JPH07169686A - Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element - Google Patents

Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element

Info

Publication number
JPH07169686A
JPH07169686A JP5315214A JP31521493A JPH07169686A JP H07169686 A JPH07169686 A JP H07169686A JP 5315214 A JP5315214 A JP 5315214A JP 31521493 A JP31521493 A JP 31521493A JP H07169686 A JPH07169686 A JP H07169686A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
layer
coating layer
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315214A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawasaki
哲生 川崎
Akihiro Korechika
哲広 是近
Takashi Hirao
孝 平尾
Makoto Kitahata
真 北畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5315214A priority Critical patent/JPH07169686A/en
Publication of JPH07169686A publication Critical patent/JPH07169686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form good crystal whose each crystal grain is connected mutually directly on a substrate by forming a semiconductor thin film to a preliminary deposit layer on a foundation layer consisting of In on an Si single crystalline substrate wherein a surface oxide film is removed and hydrogen is absorbed. CONSTITUTION:A foundation layer 2 consisting of In is formed on an Si single crystalline substrate 1 wherein a surface oxide film is removed and hydrogen is adsorbed. A preliminary deposit layer 3 consisting of InSb is formed on the foundation layer 2 in a temperature range of 200 to 350 deg.C. A coating layer 11 consisting Sb is formed on the preliminary deposit layer 3. After it is exposed in air in such a state, it is heated to 350 deg.C or higher and the coating layer 11 is removed, and a semiconductor thin film layer 4 consisting of InSb is formed on the preliminary deposit layer 3 at 370 to 460 deg.C. Thereby, crystal of good crystallinity epitaxially grown on the single crystalline substrate 1 can be obtained while realizing reduction of manufacturing tact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、回転および変位等の
検出に用いられる磁電変換素子に利用される半導体薄膜
の製造方法および半導体薄膜磁気抵抗素子に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film used for a magnetoelectric conversion element used for detecting rotation and displacement, and a semiconductor thin film magnetoresistive element.

【0002】[0002]

【従来の技術】一般に回転センサとしては、光学式や磁
気方式をはじめ種々の方式が知られているが、これら中
で特に汚れや塵埃など雰囲気の影響を受ける用途に用い
られる場合には、これらの影響を受けにくい磁気方式が
最も有利である。近年、自動車の電子化に伴って各種セ
ンサ素子が装着される中で、回転センサ特に回転磁性体
と組み合わせたギヤセンサとして、小型化が可能なホー
ル素子(ホールIC)、強磁性薄膜磁気抵抗素子、半導
体磁気抵抗素子等を用いた回転センサが検討されている
が、ホール素子、ホールICおよび強磁性薄膜磁気抵抗
素子はいずれも検出出力が小さく、しかも被検出体との
ギャップを小さくする必要があるために、ギヤセンサと
しては使いにくいという問題があった。
2. Description of the Related Art Generally, various systems such as an optical system and a magnetic system are known as a rotation sensor. Among them, when they are used for applications such as dirt and dust which are affected by the atmosphere, The magnetic method that is less susceptible to is most advantageous. 2. Description of the Related Art In recent years, as various sensor elements have been mounted as automobiles have become electronic, a Hall sensor (Hall IC), a ferromagnetic thin film magnetoresistive element, which can be miniaturized as a rotation sensor, particularly a gear sensor combined with a rotating magnetic body, A rotation sensor using a semiconductor magnetoresistive element or the like has been studied, but the Hall element, Hall IC, and ferromagnetic thin film magnetoresistive element all have a small detection output, and it is necessary to reduce the gap between the object and the object to be detected. Therefore, there is a problem that it is difficult to use as a gear sensor.

【0003】一方、半導体磁気抵抗素子は、半導体材料
の電子移動度に比例して検出出力が大きくなり、被検出
体とのギャップの許容度も大きく採れるため最もギヤセ
ンサに適しているものと考えられる。しかし、現状で最
も電子移動度の大きいバルク単結晶のアンチモン化イン
ジウム(以下InSbと記す)を用いた半導体磁気抵抗
素子の動作温度範囲は、−20〜+80℃程度で、上述
した自動車での使用温度範囲、−50〜+150℃、を
満足しない。
On the other hand, the semiconductor magnetoresistive element is considered to be most suitable for the gear sensor because the detection output increases in proportion to the electron mobility of the semiconductor material and the tolerance of the gap with the object to be detected is large. . However, the operating temperature range of the semiconductor magnetoresistive element using bulk single crystal indium antimonide (hereinafter referred to as InSb), which has the highest electron mobility at present, is about -20 to + 80 ° C, and is used in the above-mentioned automobile. It does not satisfy the temperature range of -50 to + 150 ° C.

【0004】すなわち、このInSbバルク単結晶で
は、その電子移動度が、低温域では不純物散乱により、
また高温域では有極性光学フォノンによる散乱により支
配され、それら各々の存在する領域の境界に電子移動度
の最大値をとる。この最大値から高温側ではほぼ電子移
動度は温度の−1.7乗に沿って変化する。また極低温
側(70K付近)で急峻なピークを持つ。このように、
電子移動度が大きいにもかかわらず温度による変化が大
きいが故に、使用温度範囲が限られていた。
That is, in this InSb bulk single crystal, the electron mobility is
In the high temperature region, it is dominated by the scattering by polar optical phonons, and the maximum of the electron mobility is taken at the boundary of the regions in which they exist. From this maximum value, the electron mobility changes along the -1.7th power of the temperature on the high temperature side. Further, it has a steep peak on the extremely low temperature side (around 70K). in this way,
Although the electron mobility is high, the change with temperature is large, so that the operating temperature range is limited.

【0005】これに対し、薄膜型のInSb磁気抵抗素
子では、バルク単結晶と同様の散乱因子に加え、粒界散
乱および転位欠陥による散乱等の散乱支配因子が加わる
ため、電子移動度の絶対値は低下するものの、そのピー
クは高温側にシフトし、室温付近で比較的ブロードなピ
ークを持つため温度特性は良好となる。従って、−50
〜+150℃の温度範囲での用途に対しては、温度特性
の面で薄膜型の方が好ましい。またこれに加えて、薄膜
型のInSb磁気抵抗素子は高抵抗化が容易で、素子の
駆動電圧を高くでき(出力は駆動電圧に比例する)、低
消費電力化および小型化も可能であるという長所もあ
る。
On the other hand, in the thin film type InSb magnetoresistive element, in addition to the scattering factors similar to those of the bulk single crystal, the scattering controlling factors such as grain boundary scattering and scattering due to dislocation defects are added, so that the absolute value of the electron mobility is obtained. However, the peak shifts to the high temperature side and has a relatively broad peak near room temperature, so the temperature characteristics are good. Therefore, -50
For use in a temperature range of up to + 150 ° C., the thin film type is preferable in terms of temperature characteristics. In addition to this, the thin-film InSb magnetoresistive element can easily be made high in resistance, the driving voltage of the element can be increased (the output is proportional to the driving voltage), and the power consumption and the size can be reduced. There are also advantages.

【0006】[0006]

【発明が解決しようとする課題】このように、薄膜型の
InSb磁気抵抗素子には利点があるにも関わらず、高
温用途等で普及するには至っていない。この原因とし
て、以下のことが挙げられる。すなわち、結晶性が良
く、かつ電子移動度の十分大きなInSb薄膜を得るた
めには、InSb薄膜を成長させる基板として、格子定
数の近い単結晶基板(例えばCdTe、PbTe等)を
用い、InSb薄膜をエピタキシャル成長させればよい
が、これらの基板のコストは極めて高いものである。ま
たガラス等の非晶質基板を用いれば安価に作成できる
が、作成した薄膜は多結晶であり、結晶粒径も膜厚程度
と小さいため、電子移動度の大きな薄膜を得ることは困
難であった。
As described above, although the thin-film type InSb magnetoresistive element has the advantage, it has not come into widespread use in high temperature applications. The causes are as follows. That is, in order to obtain an InSb thin film having good crystallinity and a sufficiently large electron mobility, a single crystal substrate (for example, CdTe, PbTe, etc.) having a close lattice constant is used as a substrate for growing the InSb thin film, and the InSb thin film is used. Epitaxial growth is sufficient, but the cost of these substrates is extremely high. Although it can be inexpensively produced by using an amorphous substrate such as glass, it is difficult to obtain a thin film having high electron mobility because the thin film formed is polycrystalline and the crystal grain size is as small as the film thickness. It was

【0007】これに対しては、東洋通信機技報No.4
0(1987)で、福中等が述べている通り、へき開マ
イカ基板を用いれば、単結晶並の電子移動度が得られる
ことが明らかになっている。しかし、この方法ではIn
Sb薄膜のマイカ基板への付着強度が弱いため、このI
nSb薄膜をエポキシ等の接着層を介して別の支持基板
上に転写して用いる必要があり、高温時に接着層とIn
Sb薄膜間の熱膨張係数の差によりInSb薄膜に亀裂
が生じる等の問題があり、−50〜+150℃の温度範
囲において実用に耐え得る信頼性を有していなかった。
In response to this, Toyo Communication Equipment Technical Report No. Four
0 (1987), as described by Fukunaka et al., It has been clarified that the electron mobility equivalent to that of a single crystal can be obtained by using a cleaved mica substrate. However, this method
Since the adhesion strength of the Sb thin film to the mica substrate is weak, this I
It is necessary to transfer the nSb thin film onto another supporting substrate through an adhesive layer such as epoxy and use it.
There was a problem such as cracking in the InSb thin film due to the difference in the thermal expansion coefficient between the Sb thin films, and it was not reliable enough for practical use in the temperature range of -50 to + 150 ° C.

【0008】したがって、この発明の目的は、このよう
な従来の薄膜型のInSb磁気抵抗素子の課題を考慮
し、高温における安定性と高電子移動度を有し、自動車
用ギヤセンサ等の高温用途においても十分な信頼性を有
する半導体薄膜の製造方法および半導体薄膜磁気抵抗素
子を提供することである。
Therefore, the object of the present invention is to have the stability at high temperature and the high electron mobility in consideration of the problems of the conventional thin film type InSb magnetoresistive element, and in the high temperature application such as the gear sensor for automobiles. Another object of the present invention is to provide a method of manufacturing a semiconductor thin film having sufficient reliability and a semiconductor thin film magnetoresistive element.

【0009】[0009]

【課題を解決するための手段】請求項1の半導体薄膜の
製造方法は、シリコン(以下Siと記す)単結晶基板の
表面の酸化膜を除去して水素吸着を行う工程と、Si単
結晶基板上にインジウム(以下Inと記す)からなる下
地層を形成する工程と、下地層上に少なくともInとア
ンチモン(以下Sbと記す)とを含む予備堆積層を少な
くとも形成初期において200〜350℃の温度範囲で
形成する工程と、予備堆積層上にSbからなる被覆層を
形成する工程と、被覆層を形成した状態で被覆層を大気
にさらす工程と、大気にさらした被覆層を真空中で35
0℃以上に加熱して除去する工程と、被覆層の除去によ
り露出した予備堆積層上に少なくともInとSbとを含
む半導体薄膜層を形成する工程とを含ものである。
According to a first aspect of the present invention, there is provided a method for producing a semiconductor thin film, comprising a step of removing an oxide film on a surface of a silicon (hereinafter referred to as Si) single crystal substrate to adsorb hydrogen, and a Si single crystal substrate. A step of forming an underlayer made of indium (hereinafter referred to as In) on the top, and a preliminary deposition layer containing at least In and antimony (hereinafter referred to as Sb) on the underlayer at a temperature of 200 to 350 ° C. at least in the initial stage of formation. In a range, a step of forming a coating layer made of Sb on the pre-deposited layer, a step of exposing the coating layer to the atmosphere with the coating layer formed thereon, and a step of exposing the coating layer exposed to the atmosphere in vacuum to 35
It includes a step of removing by heating at 0 ° C. or higher, and a step of forming a semiconductor thin film layer containing at least In and Sb on the preliminary deposition layer exposed by removing the coating layer.

【0010】請求項2の半導体薄膜の製造方法は、請求
項1において、予備堆積層と半導体薄膜層が、燐化I
n、砒化In、ビスマス化In、Sb化ガリウムの少な
くともいずれか一つとInSbとの混晶、およびInS
bの単体の一方からなるものである。請求項3の半導体
薄膜磁気抵抗素子は、請求項1または請求項2の半導体
薄膜の製造方法で得られた半導体薄膜の半導体薄膜層に
短絡電極と保護膜とを形成したものである。
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor thin film according to the first aspect, wherein the predeposition layer and the semiconductor thin film layer are phosphide I.
n, In arsenide, In bismuth in, and a mixed crystal of InSb with at least one of gallium Sb, and InS
It consists of one side of b. A semiconductor thin film magnetoresistive element according to a third aspect is a semiconductor thin film obtained by the method for producing a semiconductor thin film according to the first or second aspect, wherein a short-circuit electrode and a protective film are formed on the semiconductor thin film layer.

【0011】[0011]

【作用】請求項1の半導体薄膜の製造方法によれば、表
面の酸化膜が除去されかつ水素が吸着したSi単結晶基
板上にInからなる下地層を形成すると、この下地層は
予備堆積層を形成する温度において平滑な層を形成す
る。つぎにこの下地層上に形成された予備堆積層は、基
板の面方向に伸びた大きな結晶体になるとともに、Si
単結晶基板の結晶方位を受け継いだエピタキシャル成長
膜となる。この状態から予備堆積層上にSbからなる被
覆層を形成することにより、大気にさらした場合におい
ても予備堆積層の酸化を防止することが可能となり、I
nの蒸着膜厚の制御が必要な下地層の形成装置と、この
必要性が少なく多数枚同時処理の可能な半導体薄膜の形
成装置とを別々にすることができるので、製造タクトの
短縮化を図ることができる。またこのSbからなる被覆
層は、350℃以上に昇温することにより、自身の酸化
層とともに基板表面から蒸発し除去されて、被覆層の形
成前の予備堆積層の表面が現れる。つぎにこの予備堆積
層上に半導体薄膜を形成することにより、結晶粒の面方
向の成長速度が増大し個々の結晶粒がつながった良質の
結晶を直接基板上に形成することができ、基板との付着
強度も強いため、高温における安定性と、高電子移動度
を有する半導体薄膜を製造することができる。
According to the method of manufacturing a semiconductor thin film of claim 1, when an underlayer made of In is formed on a Si single crystal substrate from which an oxide film on the surface is removed and hydrogen is adsorbed, the underlayer is a preliminary deposition layer. A smooth layer is formed at the temperature for forming. Next, the pre-deposited layer formed on this underlayer becomes a large crystal body extending in the surface direction of the substrate and
The epitaxial growth film inherits the crystal orientation of the single crystal substrate. By forming a coating layer made of Sb on the preliminary deposition layer from this state, it becomes possible to prevent the preliminary deposition layer from being oxidized even when exposed to the atmosphere.
Since it is possible to separate the apparatus for forming the underlayer, which requires the control of the vapor deposition film thickness of n, and the apparatus for forming the semiconductor thin film, which is less necessary and can simultaneously process a large number of sheets, the manufacturing tact can be shortened. Can be planned. The coating layer made of Sb evaporates and is removed from the substrate surface together with its own oxide layer by raising the temperature to 350 ° C. or higher, so that the surface of the preliminary deposition layer before the formation of the coating layer appears. Next, by forming a semiconductor thin film on this preliminary deposition layer, the growth rate of crystal grains in the surface direction is increased, and high-quality crystals in which individual crystal grains are connected can be directly formed on the substrate. Since it has a high adhesive strength, it is possible to manufacture a semiconductor thin film having high temperature stability and high electron mobility.

【0012】請求項2の半導体薄膜の製造方法によれ
ば、請求項1において、予備堆積層と半導体薄膜層が、
燐化In、砒化In、ビスマス化In、Sb化ガリウム
の少なくともいずれか一つとInSbとの混晶、および
InSbの単体の一方からなるため、請求項1と同作用
が得られる。請求項3の半導体薄膜磁気抵抗素子によれ
ば、請求項1または請求項2の半導体薄膜の製造方法で
得られた半導体薄膜の半導体薄膜層に短絡電極と保護膜
とを形成したため、たとえば自動車用ギヤセンサ等に適
し特性の優れた信頼性のある半導体薄膜磁気抵抗素子を
提供することができる。
According to the method of manufacturing a semiconductor thin film of claim 2, in the method of claim 1, the preliminary deposition layer and the semiconductor thin film layer are:
Since it is composed of a mixed crystal of at least one of In phosphide, In arsenide, In, bismuth indium, and gallium Sb and InSb, or one of InSb alone, the same effect as in claim 1 can be obtained. According to the semiconductor thin film magnetoresistive element of claim 3, since the short-circuit electrode and the protective film are formed in the semiconductor thin film layer of the semiconductor thin film obtained by the method of manufacturing a semiconductor thin film of claim 1 or 2, for example, for automobiles. It is possible to provide a reliable semiconductor thin film magnetoresistive element having excellent characteristics suitable for a gear sensor or the like.

【0013】[0013]

【実施例】この発明の第1の実施例の半導体薄膜の製造
方法について、図面を参照しながら説明する。図1は、
この実施例の半導体薄膜の製造方法の基本構成である。
第1の工程は、図1(a)に示すようにSi単結晶基板
1の表面の酸化膜を除去して水素吸着を行う工程であ
る。この実施例のSi単結晶基板1は(111)面にカ
ットされた高比抵抗のものを用いた。このSi単結晶基
板1に有機洗浄、酸洗浄およびアルカリ洗浄を順次施し
た後、1%フッ化水素酸水溶液によりSi単結晶基板1
の表面酸化膜を除去し、超純水中にてすすぎを行った。
このときSi単結晶基板1の表面には原子上の水素が吸
着しており、特に(111)面上では安定に存在し続け
ることが可能であり、表面の酸化を防止する効果があ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor thin film according to a first embodiment of the present invention will be described with reference to the drawings. Figure 1
It is the basic configuration of the method for manufacturing a semiconductor thin film of this embodiment.
The first step is a step of removing the oxide film on the surface of the Si single crystal substrate 1 to adsorb hydrogen as shown in FIG. As the Si single crystal substrate 1 of this example, one having a high specific resistance cut to the (111) plane was used. The Si single crystal substrate 1 is sequentially subjected to organic cleaning, acid cleaning and alkali cleaning, and then the Si single crystal substrate 1 is treated with a 1% hydrofluoric acid aqueous solution.
The surface oxide film of was removed and rinsed in ultrapure water.
At this time, hydrogen on the atoms is adsorbed on the surface of the Si single crystal substrate 1, and it is possible for the hydrogen to remain stable on the (111) plane in particular, and there is an effect of preventing surface oxidation.

【0014】第2の工程は、図1(b)に示すようにS
i単結晶基板1上にInからなる下地層2を形成する工
程である。すなわち第1の工程の後、Si単結晶基板1
を直ちに真空蒸着装置内に導入し、真空度5×10-4
a以下にした後、基板温度を室温〜350℃に設定し、
真空度1×10-3Pa以下において、図1(b)に示す
ようにInからなる下地層2を抵抗加熱による蒸着法に
て形成した。
In the second step, as shown in FIG.
In this step, the underlayer 2 made of In is formed on the i single crystal substrate 1. That is, after the first step, the Si single crystal substrate 1
Is immediately introduced into the vacuum vapor deposition apparatus, and the vacuum degree is 5 × 10 −4 P
After the temperature is set to a or less, the substrate temperature is set to room temperature to 350 ° C,
Under vacuum degree of 1 × 10 −3 Pa or less, as shown in FIG. 1B, the underlayer 2 made of In was formed by the vapor deposition method by resistance heating.

【0015】第3の工程は、第2の工程の後図1(c)
に示すように下地層1上に少なくともInとSbとを含
む予備堆積層3を、少なくとも形成初期において200
〜350℃の温度範囲で形成する工程である。この実施
例では、この予備堆積層3にはInSbを用い、Inと
Sbの二元蒸着法を用いて5〜100nm程度の厚さに
形成した。
The third step is shown in FIG. 1C after the second step.
As shown in FIG. 3, a preliminary deposition layer 3 containing at least In and Sb is formed on the underlayer 1 at least 200 at the initial stage of formation.
It is a step of forming in a temperature range of up to 350 ° C. In this example, InSb was used for the preliminary deposition layer 3 and was formed to a thickness of about 5 to 100 nm by a binary vapor deposition method of In and Sb.

【0016】ここで、下地層2および予備堆積層3の形
成開始時の温度が350℃以上になると、下地層2のI
nはSi単結晶基板1で玉状となり、この上に予備堆積
層3を形成しても膜状のものは得られない。また、低温
であるほどInは平滑な層状に存在し得るが、予備堆積
層3の形成開始時の温度が200℃以下になると、Si
単結晶基板1の面方位に揃った(111)配向はする
が、面内での方向が揃わなくなり、エピタキシャル成長
膜が得られない。よって、予備堆積層3のInSbは形
成初期において200〜350℃の温度範囲で形成する
ことが必要である。 また下地層2のInの厚さは、I
nSbの(111)における単原子層に相当する厚さ
0.1nm以上の厚さが必要であるが、Inが厚くなり
すぎると、この上に形成する予備堆積層3の面内の方位
が揃わなくなるため、2nm以下にすることが必要であ
る。
Here, when the temperature at the start of forming the underlayer 2 and the preliminary deposition layer 3 reaches 350 ° C. or higher, the I of the underlayer 2 is increased.
n has a sphere shape on the Si single crystal substrate 1, and even if the preliminary deposition layer 3 is formed on this, a film shape cannot be obtained. In addition, In may exist in a smooth layered state at lower temperatures, but when the temperature at the start of formation of the preliminary deposition layer 3 becomes 200 ° C. or lower, Si
Although the (111) orientation is aligned with the plane orientation of the single crystal substrate 1, the in-plane directions are not aligned and an epitaxial growth film cannot be obtained. Therefore, it is necessary to form InSb of the preliminary deposition layer 3 in the temperature range of 200 to 350 ° C. at the initial stage of formation. The thickness of In of the underlayer 2 is I
A thickness of 0.1 nm or more, which is equivalent to a monoatomic layer in (111) of nSb, is required. However, when In becomes too thick, the in-plane orientation of the preliminary deposition layer 3 formed on this layer becomes uniform. Since it disappears, it is necessary to set the thickness to 2 nm or less.

【0017】第4の工程は、図1(d)に示すように、
予備堆積層3上にSbからなる被覆層11を形成する工
程である。実施例では基板温度を300℃以下にしてS
bからなる被覆層11を形成する。この被覆層11の表
面は、真空蒸着装置から大気中に取り出した場合に図1
(e)に示すように表面が酸化され、自然酸化膜12が
形成される。このとき予備堆積層3まで酸化が進行する
と、この後に形成する半導体薄膜4がエピタキシャル成
長しなくなるため、これを防止するために被覆層11の
厚さは10nm以上必要である。
The fourth step is, as shown in FIG.
This is a step of forming the coating layer 11 made of Sb on the preliminary deposition layer 3. In the embodiment, the substrate temperature is set to 300 ° C. or lower and S
The coating layer 11 made of b is formed. The surface of the coating layer 11 is shown in FIG.
As shown in (e), the surface is oxidized and the natural oxide film 12 is formed. At this time, when the oxidation progresses to the preliminary deposition layer 3, the semiconductor thin film 4 to be formed thereafter does not grow epitaxially. Therefore, the thickness of the coating layer 11 needs to be 10 nm or more to prevent this.

【0018】第5の工程は、被覆層11を形成した状態
で被覆層11を大気にさらす工程である。すなわち、第
4の工程で被覆層11が形成された状態で大気中での搬
送や、乾燥窒素中での保管を行った後、再び真空蒸着装
置内に導入する。ここで、このときの真空蒸着装置は下
地層2および予備堆積層3を形成した装置と同一のもの
でも異なるものでも良いが、下地層2の形成には膜厚の
細かい制御が必要なため毎葉処理の装置が適し、次に形
成する半導体層4の形成にはそれがあまり必要でないた
め同時に大量に処理できる装置の方が適する。よって別
の真空蒸着装置を用いて形成した方が製造タクトの短縮
化を図ることも可能となるものである。
The fifth step is a step of exposing the coating layer 11 to the atmosphere with the coating layer 11 formed. That is, after the coating layer 11 is formed in the fourth step, the coating layer 11 is transported in the atmosphere or stored in dry nitrogen, and then again introduced into the vacuum vapor deposition apparatus. Here, the vacuum vapor deposition apparatus at this time may be the same as or different from the apparatus for forming the base layer 2 and the preliminary deposition layer 3, but since the formation of the base layer 2 requires fine control of the film thickness, An apparatus for leaf treatment is suitable, and an apparatus capable of treating a large amount at the same time is more suitable because it is not necessary for forming the semiconductor layer 4 to be formed next. Therefore, it is possible to shorten the manufacturing tact by using another vacuum vapor deposition apparatus.

【0019】第6の工程は、大気にさらした被覆層11
を真空中で350℃以上に加熱して除去する工程であ
る。すなわち、被覆層11および自然酸化膜12の除去
を行うために、基板温度を上昇させる。被覆層11のS
bやその酸化物からなる自然酸化膜12は、平衡蒸気圧
が高いために、基板温度を350℃以上にすることによ
り気化し容易に除去される。これにより基板表面は、被
覆層11を形成する前の予備堆積層3の表面となる。
The sixth step is the coating layer 11 exposed to the atmosphere.
Is a step of removing by heating to 350 ° C. or higher in vacuum. That is, the substrate temperature is raised in order to remove the coating layer 11 and the natural oxide film 12. S of coating layer 11
Since the natural oxide film 12 made of b or its oxide has a high equilibrium vapor pressure, it is vaporized and easily removed by setting the substrate temperature to 350 ° C. or higher. As a result, the surface of the substrate becomes the surface of the preliminary deposition layer 3 before forming the coating layer 11.

【0020】第7の工程は、図1(f)に示すように被
覆層11の除去により露出した予備堆積層3上に少なく
ともInとSbとを含む半導体薄膜層4を形成する工程
である。すなわち、予備堆積層3と同様にInとSbの
2元蒸着法を用いて、370〜460℃の温度範囲にお
いてInSbを形成することにより半導体薄膜層4を形
成した。この温度範囲であれば、Sb/In供給比を2
以上に保っておけば化学量論組成のInSbが容易に得
られ、また結晶粒の面方向の成長速度が大きく、個々の
結晶粒がつながった良質の半導体薄膜4を得ることがで
きる。なお、形成温度が370℃より低温であれば、化
学量論組成を得るためのSb/In供給比が極狭い範囲
に限られるようになるとともに、結晶粒の面方向の成長
速度が小さいために良質のInSb薄膜を再現性良く得
ることは難しい。また460℃以上の高温であればIn
SbからのSbの脱離が激しくなり、結晶性が低下する
ため良質のInSb薄膜は得られない。よって半導体薄
膜4の形成温度は370〜460℃の範囲とすることが
必要である。
The seventh step is a step of forming a semiconductor thin film layer 4 containing at least In and Sb on the pre-deposition layer 3 exposed by removing the coating layer 11 as shown in FIG. 1 (f). That is, the semiconductor thin film layer 4 was formed by forming InSb in the temperature range of 370 to 460 ° C. by using the binary vapor deposition method of In and Sb similarly to the preliminary deposition layer 3. Within this temperature range, the Sb / In supply ratio should be 2
If the above conditions are maintained, InSb having a stoichiometric composition can be easily obtained, the growth rate of crystal grains in the plane direction is high, and a good-quality semiconductor thin film 4 in which individual crystal grains are connected can be obtained. If the formation temperature is lower than 370 ° C., the Sb / In supply ratio for obtaining the stoichiometric composition is limited to an extremely narrow range, and the growth rate of the crystal grains in the plane direction is small. It is difficult to obtain a good quality InSb thin film with good reproducibility. If the temperature is higher than 460 ° C, In
Since the desorption of Sb from Sb becomes severe and the crystallinity decreases, a good quality InSb thin film cannot be obtained. Therefore, the formation temperature of the semiconductor thin film 4 needs to be in the range of 370 to 460 ° C.

【0021】このようにして得られたInSbからなる
半導体薄膜層4の、X線回折による結晶性の評価結果を
図2に示す。同図より、半導体薄膜4は(111)面に
エピタキシャル成長しており、良好な結晶性を有してい
ることがわかる。またこの半導体薄膜層4の電子移動度
は、ファンデルパウ法を用いた測定により、膜厚3μm
のもので4〜6m2 /V・ s(室温値)であり、単結晶
なみの電子移動度を有する良質のInSbからなる半導
体薄膜層4を得ることができた。また、Si単結晶基板
1、下地層2、予備堆積層3および半導体薄膜4の各々
の層間における密着性は、いずれも良好であり、−50
〜+150℃間の温度サイクルを繰り返しても、剥離や
特性劣化等の問題は生じなかった。
FIG. 2 shows the evaluation results of the crystallinity of the semiconductor thin film layer 4 made of InSb thus obtained by X-ray diffraction. From the figure, it is understood that the semiconductor thin film 4 is epitaxially grown on the (111) plane and has good crystallinity. The electron mobility of the semiconductor thin film layer 4 is 3 μm as measured by the van der Pauw method.
It was 4 to 6 m 2 / V · s (room temperature value), and a semiconductor thin film layer 4 made of good quality InSb having an electron mobility similar to a single crystal could be obtained. Further, the adhesion between each of the Si single crystal substrate 1, the underlayer 2, the preliminary deposition layer 3, and the semiconductor thin film 4 is good, and −50.
Even if the temperature cycle between ˜ + 150 ° C. was repeated, problems such as peeling and characteristic deterioration did not occur.

【0022】この実施例によれば、表面酸化膜が除去さ
れかつ水素が吸着したSi単結晶基板1上に、Inから
なる下地層2を形成し、この下地層2上にInSbから
なる予備堆積層3を200〜350℃の温度範囲で形成
し、この予備堆積層3上にSbからなる被覆層11を形
成し、この状態で大気中にさらした後、真空中で350
℃以上に加熱し被覆層11を除去するとともに、予備堆
積層3上にInSbからなる半導体薄膜層4を370〜
460℃で形成することにより、製造タクトの短縮化を
図りながら、Si単結晶基板1上へのエピタキシャル成
長した良好な結晶性を有するものが得られ、高温におけ
る安定性と、高電子移動度を有する半導体薄膜を提供で
きる。
According to this embodiment, the underlayer 2 made of In is formed on the Si single crystal substrate 1 from which the surface oxide film has been removed and hydrogen has been adsorbed, and the preliminary deposition of InSb is made on this underlayer 2. The layer 3 is formed in a temperature range of 200 to 350 ° C., the coating layer 11 made of Sb is formed on the preliminary deposition layer 3, exposed to the atmosphere in this state, and then 350 in a vacuum.
The coating layer 11 is removed by heating at a temperature of not less than 0 ° C., and the semiconductor thin film layer 4 made of InSb is formed on the preliminary deposition layer 3 in the range of 370 to 370.
By forming at 460 ° C., it is possible to obtain a product having good crystallinity which is epitaxially grown on the Si single crystal substrate 1 while shortening the manufacturing tact, and has stability at high temperature and high electron mobility. A semiconductor thin film can be provided.

【0023】この発明の一実施例の半導体薄膜磁気抵抗
素子について、図3に基づいて説明する。すなわち、こ
の半導体薄膜磁気抵抗素子は、上述した方法で得られた
半導体薄膜層4をフォトリソグラフィー法により加工す
るとともに、銅などからなる短絡電極5を形成し、さら
に二酸化珪素等からなる保護膜6を形成したものであ
る。
A semiconductor thin film magnetoresistive element according to an embodiment of the present invention will be described with reference to FIG. That is, in this semiconductor thin film magnetoresistive element, the semiconductor thin film layer 4 obtained by the above-described method is processed by the photolithography method, the short-circuit electrode 5 made of copper or the like is formed, and the protective film 6 made of silicon dioxide or the like is further formed. Is formed.

【0024】こうして得られた半導体薄膜磁気抵抗素子
は、−50〜+150℃の温度サイクル試験や耐湿試験
等を繰り返しても剥離、亀裂および特性劣化等の素子劣
化は生じず、極めて高い信頼性を有することが確認され
た。この実施例によれば、従来生じていたような膜亀裂
等による特性の劣化は生じず、−50〜+150℃の温
度範囲でも十分な信頼性を有すると共に、特性の優れた
半導体薄膜磁気抵抗素子を提供できる。
The semiconductor thin film magnetoresistive element thus obtained has extremely high reliability without causing element deterioration such as peeling, cracking and characteristic deterioration even after repeated temperature cycle test and humidity resistance test at -50 to + 150 ° C. It was confirmed to have. According to this embodiment, the characteristics of the semiconductor thin film magnetoresistive element are not deteriorated due to film cracks and the like, which are conventionally generated, have sufficient reliability even in the temperature range of -50 to + 150 ° C, and have excellent characteristics. Can be provided.

【0025】なお、前記した実施例では、Si単結晶基
板1に、(111)の面方位のものを用いたが、(10
0)面および(110)面やこれらの面方位から0〜1
0度の範囲で傾けた面方位であるSi単結晶基板1を用
いてもよい。また、Si単結晶基板1の表面酸化膜の除
去方法を、フッ化水素酸水溶液を用いたが、フッ化アン
モニウム水溶液や、真空蒸着装置内における水素プラズ
マ、水素イオンビーム照射または水素中での加熱等を用
いてもよい。
Although the Si single crystal substrate 1 having the (111) plane orientation is used in the above-mentioned embodiment, (10
0 to 1 from (0) and (110) planes and their plane orientations
It is also possible to use the Si single crystal substrate 1 having a plane orientation inclined in the range of 0 degree. Further, as the method for removing the surface oxide film of the Si single crystal substrate 1, a hydrofluoric acid aqueous solution was used. However, an ammonium fluoride aqueous solution, hydrogen plasma in a vacuum deposition apparatus, hydrogen ion beam irradiation or heating in hydrogen is used. Etc. may be used.

【0026】また、半導体薄膜4としてInSbを用い
たが、このInSbと燐化In、砒化In、ビスマス化
In、Sb化ガリウムのいずれか一つあるいは複数との
混晶からなる半導体を用いても、エピタキシャル成長を
した良好な結晶性を有するものが得られ、電子移動度が
大きく、かつ層間の密着性の良好なものが得られる。さ
らに、Inからなる下地層2、InSbからなる予備堆
積層3および半導体薄膜層4を、ともに真空蒸着法で形
成したが、PAD法(プラズマアシスティドデポジショ
ン法)、ICB法(イオンクラスタビーム法)等、適切
なプラズマ、イオン等のエネルギーを利用した成膜方式
を用いれば、さらに成膜温度の低温化が図れると共に、
良好な特性を有する半導体薄膜を得ることができる。
Although InSb is used as the semiconductor thin film 4, a semiconductor made of a mixed crystal of InSb and any one or more of InP phosphide, In arsenide, In, bismuth indium, and gallium Sb may be used. It is possible to obtain an epitaxially grown material having good crystallinity, high electron mobility, and good adhesion between layers. Further, although the underlayer 2 made of In, the preliminary deposition layer 3 made of InSb, and the semiconductor thin film layer 4 were all formed by the vacuum evaporation method, the PAD method (plasma assisted deposition method), the ICB method (ion cluster beam) Method, etc., the film forming temperature can be further lowered by using a film forming method using appropriate energy of plasma, ions, etc.
A semiconductor thin film having good characteristics can be obtained.

【0027】[0027]

【発明の効果】請求項1の半導体薄膜の製造方法によれ
ば、表面の酸化膜が除去されかつ水素が吸着したSi単
結晶基板上にInからなる下地層を形成すると、この下
地層は予備堆積層を形成する温度において平滑な層を形
成する。つぎにこの下地層上に形成された予備堆積層
は、基板の面方向に伸びた大きな結晶体になるととも
に、Si単結晶基板の結晶方位を受け継いだエピタキシ
ャル成長膜となる。この状態から予備堆積層上にSbか
らなる被覆層を形成することにより、大気にさらした場
合においても予備堆積層の酸化を防止することが可能と
なり、Inの蒸着膜厚の制御が必要な下地層の形成装置
と、この必要性が少なく多数枚同時処理の可能な半導体
薄膜の形成装置とを別々にすることができるので、製造
タクトの短縮化を図ることができる。またこのSbから
なる被覆層は、350℃以上に昇温することにより、自
身の酸化層とともに基板表面から蒸発し除去されて、被
覆層の形成前の予備堆積層の表面が現れる。つぎにこの
予備堆積層上に半導体薄膜を形成することにより、結晶
粒の面方向の成長速度が増大し個々の結晶粒がつながっ
た良質の結晶を直接基板上に形成することができ、基板
との付着強度も強いため、高温における安定性と、高電
子移動度を有する半導体薄膜を製造することができると
いう効果がある。
According to the method of manufacturing a semiconductor thin film of the first aspect, when an underlayer made of In is formed on a Si single crystal substrate from which an oxide film on the surface is removed and hydrogen is adsorbed, the underlayer is preliminarily prepared. A smooth layer is formed at the temperature at which the deposited layer is formed. Next, the preliminary deposition layer formed on the underlayer becomes a large crystal body extending in the surface direction of the substrate and an epitaxial growth film that inherits the crystal orientation of the Si single crystal substrate. By forming a coating layer made of Sb on the preliminary deposition layer from this state, it is possible to prevent the preliminary deposition layer from being oxidized even when exposed to the atmosphere, and it is necessary to control the deposition thickness of In. Since the formation device for the formation and the formation device for the semiconductor thin film, which is less necessary and capable of simultaneously processing a large number of sheets, can be separated, the manufacturing tact can be shortened. The coating layer made of Sb evaporates and is removed from the substrate surface together with its own oxide layer by raising the temperature to 350 ° C. or higher, so that the surface of the preliminary deposition layer before the formation of the coating layer appears. Next, by forming a semiconductor thin film on this preliminary deposition layer, the growth rate of crystal grains in the surface direction is increased, and high-quality crystals in which individual crystal grains are connected can be directly formed on the substrate. Since it has a high adhesion strength, it has the effect that a semiconductor thin film having high temperature stability and high electron mobility can be manufactured.

【0028】請求項2の半導体薄膜の製造方法によれ
ば、請求項1において、予備堆積層と半導体薄膜層が、
燐化In、砒化In、ビスマス化In、Sb化ガリウム
の少なくともいずれか一つとInSbとの混晶、および
InSbの単体の一方からなるため、請求項1と同効果
が得られる。請求項3の半導体薄膜磁気抵抗素子によれ
ば、請求項1または請求項2の半導体薄膜の製造方法で
得られた半導体薄膜の半導体薄膜層に短絡電極と保護膜
とを形成したため、たとえば自動車用ギヤセンサ等に適
し特性の優れた信頼性のある半導体薄膜磁気抵抗素子を
提供することができる。
According to the method of manufacturing a semiconductor thin film of claim 2, in the method of claim 1, the preliminary deposition layer and the semiconductor thin film layer are:
Since it is composed of a mixed crystal of at least one of In phosphide, In arsenide, In, bismuth indium, and gallium Sb and InSb, or one of InSb alone, the same effect as claim 1 can be obtained. According to the semiconductor thin film magnetoresistive element of claim 3, since the short-circuit electrode and the protective film are formed in the semiconductor thin film layer of the semiconductor thin film obtained by the method of manufacturing a semiconductor thin film of claim 1 or 2, for example, for automobiles. It is possible to provide a reliable semiconductor thin film magnetoresistive element having excellent characteristics suitable for a gear sensor or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の半導体薄膜の製造方法を
説明する半導体薄膜の断面図である。
FIG. 1 is a sectional view of a semiconductor thin film for explaining a method of manufacturing a semiconductor thin film according to an embodiment of the present invention.

【図2】製造された半導体薄膜のX線回折パターンであ
る。
FIG. 2 is an X-ray diffraction pattern of the manufactured semiconductor thin film.

【図3】この発明の半導体薄膜磁気抵抗素子の斜視図で
ある。
FIG. 3 is a perspective view of a semiconductor thin film magnetoresistive element of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン単結晶基板 2 下地層 3 予備堆積層 4 半導体薄膜層 5 短絡電極 6 保護膜 11 被覆層 12 自然酸化膜 1 Silicon Single Crystal Substrate 2 Underlayer 3 Preliminary Deposited Layer 4 Semiconductor Thin Film Layer 5 Short-Circuit Electrode 6 Protective Film 11 Covering Layer 12 Natural Oxide Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北畠 真 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Kitahata 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶基板の表面の酸化膜を除
去して水素吸着を行う工程と、前記シリコン単結晶基板
上にインジウムからなる下地層を形成する工程と、前記
下地層上に少なくともインジウムとアンチモンとを含む
予備堆積層を少なくとも形成初期において200〜35
0℃の温度範囲で形成する工程と、前記予備堆積層上に
アンチモンからなる被覆層を形成する工程と、前記被覆
層を形成した状態で前記被覆層を大気にさらす工程と、
前記大気にさらした前記被覆層を真空中で350℃以上
に加熱して除去する工程と、前記被覆層の除去により露
出した前記予備堆積層上に少なくともインジウムとアン
チモンとを含む半導体薄膜層を形成する工程とを含む半
導体薄膜の製造方法。
1. A step of removing an oxide film on a surface of a silicon single crystal substrate to adsorb hydrogen, a step of forming an underlayer made of indium on the silicon single crystal substrate, and at least indium on the underlayer. 200 to 35 at least in the initial stage of formation of a pre-deposition layer containing
Forming in a temperature range of 0 ° C., forming a coating layer made of antimony on the preliminary deposition layer, exposing the coating layer to the atmosphere with the coating layer formed,
Removing the coating layer exposed to the atmosphere by heating it to 350 ° C. or higher in a vacuum; and forming a semiconductor thin film layer containing at least indium and antimony on the preliminary deposition layer exposed by the removal of the coating layer. And a method of manufacturing a semiconductor thin film.
【請求項2】 予備堆積層と半導体薄膜層が、燐化イン
ジウム、砒化インジウム、ビスマス化インジウム、アン
チモン化ガリウムの少なくともいずれか一つとアンチモ
ン化インジウムとの混晶、およびアンチモン化インジウ
ムの単体の一方からなる請求項1記載の半導体薄膜の製
造方法。
2. The pre-deposited layer and the semiconductor thin film layer are one of a mixed crystal of at least one of indium phosphide, indium arsenide, indium bismuthide, and gallium antimonide and indium antimonide, or a simple substance of indium antimonide. The method for producing a semiconductor thin film according to claim 1, comprising:
【請求項3】 請求項1または請求項2の半導体薄膜の
製造方法で得られた半導体薄膜の半導体薄膜層に短絡電
極と保護膜とを形成した半導体薄膜磁気抵抗素子。
3. A semiconductor thin film magnetoresistive element in which a short-circuit electrode and a protective film are formed on the semiconductor thin film layer of the semiconductor thin film obtained by the method for producing a semiconductor thin film according to claim 1.
JP5315214A 1993-12-15 1993-12-15 Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element Pending JPH07169686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315214A JPH07169686A (en) 1993-12-15 1993-12-15 Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315214A JPH07169686A (en) 1993-12-15 1993-12-15 Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element

Publications (1)

Publication Number Publication Date
JPH07169686A true JPH07169686A (en) 1995-07-04

Family

ID=18062777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315214A Pending JPH07169686A (en) 1993-12-15 1993-12-15 Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element

Country Status (1)

Country Link
JP (1) JPH07169686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074082A (en) * 2008-09-22 2010-04-02 Asahi Kasei Electronics Co Ltd Semiconductor substrate and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074082A (en) * 2008-09-22 2010-04-02 Asahi Kasei Electronics Co Ltd Semiconductor substrate and manufacturing method of the same

Similar Documents

Publication Publication Date Title
KR100215588B1 (en) Method for fabricating semiconductor thin film and method of fabricating magnetoelectric conversion element
Asana et al. An epitaxial Si/insulator/Si structure prepared by vacuum deposition of CaF2 and silicon
JP3414833B2 (en) Method for manufacturing semiconductor thin film and method for manufacturing magnetoelectric conversion element
JPS6161556B2 (en)
JPH07169686A (en) Manufacture of semiconductor thin film and semiconductor thin film magnetoresistance element
WO2004077585A1 (en) Semiconductor sensor and method for manufacturing same
JP3180378B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing semiconductor magnetoresistive element
JPH06232058A (en) Preparation of epitaxial semiconductor structure
JPS62273782A (en) Josephson junction device and manufacture thereof
JPH0419699B2 (en)
JPH0324719A (en) Forming method of single crystal film and crystal products
JPH06164017A (en) Manufacture of semiconductor thin-film magneto resistance element
JP2703231B2 (en) Method for manufacturing silicon semiconductor substrate
JPH04267518A (en) Manufacture of semiconductor thin film element
JP2863238B2 (en) Laminate having atomic layer controlled oxide layer on silicon substrate and method of manufacturing the same
US5008215A (en) Process for preparing high sensitivity semiconductive magnetoresistance element
JPH09162461A (en) Production of semiconductor thin-film magnetoresistive device
JPH0210882A (en) Semiconductor thin film magnetoresistance element and manufacture thereof
JPH04286170A (en) Manufacture of semiconductor thin-film magnetoresistive element
JPH06209130A (en) Forming method of insb thin film
JP2514091B2 (en) Magnetoelectric conversion element
JPH09153460A (en) Semiconductor thin film, manufacture thereof, and magnetoelectric transducer
JPH0770473B2 (en) Method for manufacturing semiconductor substrate
JP2001308407A (en) InSb THIN FILM SUBSTRATE
JPH0580438B2 (en)