JP2001326401A - MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE - Google Patents

MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE

Info

Publication number
JP2001326401A
JP2001326401A JP2000142938A JP2000142938A JP2001326401A JP 2001326401 A JP2001326401 A JP 2001326401A JP 2000142938 A JP2000142938 A JP 2000142938A JP 2000142938 A JP2000142938 A JP 2000142938A JP 2001326401 A JP2001326401 A JP 2001326401A
Authority
JP
Japan
Prior art keywords
film
substrate
insb
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000142938A
Other languages
Japanese (ja)
Inventor
Hideo Oura
秀男 大浦
Kazunobu Takashima
和信 高島
Hiroshi Nakamura
寛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2000142938A priority Critical patent/JP2001326401A/en
Publication of JP2001326401A publication Critical patent/JP2001326401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for an InSb thin-film substrate, wherein the InSb thin-film substrate which can be applied to a magnetoelectric device of high sensitivity and of high reliability is obtained. SOLUTION: In the manufacturing method for the InSb thin-film substrate 10, an Sb film 3 as a first layer and an In film 4 as a second layer are formed on a substrate 1A at prescribed thicknesses so as to become a stoichiometric composition, and an InSb compound semiconductor crystal film 5 of the stoichiometric composition is formed on them. In the manufacturing method for the InSb thin-film substrate 10, when the substrate in the formation of the Sb film 3 as the first layer is treated at the reevaporation temperature or lower of the Sb film 3, the substrate and a substrate holder are preliminarily heated as their pretreatment at a prescribed temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁電変換素子(例
えばホール素子、MR素子)に応用できる高感度、高信
頼性で且つ、高い積感度(μH・Rs)を有する化合物
半導体多結晶膜、例えば、インジュウム・アンチモン
(InSb)薄膜基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor polycrystalline film having high sensitivity, high reliability and high product sensitivity (.mu.H.Rs) applicable to magnetoelectric conversion elements (for example, Hall elements and MR elements). For example, the present invention relates to a method for manufacturing an indium antimony (InSb) thin film substrate.

【0002】[0002]

【従来の技術】従来から、安価で且つ高感度の優れた磁
電変換素子(例えばホール素子、MR素子)用材料とし
ては、化学量論組成を有するホール移動度の高いInS
b系多結晶膜が多く用いられている。
2. Description of the Related Art Conventionally, as an inexpensive and highly sensitive material for a magnetoelectric conversion element (for example, a Hall element or an MR element), InS having a stoichiometric composition and a high Hall mobility has been used.
A b-type polycrystalline film is often used.

【0003】ところで、CD−ROMやDVD等に用い
られるホールモータは、ホール素子と磁石とで回転検出
を行うものであり、このホールモータの小型化に伴い、
ホールモータの回転検出に用いられる磁石もそのサイズ
が小型化されてきている。この磁石のサイズが小さくな
ると、磁束密度が低くなるので、この磁束密度を検出す
るホール素子の感度は、ますます高感度化が要求され
る。
A hole motor used for a CD-ROM, a DVD, or the like detects rotation using a hall element and a magnet.
The size of magnets used for detecting the rotation of a hall motor has also been reduced in size. As the size of the magnet decreases, the magnetic flux density decreases. Therefore, the sensitivity of the Hall element for detecting the magnetic flux density is required to be higher and higher.

【0004】このホール素子の材料としては、InS
b、InAs、GaAsなどの化合物があるが、一般に
は、材料費が安価で、高いホール移動度を有することか
ら、高い感度が得られるInSbが広く用いられてい
る。そして、InSbのホール移動度を高くするために
は、結晶性を向上させる必要がある。実用的には、In
Sb膜のホール移動度は、20000cm2/V・se
c以上が要求されている。
The material of the Hall element is InS
Although there are compounds such as b, InAs, and GaAs, generally, InSb, which has a low material cost and has a high hole mobility, is widely used because of its high sensitivity. In order to increase the hole mobility of InSb, it is necessary to improve the crystallinity. Practically, In
The hole mobility of the Sb film is 20,000 cm 2 / V · se
c or more is required.

【0005】このInSbホール素子としては、例え
ば、特開平9−148652号公報及び特開平9−14
8653号公報に開示されているものがある。すなわ
ち、特開平9−148652号公報は、結晶面間隔の近
い雲母基板上に、真空蒸着法によりIn過剰のInとS
bとからなる層を形成し、更に、前記Inよりも過剰な
Sbを蒸着することにより、InSb膜を形成後、この
InSb膜上にポリイミド樹脂を介してフェライトを載
置した後、前記基板を剥離することによって、フェライ
ト上にInSb膜を転写し、このInSb膜の上にフォ
トリソグラフィ法によりホールパターンを形成し、所望
の大きさにダイシングして、InSbホール素子を得る
ようにしたものである。
As this InSb Hall element, for example, Japanese Patent Application Laid-Open Nos. 9-148652 and 9-14
There is one disclosed in JP-A-8653. That is, Japanese Patent Application Laid-Open No. Hei 9-148652 discloses that an excess of In and S
After forming a layer consisting of b, and further evaporating Sb in excess of the In, an InSb film is formed, and a ferrite is placed on the InSb film via a polyimide resin. By peeling, the InSb film is transferred onto the ferrite, a hole pattern is formed on the InSb film by a photolithography method, and diced to a desired size to obtain an InSb Hall element. .

【0006】また、特開平9−148653号公報は、
フェライト基板上にガラスを形成し、このガラス上に真
空蒸着法により、InとSbを蒸着し、更に、Sbを蒸
着してInSb膜を形成後、このInSb膜上にフォト
リソグラフィ法によりホールパターンを形成し、所望の
大きさにダイシングして、InSbホール素子を得るよ
うにしたものである。
[0006] Japanese Patent Application Laid-Open No. 9-148655 discloses
A glass is formed on a ferrite substrate, In and Sb are vapor-deposited on the glass by a vacuum vapor deposition method, Sb is further vapor-deposited to form an InSb film, and a hole pattern is formed on the InSb film by a photolithography method. It is formed and diced to a desired size to obtain an InSb Hall element.

【0007】しかしながら、前者の場合には、雲母から
なる基板上にInSb膜を形成した場合、高いホール移
動度が得られるので、このInSb膜から作製されたホ
ール素子は高感度となるが、前記基板を剥離する際に、
InSb膜を基板全体から完全に剥離できなかったり、
完全に剥離するためには時間が大幅にかかることから、
製造作業が難く、歩留まりが悪かった。このため、In
Sb膜の製造コストが高くなる欠点があった。
However, in the former case, when an InSb film is formed on a substrate made of mica, a high hole mobility can be obtained. Therefore, a Hall element made from this InSb film has high sensitivity. When peeling the substrate,
The InSb film cannot be completely removed from the entire substrate,
Because it takes a lot of time to completely peel off,
Manufacturing work was difficult and the yield was poor. Therefore, In
There was a disadvantage that the manufacturing cost of the Sb film was increased.

【0008】また、後者の場合には、フェライト基板に
形成されたガラス上にInSb膜を直接形成するものな
ので、InSb膜とガラスとの間の格子にミスマッチが
あると、InSb膜は無配向となるため、ホール移動度
が低く感度が上がらないといった問題があった。
In the latter case, since the InSb film is formed directly on the glass formed on the ferrite substrate, if there is a mismatch in the lattice between the InSb film and the glass, the InSb film becomes non-oriented. Therefore, there is a problem that the hole mobility is low and the sensitivity does not increase.

【0009】[0009]

【発明が解決しようとする課題】この様に、従来のホー
ル素子などの磁電変換素子用薄膜基板の形成方法におい
ては、簡単な方法で、高いホール移動度μHを有した薄
膜基板を形成することが困難で、従って、例えば高い積
感度(μH・Rs)を有したホール素子用薄膜基板を形
成することが困難であった。更に、基板上に成膜される
化合物半導体InSb結晶膜は、基板温度,蒸着粒子な
どの基板表面の物理,化学的な変化によって膜の結晶成
長状態が決定される。
As described above, in the conventional method for forming a thin film substrate for a magnetoelectric conversion element such as a Hall element, a thin film substrate having a high hole mobility μH is formed by a simple method. Therefore, it has been difficult to form a thin film substrate for a Hall element having, for example, a high product sensitivity (μH · Rs). Further, in the compound semiconductor InSb crystal film formed on the substrate, the crystal growth state of the film is determined by physical and chemical changes of the substrate surface such as the substrate temperature and vapor deposition particles.

【0010】そこで、本発明は上記のような課題を解決
するためになされたものであり、簡単な方法で高いホー
ル移動度を有するInSb薄膜基板を得るためのInS
b薄膜基板の製造方法を提供することを目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problems, and has been made in order to obtain an InSb thin film substrate having a high hole mobility by a simple method.
b. To provide a method for manufacturing a thin film substrate.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、第1の発明として、基板1A上に、第1層にSb
膜3、第2層にIn膜4を化学量論組成となるように所
定の厚みで成膜形成し、その上に化学量論組成のInS
b化合物半導体結晶膜5を成膜形成するInSb薄膜基
板10の製造方法であって、第1層のSb膜3の成膜時
の基板温度をSb膜3の再蒸発温度以下で処理するに際
し、その前処理として、基板ならびに基板ホルダーを所
定温度で予備加熱するようにしたInSb薄膜基板10
の製造方法を、第2の発明として、基板1B上に、少な
くとも1層の絶縁膜2を介して第1層にSb膜3、第2
層にIn膜4を化学量論組成となるように所定の厚みで
成膜形成し、その上に化学量論組成のInSb化合物半
導体結晶膜5を成膜形成するInSb薄膜基板10の製
造方法であって、第1層のSb膜3の成膜時の基板温度
をSb膜3の再蒸発温度以下で処理するに際し、その前
処理として、基板ならびに基板ホルダーを所定温度で予
備加熱するようにしたInSb薄膜基板10の製造方法
を、第3の発明として、前記基板ならびに基板ホルダー
を予備加熱する温度範囲は、真空中において280℃以
上650℃以下である請求項1または請求項2記載のI
nSb薄膜基板10の製造方法を、第4の発明として、
上記予備加熱の後で成膜直前の到達真空度が15*10
-7Torr以下の高真空である請求項1または請求項2
記載のInSb薄膜基板10の製造方法をそれぞれ提供
するものである。
In order to solve the above-mentioned problems, as a first invention, Sb is formed on a first layer on a substrate 1A.
An In film 4 is formed on the film 3 and the second layer with a predetermined thickness so as to have a stoichiometric composition.
A method for manufacturing an InSb thin film substrate 10 for forming a b-compound semiconductor crystal film 5, wherein the substrate temperature at the time of forming the first layer Sb film 3 is not more than the re-evaporation temperature of the Sb film 3, As a pretreatment, an InSb thin film substrate 10 in which a substrate and a substrate holder are preheated at a predetermined temperature.
As a second invention, the manufacturing method of the first aspect is to form an Sb film 3 on a substrate 1B,
A method of manufacturing an InSb thin film substrate 10 in which an In film 4 having a predetermined thickness is formed so as to have a stoichiometric composition and an InSb compound semiconductor crystal film 5 having a stoichiometric composition is formed thereon. When the substrate temperature at the time of forming the first layer Sb film 3 is set at a temperature equal to or lower than the re-evaporation temperature of the Sb film 3, as a pretreatment, the substrate and the substrate holder are preheated at a predetermined temperature. 3. The method according to claim 1, wherein the method of manufacturing the InSb thin film substrate 10 is a third invention, wherein a temperature range of preheating the substrate and the substrate holder is 280 ° C. or more and 650 ° C. or less in a vacuum.
The method for manufacturing the nSb thin film substrate 10 is described as a fourth invention.
After the above preheating, the ultimate vacuum degree just before film formation is 15 * 10
A high vacuum of -7 Torr or less.
And a method for manufacturing the InSb thin film substrate 10 described above.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例1】以下、本発明になるInSb薄膜基板の製
造方法につき、図1〜図5を参照して説明する。図1、
図2は、本発明になるInSb薄膜基板の製造方法によ
り形成されたInSb薄膜基板の側面図、図3は、予備
加熱温度と規格化移動度との関係を示す説明図、図4
は、到達真空度と規格化移動度との関係を示す説明図、
図5は、ホール素子チップ(十字パターン)の評価方法
の一例を示す説明図である。
Embodiment 1 A method for manufacturing an InSb thin film substrate according to the present invention will be described below with reference to FIGS. Figure 1,
FIG. 2 is a side view of an InSb thin film substrate formed by the method of manufacturing an InSb thin film substrate according to the present invention. FIG. 3 is an explanatory diagram showing a relationship between preheating temperature and normalized mobility.
Is an explanatory diagram showing the relationship between ultimate vacuum and normalized mobility,
FIG. 5 is an explanatory diagram showing an example of a method for evaluating a Hall element chip (cross pattern).

【0013】まず、InSb薄膜基板10の作成方法に
つき図1、図2を参照して説明する。成膜評価の薄膜基
板としては、表面を研磨したSiO2基板1A、或いは
表面を研磨した磁性フェライト基板1B上に絶縁膜とし
てのSiO2膜2を200nmの厚みでプラズマCVD
で成膜した物を用いた。基板1A、1Bの表面状態の評
価には、触針式粗さ計,光学顕微鏡,電子顕微鏡(SE
M)を用いて行った。
First, a method of forming the InSb thin film substrate 10 will be described with reference to FIGS. As a thin film substrate for film formation evaluation, an SiO 2 film 2 as an insulating film having a thickness of 200 nm was formed on a SiO 2 substrate 1A having a polished surface or a magnetic ferrite substrate 1B having a polished surface by plasma CVD.
Was used. For evaluation of the surface condition of the substrates 1A and 1B, a stylus type roughness meter, an optical microscope, and an electron microscope (SE
M).

【0014】基板材料としては、積層されるIn、Sb
との関連から吟味されなければならない。磁性フェライ
ト基板1Bを用いた場合、InSb薄膜基板10をデバ
イスにした際、雲母からの剥離、転写工程などが無い事
から、感度,不平衡電圧性能に優れ且つ低コストで高信
頼性のInSb薄膜素子が得られるものである。
As a substrate material, laminated In, Sb
Must be examined in relation to When the magnetic ferrite substrate 1B is used, when the InSb thin film substrate 10 is used as a device, there is no peeling or transfer process from mica, so that the InSb thin film has excellent sensitivity, unbalanced voltage performance, low cost and high reliability. An element is obtained.

【0015】成膜基板温度は、基板ホルダにK熱電対を
設け測定制御した。また、真空度の測定は、電離真空計
を蒸着チャンバに設けて行った。
The temperature of the film forming substrate was measured and controlled by providing a K thermocouple on a substrate holder. The measurement of the degree of vacuum was performed by providing an ionization vacuum gauge in the deposition chamber.

【0016】成膜は、2元の抵抗加熱の蒸着機を用い以
下の試料を作成した。InSbの蒸着は、典型的には、
真空中、図示しない基板及び基板ホルダを所定の温度で
予備加熱処理した後、80℃で第1層のSb膜3の厚さ
を20nmとし、その真上に重ねて化学量論組成となる
ようにIn膜4を積層成膜する。
For film formation, the following samples were prepared using a binary resistance heating vapor deposition machine. InSb deposition typically involves
In a vacuum, after the substrate (not shown) and the substrate holder are preheated at a predetermined temperature, the thickness of the first layer Sb film 3 is set to 20 nm at 80 ° C., and the stoichiometric composition is superimposed on the first layer. Then, an In film 4 is laminated and formed.

【0017】その後、直ちに400℃まで加熱処理を施
し、この膜を下地膜とする。その上に引き続き化学量論
組成のInSb半導体結晶膜5を合計1μm厚さになる
まで成膜形成する。この際重要なことは、第1層のSb
膜3を基板温度がSbの再蒸発温度以下で成膜する前
に、基板ならびに基板ホルダーを真空中において280
℃以上より好ましくは320℃以上650℃以下の温度
範囲で予備加熱処理を施すことである。
After that, heat treatment is immediately performed to 400 ° C., and this film is used as a base film. Subsequently, an InSb semiconductor crystal film 5 having a stoichiometric composition is formed to a total thickness of 1 μm. It is important at this time that the first layer Sb
Before forming the film 3 at a substrate temperature equal to or lower than the re-evaporation temperature of Sb, the substrate and the substrate holder are 280
The preheating treatment is performed in a temperature range of 320 ° C. or more, more preferably 320 ° C. or more and 650 ° C. or less.

【0018】これにより、先ずSb飛来粒子の基板表面
の状態をより清浄に制御することが可能となる。なお、
650℃より高い温度での加熱は、蒸着装置のヒータ性
能上また電気消費上の理由でも好ましくない。また、こ
のように熱処理を施すことにより、Sb膜中にInが相
互拡散され化学量論組成のInSb膜が形成されるもの
である。その結果、(111)面が優先配向しホール移
動度の高いInSb薄膜基板が実現できるものである。
This makes it possible to control the state of the substrate surface of the Sb flying particles more cleanly. In addition,
Heating at a temperature higher than 650 ° C. is not preferable from the viewpoint of the heater performance of the vapor deposition apparatus and also from the viewpoint of electricity consumption. In addition, by performing the heat treatment in this way, In is interdiffused in the Sb film to form an InSb film having a stoichiometric composition. As a result, an (111) plane is preferentially oriented, and an InSb thin film substrate having high hole mobility can be realized.

【0019】ここで、成膜パラメータとしては、第1層
のSb膜3の成膜前の基板並びに基板ホルダの予備加熱
処理温度と第1層のSb膜3の成膜直前の上記チャンバ
の真空到達度である。
Here, the film forming parameters include the preheating temperature of the substrate and the substrate holder before the first layer Sb film 3 is formed and the vacuum of the chamber immediately before the first layer Sb film 3 is formed. Achievement.

【0020】成膜したInSb薄膜基板10の結晶性評
価はXRD(Xray Diffraction Pa
ttern)法で行い、いずれのInSb薄膜基板10
も(111)優先配向結晶であることを確認した。ホー
ルモビリティーμHなど諸特性の測定は、ファン・デル
・パウ法で行い、成膜後の化学量論組成の確認は、EP
MAを用いて行った。
The evaluation of the crystallinity of the formed InSb thin film substrate 10 is performed by XRD (Xray Diffraction Pa).
tn) method, and any InSb thin film substrate 10
Was also confirmed to be a (111) preferentially oriented crystal. Various properties such as hole mobility μH are measured by the van der Pauw method, and confirmation of the stoichiometric composition after film formation is performed by EP
Performed using MA.

【0021】更に成膜したInSb薄膜基板10を用
い、磁電変換素子として直接ホール素子パターン形状即
ち十字パターン(典型的には幅170μm,長さ380
μm)にエッチングし,電極を形成した後、所謂集磁チ
ップを設けた後、ホール素子チップとした(図5参
照)。
Further, using the formed InSb thin film substrate 10, a Hall element pattern shape, ie, a cross pattern (typically, a width of 170 μm and a length of 380) is used as a magnetoelectric conversion element.
μm) to form electrodes, and then provided a so-called magnetic flux collecting chip to form a Hall element chip (see FIG. 5).

【0022】なお、表面を研磨した磁性フェライト基板
1B上に用いられる絶縁膜2としては、酸化シリコン
(SiO2)、酸化アルミニウム(Al23)、ガラ
ス、窒化アルミニウム(AlN)、窒化シリコン(Si
N)、窒化タンタル(TaN)、窒化チタン(TiN)
を主成分とするいずれか1種の膜、すなわち非晶質の膜
であることが好ましい。非晶質の膜の場合、結晶質のそ
れに比し、ホ−ル移動度が倍以上との結果が出ているか
らである。なお、ガラスとしては、無アルカリガラス
(コーニング♯7059)基板が好ましい。
The insulating film 2 used on the magnetic ferrite substrate 1B whose surface is polished is made of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), glass, aluminum nitride (AlN), silicon nitride ( Si
N), tantalum nitride (TaN), titanium nitride (TiN)
It is preferable to use any one of the films mainly composed of, that is, an amorphous film. This is because, in the case of an amorphous film, the result is that the hole mobility is twice or more that of the crystalline film. The glass is preferably an alkali-free glass (Corning # 7059) substrate.

【0023】図3は、予備加熱の温度Tpreを変化さ
せたときの規格化ホール移動度μH(Tpre)/μH
(500℃)の関係を示す説明図である。ここで、μH
(Tpre)は所定の予備加熱温度Tpreの時のホー
ル移動度を表し、μH(500℃)は規格値として50
0℃予備加熱温度でのホール移動度を表す。また、同図
の保持時間は、20分に固定した結果であるが、保持時
間がない場合、120分保持したものも同じ結果であっ
た。更に、第1層のSb膜3の成膜前の到達真空度を、
8〜10*10-7Torrの高真空の範囲にした。
FIG. 3 shows the normalized hole mobility μH (Tpre) / μH when the preheating temperature Tpre is changed.
It is explanatory drawing which shows the relationship of (500 degreeC). Where μH
(Tpre) represents the hole mobility at a predetermined preheating temperature Tpre, and μH (500 ° C.) is 50
It represents the hole mobility at a preheating temperature of 0 ° C. In addition, the holding time in the figure is a result fixed at 20 minutes, but when there is no holding time, the result held for 120 minutes was the same. Further, the ultimate vacuum degree before forming the first layer Sb film 3 is
The high vacuum range was 8 to 10 * 10 -7 Torr.

【0024】この結果、より高いホール移動度を示すI
nSb薄膜基板10が実現できるものである。その理由
としては、高真空領域では、基板表面が上記予備加熱処
理後のSb再蒸発温度以下の蒸着温度で、再汚染されな
いことが考えられる。
As a result, I, which indicates higher hole mobility,
The nSb thin film substrate 10 can be realized. The reason may be that in the high vacuum region, the substrate surface is not re-contaminated at a deposition temperature equal to or lower than the Sb re-evaporation temperature after the preheating treatment.

【0025】図3中、25℃の場合は全く予備加熱しな
い、即ち従来の例であり、移動度が低いことが判る。更
に、同図より明らかな如く、予備加熱温度が280℃以
上評価範囲の温度領域で、規格化ホール移動度が0.9
5以上の高い値を示し優れていることが判る。
In FIG. 3, it can be seen that the case of 25 ° C. is not preheated at all, that is, it is a conventional example and the mobility is low. Further, as can be seen from the figure, in the temperature range where the preheating temperature is 280 ° C. or more, the normalized hole mobility is 0.9.
It shows a high value of 5 or more, which is excellent.

【0026】650℃を超える温度領域では、特性上変
化は無いものの電力エネルギーを無駄に消費すること並
びに装置の作製コスト上でもデメリットがある。本実施
例の予備加熱温度が280℃より高い場合に優れた特性
を示すのは、基板上に成膜されるInSb多結晶膜5の
結晶成長状態が、蒸着粒子などと共に基板表面の物理,
化学的な変化によって膜の良否が決定されることから、
加熱しない場合並びに温度が低い場合に比べ同じ到達真
空度にも関わらず、予備熱処理効果により第1層のSb
膜3の結晶状態に好適な効果をもたらしたものと推察さ
れる。
In the temperature range exceeding 650 ° C., although there is no change in the characteristics, there is a disadvantage in that power energy is wastefully consumed and the manufacturing cost of the device is low. When the preheating temperature of this embodiment is higher than 280 ° C., excellent characteristics are exhibited because the crystal growth state of the InSb polycrystalline film 5 formed on the substrate depends on the physical properties of the substrate surface together with the deposited particles and the like.
Since the quality of the film is determined by chemical changes,
In spite of the same degree of ultimate vacuum as compared to the case where heating is not performed and the case where the temperature is low, the Sb of the first layer is formed by the preliminary heat treatment effect.
It is presumed that the crystal 3 of the film 3 had a suitable effect.

【0027】図4は、予備加熱温度Tpreを450
℃、保持時間を20分に固定した時の第1層のSb膜3
の成膜直前の到達真空度Pbと規格化移動度μH(P
b)/μH(8*10-7Torr)との関係を示す説明
図である。μH(Pb)は、第1層のSb膜3の成膜直
前の到達真空度がPbの時のホール移動度を表し、μH
(8*10-7Torr)は、Pbが8*10-7Torrの
時のホール移動度を表し規格値とした。
FIG. 4 shows that the preheating temperature Tpre is 450
Sb film 3 of the first layer when the holding time is fixed at 20 ° C. and 20 minutes
Ultimate vacuum degree Pb and normalized mobility μH (P
FIG. 4 is an explanatory diagram showing a relationship with b) / μH (8 * 10 −7 Torr). μH (Pb) represents the hole mobility when the ultimate vacuum degree immediately before the formation of the first layer Sb film 3 is Pb.
(8 * 10 -7 Torr) represents the hole mobility when Pb is 8 * 10 -7 Torr, and was set as a standard value.

【0028】この図4より明らかなように、Pbが15
*10-7Torr以上の高真空では規格化移動度が0.
95以上の高い値を示すことが判る。同じ予備加熱処理
にも関わらず、本実施例の範囲で高い移動度を示すの
は、図3と同様に第1層のSb膜3の成膜時の基板表面
の物理的、化学的変化がより好適となり、Sb結晶状
態、更には下地InSb結晶並びにその上に成長するI
nSb膜の結晶状態を良くしたものと推察される。
As is apparent from FIG. 4, Pb is 15
* In a high vacuum of 10 -7 Torr or higher, the normalized mobility is 0.
It turns out that it shows a high value of 95 or more. In spite of the same preheating treatment, the high mobility in the range of the present embodiment is due to the physical and chemical change of the substrate surface at the time of forming the first layer Sb film 3 as in FIG. It becomes more suitable, and the Sb crystal state, furthermore, the underlying InSb crystal and the I
It is presumed that the crystal state of the nSb film was improved.

【0029】[0029]

【実施例2】酸化シリコン(SiO2)膜、酸化アルミ
ニウム(Al23)膜、窒化アルミニウム(AlN)
膜、窒化シリコン(SiN)膜、窒化タンタル(Ta
N)膜、窒化チタン(TiN)膜を設けた磁性フェライ
ト基板1Bを用い、実施例1と同様の評価を行った。
Embodiment 2 Silicon oxide (SiO 2 ) film, aluminum oxide (Al 2 O 3 ) film, aluminum nitride (AlN)
Film, silicon nitride (SiN) film, tantalum nitride (Ta)
The same evaluation as in Example 1 was performed using a magnetic ferrite substrate 1B provided with an N) film and a titanium nitride (TiN) film.

【0030】酸化シリコン(SiO2)膜を含め絶縁下
地膜2の成膜は、RFマグネトロンスパッタ法を用い、
膜の厚さ200nmと同じにした。窒化物はスパッタ中
のArガスにN2ガスを導入する、いわゆる反応性スパ
ッタ法で成膜した。その結果、実施例1に示したものと
同様の結果が得られた。なお、前記した絶縁下地膜2と
しては、それを、2層、3層とした場合であっても同様
の結果が得られた。
The insulating base film 2 including the silicon oxide (SiO 2 ) film is formed by RF magnetron sputtering.
The thickness of the film was the same as 200 nm. The nitride was formed by a so-called reactive sputtering method in which N 2 gas was introduced into Ar gas during sputtering. As a result, a result similar to that shown in Example 1 was obtained. Similar results were obtained even when the insulating base film 2 had two or three layers.

【0031】[0031]

【発明の効果】第1の発明によれば、基板上に、第1層
にSb膜、第2層にIn膜を化学量論組成となるように
所定の厚みで成膜形成し、その上に化学量論組成のIn
Sb化合物半導体結晶膜を成膜形成するInSb薄膜基
板の製造方法であって、第1層のSb膜の成膜時の基板
温度をSb膜の再蒸発温度以下で処理するに際し、その
前処理として、基板ならびに基板ホルダーを所定温度で
予備加熱するようにしたものであるから、高いホール移
動度を有する高感度特性に優れた磁電変換デバイスに応
用できるInSb薄膜基板を得ることができる。
According to the first invention, an Sb film is formed as a first layer and an In film is formed as a stoichiometric composition in a second layer on a substrate so as to have a stoichiometric composition. Has a stoichiometric composition of In
A method for manufacturing an InSb thin film substrate for forming an Sb compound semiconductor crystal film, wherein the substrate temperature at the time of forming the first layer Sb film is lower than the re-evaporation temperature of the Sb film. Since the substrate and the substrate holder are preheated at a predetermined temperature, it is possible to obtain an InSb thin film substrate having high hole mobility and excellent in high sensitivity characteristics and applicable to a magnetoelectric device.

【0032】第2の発明によれば、基板上に、少なくと
も1層の絶縁膜を介して第1層にSb膜、第2層にIn
膜を化学量論組成となるように所定の厚みで成膜形成
し、その上に化学量論組成のInSb化合物半導体結晶
膜を成膜形成するInSb薄膜基板の製造方法であっ
て、第1層のSb膜の成膜時の基板温度をSb膜の再蒸
発温度以下で処理するに際し、その前処理として、基板
ならびに基板ホルダーを所定温度で予備加熱するように
したものであるから、高いホール移動度を有する高感度
特性に優れた磁電変換デバイスに応用できるInSb薄
膜基板を得ることができる。
According to the second invention, the Sb film is formed on the first layer and the In film is formed on the second layer via at least one insulating film on the substrate.
A method for manufacturing an InSb thin film substrate, comprising: forming a film with a predetermined thickness so as to have a stoichiometric composition; and forming an InSb compound semiconductor crystal film having a stoichiometric composition thereon, the first layer When the substrate temperature at the time of forming the Sb film is lower than the re-evaporation temperature of the Sb film, the substrate and the substrate holder are pre-heated at a predetermined temperature as a pretreatment, so that a high hole movement is required. It is possible to obtain an InSb thin film substrate which can be applied to a magnetoelectric conversion device having high sensitivity and excellent sensitivity.

【0033】第3の発明によれば、前記基板ならびに基
板ホルダーを予備加熱する温度範囲を、真空中において
280℃以上650℃以下に設定したものであるから、
高いホール移動度を有する高感度特性に優れた磁電変換
デバイスに応用できるInSb薄膜基板を得ることがで
きる。
According to the third aspect, the temperature range for preheating the substrate and the substrate holder is set at 280 ° C. or more and 650 ° C. or less in a vacuum.
An InSb thin film substrate having a high hole mobility and being applied to a magnetoelectric device having excellent high sensitivity characteristics can be obtained.

【0034】第4の発明によれば、上記予備加熱の後で
成膜直前の到達真空度を15*10- 7Torr以下の高
真空に設定したものであるから、高いホール移動度を有
する高感度特性に優れた磁電変換デバイスに応用できる
InSb薄膜基板を得ることができる。
According to the fourth aspect of the present invention, the ultimate vacuum deposition immediately before 15 * 10 after the pre-heating - because those set to 7 Torr or less high vacuum, high have high hole mobility An InSb thin film substrate that can be applied to a magnetoelectric device having excellent sensitivity characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になるInSb薄膜基板の製造方法によ
り形成されたInSb薄膜基板の側面図である。
FIG. 1 is a side view of an InSb thin film substrate formed by a method for manufacturing an InSb thin film substrate according to the present invention.

【図2】本発明になる他のInSb薄膜基板の製造方法
により形成されたInSb薄膜基板の側面図である。
FIG. 2 is a side view of an InSb thin film substrate formed by another InSb thin film substrate manufacturing method according to the present invention.

【図3】予備加熱温度と規格化移動度との関係を示す説
明図である。
FIG. 3 is an explanatory diagram showing a relationship between a preheating temperature and a normalized mobility.

【図4】到達真空度と規格化移動度との関係を示す説明
図である。
FIG. 4 is an explanatory diagram showing a relationship between ultimate vacuum and normalized mobility.

【図5】ホール素子チップ(十字パターン)の評価方法
の一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a method for evaluating a Hall element chip (cross pattern).

【符号の説明】[Explanation of symbols]

1A,1B 基板 3 Sb膜 4 In膜 5 InSb膜 10 InSb薄膜素子 1A, 1B Substrate 3 Sb film 4 In film 5 InSb film 10 InSb thin film element

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K029 AA04 AA08 BA10 BA14 BB02 BB08 BD01 CA01 EA08 FA06 5F103 AA01 BB42 DD30 HH04 HH10 LL20 NN01 RR05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K029 AA04 AA08 BA10 BA14 BB02 BB08 BD01 CA01 EA08 FA06 5F103 AA01 BB42 DD30 HH04 HH10 LL20 NN01 RR05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に、第1層にSb膜、第2層にIn
膜を化学量論組成となるように所定の厚みで成膜形成
し、その上に化学量論組成のInSb化合物半導体結晶
膜を成膜形成するInSb薄膜基板の製造方法であっ
て、第1層のSb膜の成膜時の基板温度をSb膜の再蒸
発温度以下で処理するに際し、その前処理として、基板
ならびに基板ホルダーを所定温度で予備加熱するように
したことを特徴とするInSb薄膜基板の製造方法。
1. An Sb film as a first layer and an In film as a second layer on a substrate.
A method for manufacturing an InSb thin film substrate, comprising: forming a film with a predetermined thickness so as to have a stoichiometric composition; and forming an InSb compound semiconductor crystal film having a stoichiometric composition thereon, the first layer An InSb thin film substrate characterized in that the substrate and the substrate holder are preheated at a predetermined temperature as a pretreatment when the substrate temperature at the time of forming the Sb film is lower than the re-evaporation temperature of the Sb film. Manufacturing method.
【請求項2】基板上に、少なくとも1層の絶縁膜を介し
て第1層にSb膜、第2層にIn膜を化学量論組成とな
るように所定の厚みで成膜形成し、その上に化学量論組
成のInSb化合物半導体結晶膜を成膜形成するInS
b薄膜基板の製造方法であって、第1層のSb膜の成膜
時の基板温度をSb膜の再蒸発温度以下で処理するに際
し、その前処理として、基板ならびに基板ホルダーを所
定温度で予備加熱するようにしたことを特徴とするIn
Sb薄膜基板の製造方法。
2. An Sb film as a first layer and an In film as a second layer having a stoichiometric composition with a predetermined thickness are formed on a substrate via at least one layer of an insulating film. InS forming a stoichiometric InSb compound semiconductor crystal film thereon
b. A method of manufacturing a thin film substrate, in which the substrate and the substrate holder are preliminarily maintained at a predetermined temperature as a pretreatment when the substrate temperature at the time of forming the first layer Sb film is lower than the re-evaporation temperature of the Sb film. In characterized by heating
A method for manufacturing an Sb thin film substrate.
【請求項3】前記基板ならびに基板ホルダーを予備加熱
する温度範囲は、真空中において280℃以上650℃
以下であることを特徴とする請求項1または請求項2記
載のInSb薄膜基板の製造方法。
3. A temperature range for preheating the substrate and the substrate holder is 280 ° C. or more and 650 ° C. in a vacuum.
3. The method for manufacturing an InSb thin film substrate according to claim 1, wherein the method is as follows.
【請求項4】上記予備加熱の後で成膜直前の到達真空度
が15*10-7Torr以下の高真空であることを特徴
とする請求項1または請求項2記載のInSb薄膜基板
の製造方法。
4. The method of manufacturing an InSb thin film substrate according to claim 1, wherein the ultimate degree of vacuum immediately after film formation after said preheating is a high vacuum of 15 * 10 -7 Torr or less. Method.
JP2000142938A 2000-05-16 2000-05-16 MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE Pending JP2001326401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142938A JP2001326401A (en) 2000-05-16 2000-05-16 MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142938A JP2001326401A (en) 2000-05-16 2000-05-16 MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE

Publications (1)

Publication Number Publication Date
JP2001326401A true JP2001326401A (en) 2001-11-22

Family

ID=18649826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142938A Pending JP2001326401A (en) 2000-05-16 2000-05-16 MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE

Country Status (1)

Country Link
JP (1) JP2001326401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512739A (en) * 2015-04-10 2018-05-17 アレグロ・マイクロシステムズ・エルエルシー Hall effect detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512739A (en) * 2015-04-10 2018-05-17 アレグロ・マイクロシステムズ・エルエルシー Hall effect detector

Similar Documents

Publication Publication Date Title
Krupanidhi et al. Multi‐ion‐beam reactive sputter deposition of ferroelectric Pb (Zr, Ti) O3 thin films
Abu Ali et al. Piezoelectric Properties of Zinc Oxide Thin Films Grown by Plasma‐Enhanced Atomic Layer Deposition
WO2007066511A1 (en) Film forming apparatus and method of forming film
JP2001326401A (en) MANUFACTURING METHOD FOR InSb THIN-FILM SUBSTRATE SUBSTRATE
Mansingh et al. Preparation and properties of thermally evaporated lead germanate films
Hiboux et al. Piezoelectric and dielectric properties of sputter deposited (111),(100) and random-textured Pb (ZrxTi1-x) O3 (PZT) thin films
Fuller Physical vapor deposition–evaporation and sputtering
JP2001308407A (en) InSb THIN FILM SUBSTRATE
JP2001308408A (en) InSb THIN FILM SUBSTRATE
JP2001308410A (en) InSb THIN FILM SUBSTRATE
JP3288301B2 (en) Thin film resistor, method of manufacturing the same, and wiring board incorporating the thin film resistor
JP2001308409A (en) InSb THIN FILM SUBSTRATE AND MANUFACTURING METHOD THEREFOR
JP3063378B2 (en) Method for producing InSb thin film
JP2001326400A (en) METHOD FOR MANUFACTURING InSb THIN-FILM BOARD
Shimada Magnetic softness of Fe alloy films deposited on ZnO and other underlayers
JP3664368B2 (en) Method for forming InSb film and method for manufacturing Hall element using InSb film
Sun et al. Orientation control of a seeding layer and its effect on structure, ferro-and piezoelectric properties of sol–gel derived Bi 3.15 Nd 0.85 Ti 3 O 12 thin films
KR950005968B1 (en) Multlayer thin film type hall device and manufacturing method thereof
Rodbell et al. Film Crystallographic Texture and Substrate Urface Roughness in Layered Aluminum Metallization
JPH0359572B2 (en)
WO2007119733A1 (en) Method for fabricating variable resistance element
Yoffe et al. Production of high-quality metal-coated pyroelectric SrTiO 3 films
Myasnikov et al. Memory effect in Ba 0.85 Sr 0.15 TiO 3 ferroelectric films on silicon substrates
JPS58175833A (en) Manufacture of compound semiconductor thin-film structure
Singh et al. Structural and electrical properties of Al/BiFeO 3/ZrO 2/n-Si structure for non-volatile memory application