply a relatively large amount of Sb to the upper layer.

【0029】さらに、InSb予備膜2を形成した後、
ガラス基板1を加熱昇温し、InSb本形成膜3を形成
する直前にSbのみをガラス基板1に照射した後、速や
かにInSb本形成膜3を形成することで、再現性良く
InSb薄膜4の結晶性を改善することが可能となる。
これは、InSb予備膜2の加熱昇温過程で、真空度に
よっては、InSb予備膜2の表面が酸素等で覆われ、
この際、Sbを単独で照射することで、Sbが表面の酸
素を奪い、このSbの酸化物は、蒸気圧が高く、容易に
再蒸発するため、結果的にInSb予備膜2の表面を清
浄化することによる。なお、Inだけを単独照射した場
合には、Inの融点が低く、またInは容易に再蒸発し
ないため、凝集して、膜の表面性を損ねるとともに、良
好な結晶性を有する膜を得ることはできない。したがっ
てSbを単独で照射した後、引続きSbを蒸発させなが
ら、徐々にInの蒸発粒子数を増加させてInSb本形
成膜3を形成しても良いことは言うまでもない。
Further, after the InSb preliminary film 2 is formed,
The glass substrate 1 is heated and heated, and immediately before the InSb main forming film 3 is formed, the glass substrate 1 is irradiated with Sb only, and then the InSb main forming film 3 is rapidly formed. It becomes possible to improve the crystallinity.
This is because the surface of the InSb preliminary film 2 is covered with oxygen or the like depending on the degree of vacuum in the heating and heating process of the InSb preliminary film 2.
At this time, by irradiating Sb alone, Sb deprives the surface of oxygen, and since the oxide of this Sb has a high vapor pressure and easily re-evaporates, the surface of the InSb preliminary film 2 is consequently cleaned. It depends on. In addition, when only In is irradiated alone, the melting point of In is low, and In does not easily re-evaporate, so that it aggregates, impairs the surface property of the film, and obtains a film having good crystallinity. I can't. Therefore, it is needless to say that the main InSb forming film 3 may be formed by irradiating Sb alone and then gradually evaporating Sb while gradually increasing the number of evaporated particles of In.

【0030】また、本実施例では、InSb予備膜2の
形成時の基板温度を室温としたが、無論、基板温度を上
げても、本形成時の基板温度よりも低い温度であれば、
適切なSb/In粒子数比を選べば、同様な結果を得る
ことができる。ただし、再現性よく優先配向させ、さら
にInSb薄膜4の表面性をスムーズに保つためには、
InSb予備膜2形成時の基板温度を低く保つことが好
ましく、150℃以下に保つことが望まれる。
Further, in this embodiment, the substrate temperature at the time of forming the InSb preliminary film 2 is room temperature, but of course, even if the substrate temperature is raised, if it is lower than the substrate temperature at the time of main formation,
Similar results can be obtained by selecting an appropriate Sb / In particle number ratio. However, in order to preferentially orientate with good reproducibility and to keep the surface property of the InSb thin film 4 smooth,
It is preferable to keep the substrate temperature low at the time of forming the InSb preliminary film 2, and it is desirable to keep it at 150 ° C. or lower.

【0031】加えて、本実施例の作製方式は、たとえ
ば、InSb予備膜2を形成する前に、ガラス基板1を
高温に保持する過程を経た後、ガラス基板1を冷却し、
その後にInSb予備膜2を形成するような工程として
も、構わないことは、言うまでもない。また、本実施例
では基板としてガラス基板1の例を示したが、本発明は
これに限定されるものではなく、その他の絶縁性基板や
表面をガラス等の絶縁物で被覆された基板を用いてもよ
い。さらに、本実施例ではInSb薄膜の例を示した
が、本発明のInSb薄膜は製造上不可避の不純物を拒
むものではなく、またInおよびSbと三元化合物を形
成しない範囲内の添加物を含有してもかまわない。
In addition, in the manufacturing method of this embodiment, for example, before the InSb preliminary film 2 is formed, after the glass substrate 1 is kept at a high temperature, the glass substrate 1 is cooled,
Needless to say, the step of forming the InSb preliminary film 2 may be performed thereafter. Further, although the example of the glass substrate 1 is shown as the substrate in the present embodiment, the present invention is not limited to this, and other insulating substrate or a substrate whose surface is coated with an insulator such as glass is used. May be. Further, although an example of the InSb thin film is shown in the present embodiment, the InSb thin film of the present invention does not reject impurities inevitable in manufacturing, and contains an additive within a range not forming a ternary compound with In and Sb. It doesn't matter.

【0032】なお、本実施例の作製方式により作製した
InSb薄膜4を用いた磁気抵抗素子を−50〜+15
0℃の温度サイクル下で繰り返し、特性劣化試験を行っ
たが、従来生じたような素子の特性劣化は生じず、極め
て高い信頼性を有することが確認された。
Incidentally, a magnetoresistive element using the InSb thin film 4 manufactured by the manufacturing method of this embodiment is -50 to +15.
A characteristic deterioration test was performed repeatedly under a temperature cycle of 0 ° C., and it was confirmed that the characteristic deterioration of the element which occurred conventionally does not occur and that the element has extremely high reliability.

【0033】[0033]

【発明の効果】以上のように、本発明の予備膜を形成し
た後本形成膜を形成するInSb薄膜の製造方法によれ
ば、InSb薄膜の結晶性が改善され、電子移動度が大
きく、かつInSb薄膜の表面性も改善され微細加工性
も向上する。したがって、本発明の作製方式を用いて、
作製したInSb薄膜を用いることで、−50〜+15
0℃の温度範囲においても温度特性が良好で十分信頼性
の高い半導体薄膜磁気抵抗素子を提供することができ、
産業上の利用価値は、極めて大きい。
As described above, according to the method of manufacturing an InSb thin film of the present invention in which the preliminary film is formed and then the main film is formed, the crystallinity of the InSb thin film is improved, the electron mobility is large, and The surface property of the InSb thin film is also improved, and the fine workability is also improved. Therefore, using the manufacturing method of the present invention,
By using the manufactured InSb thin film, -50 to +15
It is possible to provide a semiconductor thin film magnetoresistive element having good temperature characteristics and sufficiently high reliability even in the temperature range of 0 ° C.
The industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるInSb薄膜を用い
た磁気抵抗素子の断面図
FIG. 1 is a sectional view of a magnetoresistive element using an InSb thin film according to an embodiment of the present invention.

【図2】同InSb薄膜の作製時の基板温度と時間との
関係を示す関係図
FIG. 2 is a relationship diagram showing a relationship between a substrate temperature and a time when the same InSb thin film is manufactured.

【図3】(a)従来方式によるInSb薄膜のX線回折
図 (b)本実施例の作製方式によるInSb薄膜のX線回
折図
3A is an X-ray diffraction diagram of an InSb thin film according to a conventional method. FIG. 3B is an X-ray diffraction diagram of an InSb thin film according to the manufacturing method of this example.

【図4】本実施例の作製方式における予備膜形成工程で
のSb/In粒子数比と得られるInSb薄膜の結晶配
向性の関係を示す図
FIG. 4 is a diagram showing the relationship between the Sb / In particle number ratio in the preliminary film forming step and the crystal orientation of the obtained InSb thin film in the manufacturing method of this example.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 InSb予備膜 3 InSb本形成膜 4 InSb薄膜 5 短絡電極 6 保護膜 1 glass substrate 2 InSb preliminary film 3 InSb main formation film 4 InSb thin film 5 short-circuit electrode 6 protective film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】絶縁物からなる基板または表面が絶縁化さ
れた基板の上にその基板に到達するSbの粒子数とIn
の粒子数との比を堆積時間の経過とともに増大させなが
らInとSbとを堆積させて予備膜を形成する工程と、
その予備膜上に基板温度を前記予備膜の形成工程におけ
る基板温度よりも高温に加熱してInSb化合物からな
る本形成膜を形成する工程とを備えたInSb薄膜の製
造方法。
1. A substrate made of an insulator or a substrate whose surface is insulated, and the number of Sb particles reaching the substrate and In.
Forming a preliminary film by depositing In and Sb while increasing the ratio with the number of particles of the above with the passage of deposition time;
A method of manufacturing an InSb thin film, comprising the step of forming a main forming film made of an InSb compound by heating the substrate temperature on the preliminary film to be higher than the substrate temperature in the forming process of the preliminary film.
【請求項2】予備膜の形成工程と本形成膜の形成工程と
の間に、前記予備膜上に基板温度を前記予備膜の形成工
程における基板温度よりも高温に加熱してSbを堆積さ
せる工程を付加した請求項1記載のInSb薄膜の製造
方法。
2. Between the step of forming the preliminary film and the step of forming the main film, the substrate temperature is heated above the substrate temperature in the step of forming the preliminary film to deposit Sb on the preliminary film. The method for producing an InSb thin film according to claim 1, wherein a step is added.
【請求項3】Sbの粒子数とInの粒子数との比を2以
上にして予備膜を形成する請求項1または2記載のIn
Sb薄膜の製造方法。
3. The In according to claim 1, wherein the preliminary film is formed by setting the ratio of the number of Sb particles to the number of In particles to 2 or more.
Manufacturing method of Sb thin film.
【請求項4】基板温度を150℃以下に保持して予備膜
を形成する請求項1または2記載のInSb薄膜の製造
方法。
4. The method for producing an InSb thin film according to claim 1, wherein the preliminary film is formed while maintaining the substrate temperature at 150 ° C. or lower.
【請求項5】Inの厚さが10nm〜1μmの範囲とな
るように堆積させて予備膜を形成する請求項1または2
記載のInSb薄膜の製造方法。
5. The preliminary film is formed by depositing In so as to have a thickness of 10 nm to 1 μm.
A method for producing the InSb thin film described.
JP4107369A 1992-04-27 1992-04-27 Method for producing InSb thin film Expired - Fee Related JP3063378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4107369A JP3063378B2 (en) 1992-04-27 1992-04-27 Method for producing InSb thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4107369A JP3063378B2 (en) 1992-04-27 1992-04-27 Method for producing InSb thin film

Publications (2)

Publication Number Publication Date
JPH05304097A true JPH05304097A (en) 1993-11-16
JP3063378B2 JP3063378B2 (en) 2000-07-12

Family

ID=14457352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4107369A Expired - Fee Related JP3063378B2 (en) 1992-04-27 1992-04-27 Method for producing InSb thin film

Country Status (1)

Country Link
JP (1) JP3063378B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110216B2 (en) * 2001-05-08 2006-09-19 Ramot At Tel-Aviv University Ltd. Magnetic thin film sensor based on the extraordinary hall effect
JP2016152391A (en) * 2015-02-19 2016-08-22 旭化成エレクトロニクス株式会社 Compound semiconductor laminate and compound semiconductor laminate manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110216B2 (en) * 2001-05-08 2006-09-19 Ramot At Tel-Aviv University Ltd. Magnetic thin film sensor based on the extraordinary hall effect
US7463447B2 (en) 2001-05-08 2008-12-09 Ramot At Tel-Aviv University Ltd. Magnetic thin film sensor based on the extraordinary Hall effect
JP2016152391A (en) * 2015-02-19 2016-08-22 旭化成エレクトロニクス株式会社 Compound semiconductor laminate and compound semiconductor laminate manufacturing method

Also Published As

Publication number Publication date
JP3063378B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US5385864A (en) Method of fabricating semiconductor thin film and a Hall-effect device
JP3063378B2 (en) Method for producing InSb thin film
JPS6161556B2 (en)
JPH04286170A (en) Manufacture of semiconductor thin-film magnetoresistive element
JP2556335B2 (en) InSb single crystal wafer of composite substrate for electromagnetic transducer-Method of measuring thickness
JP3180378B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing semiconductor magnetoresistive element
KR860000161B1 (en) In-sb compound crystal semiconductor and method of its manufacturing
JP2856533B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH07169686A (en) Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element
KR950005968B1 (en) Multlayer thin film type hall device and manufacturing method thereof
JP2596421B2 (en) Method for producing intermetallic compound semiconductor thin film
JPH0247849B2 (en)
US5008215A (en) Process for preparing high sensitivity semiconductive magnetoresistance element
JPH03106085A (en) Magnetoelectric transducer
US4539178A (en) Indium-antimony complex crystal semiconductor and process for production thereof
JP2001308407A (en) InSb THIN FILM SUBSTRATE
JPS62232182A (en) Thin film of intermetallic compound semiconductor and manufacture thereof
US7467448B2 (en) Method of manufacturing a piezoelectric ceramic
JP2683005B2 (en) Manufacturing method of dielectric isolation substrate
JPH05259163A (en) Alumininum thin film
JPH06275527A (en) Manufacturing method of electronic part
JPS58175833A (en) Manufacture of compound semiconductor thin-film structure
KR19980017676A (en) Formation method of indium antimony alloy thin film
JPH09148652A (en) Magnetoelectric conversion element and its manufacture
JP2001326401A (en) MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees