JPH05259163A - Alumininum thin film - Google Patents

Alumininum thin film

Info

Publication number
JPH05259163A
JPH05259163A JP4087895A JP8789592A JPH05259163A JP H05259163 A JPH05259163 A JP H05259163A JP 4087895 A JP4087895 A JP 4087895A JP 8789592 A JP8789592 A JP 8789592A JP H05259163 A JPH05259163 A JP H05259163A
Authority
JP
Japan
Prior art keywords
thin film
film
film composed
thickness
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4087895A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4087895A priority Critical patent/JPH05259163A/en
Publication of JPH05259163A publication Critical patent/JPH05259163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To increase or single-crystallize a crystal particle size of an Al film and decrease scattering of electrons in a grain boundary to obtain a wiring Al film having the long life by a method wherein a C-face orientation film composed of titanium or a thin film composed of gold is used as a ground layer or the like. CONSTITUTION:In a wiring aluminum thin film of a semiconductor device, a C-face orientation film composed of titanium, a thin film composed of gold, or a thin film composed of gold which is formed on a C-axis orientation film composed of ZnO is used as a ground layer. It is favorable that a thickness of the C-face orientation film composed of titanium or the thin film composed of gold is set at 500Angstrom or less. For instance, by using an RF sputter device, the C-face orientation film composed of Ti is formed so as to be 200Angstrom on a Si wafer and a thickness in an Al-Si(1%)-Cu(0.5%) is formed so as to be 6000Angstrom on a Ti film. Alternatively, by using vacuum vapor depositor, a thin film of Au is formed so as to be 100Angstrom on the Si wafer and next Al is vapor- deposited on the Au thin film in a condition of a substrate temperature 130 deg.C to form a film having a thickness 6000Angstrom .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体デバイスで配線材
料として広く利用されているアルミニウム薄膜に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum thin film widely used as a wiring material in semiconductor devices.

【0002】[0002]

【従来の技術】半導体集積回路のような半導体デバイス
の配線材料として利用されるAl薄膜は多結晶膜を構成
するが、結晶粒は配線の寿命にとっては大きい方が良い
とされ、結晶粒径と寿命が比例するというデータがある
(たとえば、S.Vaidyaand A.K.Sin
ha: Effect of texture and grain structure on electromigration in Al−0.
5%Cu thin films, Thin Solid Films,
vol.75,no.3(1981)253、特に第3
図参照)。
2. Description of the Related Art Although an Al thin film used as a wiring material for a semiconductor device such as a semiconductor integrated circuit constitutes a polycrystalline film, it is considered that crystal grains should have a large life for wiring. There is data that lifespans are proportional (eg, S. Vaidyaand AK Sin
ha: Effect of texture and grain structure on electromigration in Al-0.
5% Cu thin films, Thin Solid Films,
vol. 75, no. 3 (1981) 253, especially the third
See figure).

【0003】特に、Alを単結晶膜として粒界のない膜
を設ければ、粒界における電子の散乱がなく、膜中の欠
陥(格子欠陥やボイド)のない膜となる為に長寿命化す
る。そして単結晶化させる為に、作製後加熱するような
提案が行なわれている。さらにまた、Al膜の耐久性を
上げる為に、Al−Si、Al−Si−Cu合金が用い
られることがある。
In particular, when a film without grain boundaries is formed by using Al as a single crystal film, the film is free from electron scattering at the grain boundaries and has no defects (lattice defects or voids) in the film, so that the life is extended. To do. Then, in order to make a single crystal, a proposal is made such that heating is performed after manufacturing. Furthermore, in order to improve the durability of the Al film, Al-Si or Al-Si-Cu alloy may be used.

【0004】[0004]

【発明が解決しようとする課題】半導体デバイスで配線
材料として広く用いられているAl薄膜は、デバイスの
高集積化にともない、配線幅が細くなりまた膜厚も薄く
なってきている。この為、信頼性の高い長寿命のAl膜
が要求されている。即ち、長時間電流を流しても断線し
ないことが要求される。この為に、膜は欠陥がなく、か
つ結晶粒径ができるだけ大きくて粒界が配線中に少なく
なり、電子の散乱が少ない方が長寿命化するというデー
タが出されている。
The Al thin film, which is widely used as a wiring material in semiconductor devices, has become narrower in wiring width and thinner in film thickness with higher integration of devices. Therefore, a highly reliable and long-lifetime Al film is required. That is, it is required that the wire is not broken even if a current is applied for a long time. For this reason, there is data that the film has no defects, the crystal grain size is as large as possible, grain boundaries are reduced in the wiring, and the electron scattering is smaller, the life is longer.

【0005】本発明は、このAl膜の結晶粒径を増大せ
しめ、もくしは単結晶化せしめて、粒界での電子の散乱
を大巾に減少せしめ、長寿命の配線用Al膜を得ること
を目的としている。
According to the present invention, the crystal grain size of this Al film is increased, and even if it is made into a single crystal, the scattering of electrons at the grain boundaries is greatly reduced, and a long-lifetime Al film for wiring is obtained. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成するために下記の構成を有する。すなわち、本発明の
第1の発明は、半導体デバイスの配線用アルミニウム薄
膜において、下地層としてチタンのC面配向膜を用いた
ことを特徴とするアルミニウム薄膜を要旨とし、また、
第2の発明は、半導体デバイスにおける配線用アルミニ
ウム薄膜において、下地層として金の薄膜を用いたこと
を特徴とするアルミニウム薄膜を要旨とするものであ
る。
[Means for Solving the Problems] The present invention has the following constitution in order to achieve the above object. That is, the first invention of the present invention is summarized as an aluminum thin film for wiring of a semiconductor device, which is characterized in that a C-plane orientation film of titanium is used as an underlayer, and
A second aspect of the present invention is a gist of an aluminum thin film for wiring in a semiconductor device, characterized in that a gold thin film is used as a base layer.

【0007】以下、本発明のアルミニウム薄膜に用いる
構成成分について解説する。Alの格子型はf・c・c
であり、格子定数は4.041Å、電気抵抗率は2.6
6×10-8Ω・cm(20℃)である。又(111)面
の格子間隔は2.338Åで、(220)面は1.43
1Åである。ところで、このAlを薄膜としてSiウエ
ハのような基板上に作製すると、上記Al(111)や
Al(220)が基板面に平行に成長する。X線回折法
で2つのピークの強度比を比較すると、製膜条件によっ
て異なるが、(220)/(111)=1/10〜1/
40となり、Al(111)の方が強い。即ち、Alは
(220)面が基板に平行な面にわずかな角度をなし、
(111)面が基板に平行に成長している。なお、この
比は(220)が小さい程粒界の電子散乱が少なく長寿
命であるとされる。
The components used in the aluminum thin film of the present invention will be described below. The lattice type of Al is f ・ c ・ c
And the lattice constant is 4.041Å and the electrical resistivity is 2.6.
It is 6 × 10 −8 Ω · cm (20 ° C.). The lattice spacing of the (111) plane is 2.338Å, and that of the (220) plane is 1.43.
It is 1 Å. By the way, when this Al is formed as a thin film on a substrate such as a Si wafer, the Al (111) and Al (220) grow parallel to the substrate surface. When the intensity ratios of the two peaks are compared by the X-ray diffraction method, it is (220) / (111) = 1 / 10-10 / 1 /
40, and Al (111) is stronger. That is, Al makes a slight angle with the (220) plane parallel to the substrate,
The (111) plane grows parallel to the substrate. The smaller the value of (220), the smaller the electron scattering at grain boundaries and the longer the life.

【0008】何故このように基板面に平行になる面がき
まってくるかといえば、Alの結晶面の内(111)面
が最も原子密度が大きく、表面エネルギーが最小であ
り、2番目が(220)であると考えられる。即ち膜作
製時(111)が最も安定であり、成長しやすいからと
言える。この比率は基板加熱等の製膜条件によって変化
する。
The reason why the plane parallel to the substrate surface is determined in this way is that the (111) plane in the Al crystal plane has the highest atomic density, the lowest surface energy, and the second (220). ). That is, it can be said that (111) is the most stable at the time of film formation and is easy to grow. This ratio changes depending on film forming conditions such as substrate heating.

【0009】ところで、Tiは結晶型がh・c・pであ
るが、C面の格子間隔は上記Alに非常に近く2.34
2Åである。ミスマッチはわずか0.2%である。この
為に、下地層としてTiのC軸配向膜を作製し、この上
にAlを製膜すると、Al(111)面のみが下地Ti
(002)面にそってエピタキシャル成長する。しか
も、Tiは配向しやすい膜であり、容易に良質の配向膜
が作製できる。Ti配向膜上に作製されたAl膜にはA
l(220)が減少し、(220)/(111)のX線
強度比は、ほぼゼロとなる。又、エピタキシャル成長し
ている為に、膜中の欠陥が少なく、ボイド等の発生も大
巾に減少する。又、Alの結晶粒径も大きくなり、ほと
んど単結晶のような膜ができる。粒径は従来の0.1〜
2μmに対し3μm以上となる。但し、場合によっては
AlとTiの物性値が異なるので、Tiの膜厚を小さく
した方が良い。本発明では50〜500Åの間で目的に
応じて調整できる。膜質の向上(欠陥の減少)、粒径の
増大、等によって大巾な長寿命配線が得られる。Alの
膜厚は一般に0.1〜1μmの厚さで用いられる。本発
明に於いて、基板材質は問題でなく制限はない。ガラス
のような場合でもTiのC軸配向膜は容易に得られる。
Ti,Alの膜作製は一般的な製膜条件で良く、真空蒸
着法、スパッタ法、イオンプレーティング法、CVD法
が用いられている。
By the way, although the crystal type of Ti is h.cp.p, the lattice spacing of the C plane is very close to that of Al above 2.34.
It is 2Å. The mismatch is only 0.2%. For this reason, when a C-axis oriented film of Ti is formed as a base layer and Al is formed thereon, only the Al (111) plane is the base Ti layer.
Epitaxial growth is performed along the (002) plane. Moreover, Ti is a film that is easily oriented, and a high-quality oriented film can be easily manufactured. A for the Al film formed on the Ti orientation film
l (220) decreases, and the (220) / (111) X-ray intensity ratio becomes almost zero. Further, since the film is epitaxially grown, the number of defects in the film is small and the occurrence of voids is greatly reduced. Also, the crystal grain size of Al becomes large, and a film almost like a single crystal is formed. Conventional particle size is 0.1
It becomes 3 μm or more for 2 μm. However, since the physical properties of Al and Ti are different in some cases, it is better to reduce the thickness of Ti. In the present invention, it can be adjusted according to the purpose between 50 and 500Å. By improving the film quality (decreasing defects), increasing the grain size, etc., a wide and long life wiring can be obtained. The thickness of Al is generally 0.1 to 1 μm. In the present invention, the substrate material is not a problem and there is no limitation. Even in the case of glass, a C-axis oriented film of Ti can be easily obtained.
The Ti and Al films may be formed under general film forming conditions, and the vacuum deposition method, sputtering method, ion plating method, and CVD method are used.

【0010】上記の通り、Alの格子型はf・c・cで
あり、格子定数は4.041Å、電気抵抗率は2.66
×10-8Ω・cm(20℃)である。本発明に用いるA
u(金)はこのAlに近似しており、f・c・cで、格
子定数が、4.070Å、電気抵抗率は2.44×10
-8Ω・cm(20℃)で、他に熱伝導率や線膨張係数も
近い。ところで、Alを薄膜として用いる為にSi(シ
リコン)のような基板上に製膜すると、基板に平行な面
はAl(111)又はAl(220)となる。Al(1
11)とAl(220)のX線回折強度は(220)/
(111)=1/10〜1/40のようにAl(11
1)が強い。何故Al(111)が、基板に平行に配向
するかと言えば、Alの結晶面のうち(111)が最も
原子密度が大きいから、面を成長させた場合のエネルギ
ーが最小となる為と考えられる。(220)面は2番目
に原子密度が大きい。基板加熱等の製膜条件によって
(220)/(111)の比は変化する。
As described above, the lattice type of Al is f · c · c, the lattice constant is 4.041Å, and the electrical resistivity is 2.66.
× 10 −8 Ω · cm (20 ° C.). A used in the present invention
u (gold) is similar to this Al and has f · c · c, a lattice constant of 4.070Å, and an electric resistivity of 2.44 × 10.
At -8 Ω · cm (20 ° C), the thermal conductivity and linear expansion coefficient are also close. By the way, when a film is formed on a substrate such as Si (silicon) in order to use Al as a thin film, a plane parallel to the substrate becomes Al (111) or Al (220). Al (1
11) and Al (220) X-ray diffraction intensity is (220) /
(111) = 1/10 to 1/40 Al (11
1) is strong. The reason why Al (111) is oriented parallel to the substrate is considered to be because the (111) crystal plane of Al has the highest atomic density, and therefore the energy when the plane is grown becomes the minimum. .. The (220) plane has the second highest atomic density. The ratio of (220) / (111) changes depending on film forming conditions such as substrate heating.

【0011】前にも述べたように、AuはAlと同じ結
晶型であり、(111)面の格子間隔は、Alが2.3
38Å、Auが2.355Åである。(220)はAl
が1.431Å、Auが1.442Åである。従って、
以上の理由によって、AuはAlと同様に薄膜として基
板上に設けた場合(111)が基板に平行に配向する。
X線回折強度はAuの場合(220)/(111)≒0
であり、Alよりも配向性は大巾に向上する。これは基
板がガラスのような非晶質の場合でもそうである。
As described above, Au has the same crystal type as Al, and the lattice spacing of the (111) plane is 2.3 for Al.
38Å and Au is 2.355Å. (220) is Al
Is 1.431Å and Au is 1.442Å. Therefore,
For the above reason, when Au is provided on the substrate as a thin film similarly to Al, (111) is oriented parallel to the substrate.
In the case of Au, the X-ray diffraction intensity is (220) / (111) ≈0
Therefore, the orientation is greatly improved as compared with Al. This is true even if the substrate is amorphous such as glass.

【0012】本発明は以上の点に基づいてなされたもの
で、配線用Alを設ける場合に、下地層として基板ない
しは設けたい膜の表面にAu膜をあらかじめ設け、つい
でAl(又は一般的に用いられるAl−Si、Al−S
i−Cu合金等でも良い)薄膜を設けると、Al薄膜は
(111)配向して(220)が成長しないか、しても
従来より大巾に(220)が減少する。この現象は一般
的にエピタキシャル成長と言われ、Al原子がAu原子
の配列に影響され、同様の配向性を受けついで成長する
ものである。
The present invention has been made on the basis of the above points. When providing Al for wiring, an Au film is previously provided as a base layer on the surface of a substrate or a film to be provided, and then Al (or generally used) is provided. Al-Si, Al-S
When a thin film (which may be an i-Cu alloy or the like) is provided, the Al thin film is (111) oriented and (220) does not grow, or (220) is greatly reduced compared to the conventional case. This phenomenon is generally called epitaxial growth, in which Al atoms are affected by the arrangement of Au atoms and undergo similar orientation to grow.

【0013】この為に、粒子径は従来の0.1〜数μm
に対して大巾に増大し、数μm以上となり、粒界での電
子散乱が減少し、従って長寿命となる。この場合、特性
上AlとAuが近いので、特に問題は生じない。Al薄
膜は一般に0.1〜1μmの厚さで用いられるが、これ
に対してAu薄膜は500Å以下、好ましくは100Å
以下で用いられる。これ以下でも構わないが、膜の凹凸
が大きくなる点に注意が必要となる。
For this reason, the particle size is 0.1 to several .mu.m of the conventional one.
However, the electron scattering at the grain boundaries is reduced and the life is extended. In this case, since Al and Au are close to each other in terms of characteristics, no particular problem occurs. The Al thin film is generally used in a thickness of 0.1 to 1 μm, whereas the Au thin film is 500 Å or less, preferably 100 Å.
Used below. It may be less than this, but it should be noted that the unevenness of the film becomes large.

【0014】Auの下に更にZnOのC軸配向膜を特に
影響のない場合設けると、Auの(220)/(11
1)は0となり、従ってAl薄膜にも(220)は見ら
れなくなる。なお、製膜法は一般的な製膜法で良く、真
空蒸着法、スパッタ法、イオンプレーティング法、CV
D法等が用いられる。
If a C-axis orientation film of ZnO is further provided under Au if there is no particular influence, (220) / (11) of Au is formed.
1) becomes 0, so that (220) cannot be seen in the Al thin film either. The film forming method may be a general film forming method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, a CV method.
The D method or the like is used.

【0015】[0015]

【実施例】以下、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0016】実施例1 RFスパッタ装置を用いて、Siウエハ上にTiの薄膜
を200Åとなるように作製した。作製条件は下記の通
りであった。 ベースプレッシャー 6×10-7Torr ターゲット Ti(99.99%) ターゲット基板間距離 50mm 基板温度 400℃ 導入ガス圧力 Ar 5×10-3To
rr 高周波電力 150 W TiのX線回折ピークは(002),(004)のC面
からのものだけであり、(002)ピークの半値巾も
1.7度と良好な配向膜であった。このTi膜の上にA
l−Si(1%)−Cu(0.5%)を厚さ6000Å
となるように作製した。作製条件を下記に示す。 ベースプレッシャー 6×10-7Torr ターゲット Al−Si(1%)−C
u(0.5%) ターゲット基板間距離 45mm 基板温度 130℃ 導入ガス圧力 Ar 5×10-3To
rr 高周波電力 120 W AlのX線回折ピークはAl(111),(222)の
みであった。TEM法を用いてAlの結晶粒径を測定し
たところ平均で4μmであった。ついで2μm巾の配線
にエッチングし、MTF(Time to failu
re)を測定したところ1400時間であった。
Example 1 A Ti thin film having a thickness of 200 Å was formed on a Si wafer by using an RF sputtering apparatus. The manufacturing conditions were as follows. Base pressure 6 × 10 −7 Torr Target Ti (99.99%) Target substrate distance 50 mm Substrate temperature 400 ° C. Introduced gas pressure Ar 5 × 10 −3 To
The X-ray diffraction peak of rr high-frequency power 150 W Ti was only from the C plane of (002) and (004), and the full width at half maximum of the (002) peak was 1.7 degrees, indicating a good alignment film. A on this Ti film
l-Si (1%)-Cu (0.5%) with a thickness of 6000Å
It was manufactured so that The production conditions are shown below. Base pressure 6 × 10 -7 Torr target Al-Si (1%)-C
u (0.5%) Distance between target substrates 45 mm Substrate temperature 130 ° C. Introduced gas pressure Ar 5 × 10 −3 To
The X-ray diffraction peaks of rr high-frequency power 120 W Al were only Al (111) and (222). The average crystal grain size of Al measured by the TEM method was 4 μm. Then, the wiring with a width of 2 μm is etched to obtain MTF (Time to fail
When re) was measured, it was 1400 hours.

【0017】比較例1 Ti下地層を設けない他は実施例1と全く同様にしてS
iウエハ上にAl−Si−Cu膜を作製した。X線回折
ピークはAl(111),(222)とAl(220)
が観察され、(220)/(111)の強度比は約1/
30であった。結晶粒径は平均0.6μmであり、実施
例1に比べて小さく、MTFは650時間と短かかっ
た。
COMPARATIVE EXAMPLE 1 S was prepared in the same manner as in Example 1 except that the Ti underlayer was not provided.
An Al-Si-Cu film was formed on the i-wafer. X-ray diffraction peaks are Al (111), (222) and Al (220)
Was observed and the intensity ratio of (220) / (111) was about 1 /
It was 30. The average crystal grain size was 0.6 μm, which was smaller than that in Example 1, and the MTF was as short as 650 hours.

【0018】実施例2 真空蒸着装置を用いて、Siウエハ上にAuの薄膜を1
00Åとなるように製膜した。基板は300℃に加熱、
ベースプレッシャーは3×10-7Torrであった。製
膜速度は5Å/minとした。X線回折法で測定したと
ころ、Auからの回折ピークはAu(111),Au
(222)しか観察されなかった。ついで、このAu薄
膜上に基板温度130℃という条件でAlを蒸着した。
製膜速度は8Å/minとして6000Å厚に製膜し
た。X線回折ピークはAl(111)、Al(222)
しか観測できなかった。TEM法を用いてAlの結晶粒
径を測定したところ平均で3.3μmであった。ついで
2μm巾の配線にエッチングし、MTTF(media
n time to failure)を測定したとこ
ろ、1500時間であった。
Example 2 An Au thin film was formed on a Si wafer by using a vacuum vapor deposition apparatus.
The film was formed so as to be 00Å. The substrate is heated to 300 ° C,
The base pressure was 3 × 10 −7 Torr. The film forming speed was 5 Å / min. When measured by X-ray diffractometry, the diffraction peaks from Au show Au (111), Au
Only (222) was observed. Then, Al was vapor-deposited on the Au thin film at a substrate temperature of 130 ° C.
The film-forming speed was 8 Å / min and the film was formed to a thickness of 6000 Å. X-ray diffraction peaks are Al (111), Al (222)
I could only observe it. When the crystal grain size of Al was measured using the TEM method, it was 3.3 μm on average. Then, the wiring with a width of 2 μm is etched to obtain MTTF (media).
It was 1,500 hours when n time to failure was measured.

【0019】実施例3 RFスパッタ装置を用いて、Siウエハ上に下記の条件
で厚さ500ÅのZnO膜を作製した。 ベースプレッシャー 7×10-7Torr ターゲット基板間距離 50mm 高周波電力 200 W ターゲット Zn(99.999%) 基板温度 250℃ 導入ガス圧 O2 2×10-3Tor
r Ar 5×10-3Torr ZnO膜のX線回折ピークは(002),(004)の
C面からのものだけであり、(002)ピークの半値巾
は1.5度と良好な配向膜であった。このZnO膜上に
実施例2と同様にしてAu膜を作製した。X線回折ピー
クはAu(111),(222)のみであった。実施例
2と同様にしてAl−Si(1%)−Cu(0.5%)
の薄膜を作製した。基板温度は130℃とした。X線回
折ピークはAl(111),(222)のみであった。
Alの結晶粒径は平均4.2μmであった。MTTFは
1920時間であった。
Example 3 Using a RF sputtering apparatus, a ZnO film having a thickness of 500 Å was formed on a Si wafer under the following conditions. Base pressure 7 × 10 −7 Torr Target substrate distance 50 mm High frequency power 200 W Target Zn (99.999%) Substrate temperature 250 ° C. Inlet gas pressure O 2 2 × 10 −3 Tor
The X-ray diffraction peak of the r Ar 5 × 10 −3 Torr ZnO film is only from the C-plane of (002) and (004), and the half-width of the (002) peak is 1.5 degrees, which is a good orientation film. Met. An Au film was formed on this ZnO film in the same manner as in Example 2. The X-ray diffraction peaks were only Au (111) and (222). Al-Si (1%)-Cu (0.5%) as in Example 2.
Was prepared. The substrate temperature was 130 ° C. The X-ray diffraction peaks were only Al (111) and (222).
The average crystal grain size of Al was 4.2 μm. MTTF was 1920 hours.

【0020】比較例2 Au層やZnO層を設けない他は実施例2及び3と全く
同様にしてSiウエハ上にAl薄膜(6000Å厚)を
作製した。X線回折ピークは両試料共にAl(11
1),(222)とAl(220)が観察され、(22
0)/(111)は1/26であった。結晶粒径は平均
0.8μmであり、実施例2,3に比べて小さく、MT
TFは790時間と960時間であり、短かかった。
Comparative Example 2 An Al thin film (6000 Å thickness) was produced on a Si wafer in exactly the same manner as in Examples 2 and 3 except that no Au layer or ZnO layer was provided. The X-ray diffraction peaks of both samples were Al (11
1), (222) and Al (220) were observed,
0) / (111) was 1/26. The average crystal grain size is 0.8 μm, which is smaller than those in Examples 2 and 3, and MT
TF was 790 hours and 960 hours, which was short.

【0021】[0021]

【発明の効果】第1の発明のアルミニウム薄膜によれ
ば、配線用Al薄膜作製において、薄いTiのC軸配向
膜を下地層として設けるので、良質のエピタキシャル成
長したAl薄膜が得られ、結晶粒径が大きくなって単結
晶状となり、従って大巾に長寿命化する。第2の発明の
アルミニウム薄膜によれば、配線用Al薄膜作製におい
て、Au配向薄膜を下地層として設けるので、Al膜の
結晶粒径が増大し、更にエピタキシャル成長するために
良質の結晶膜となり、格子欠陥やボイド等のない膜が作
製でき、従って大巾に長寿命化する。
According to the aluminum thin film of the first invention, a thin C-axis oriented film of Ti is provided as an underlayer in the production of an Al thin film for wiring, so that a high quality epitaxially grown Al thin film can be obtained, and the grain size can be increased. Becomes large and becomes a single crystal, and therefore the life is greatly extended. According to the aluminum thin film of the second invention, since the Au oriented thin film is provided as the underlayer in the production of the Al thin film for wiring, the crystal grain size of the Al film is increased, and the crystal film becomes a high quality crystalline film for epitaxial growth. A film having no defects or voids can be produced, and therefore the life is greatly extended.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 5/14 Z H01L 29/46 R 7738−4M L 7738−4M H05K 3/38 B 7011−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI Technical display location H01B 5/14 Z H01L 29/46 R 7738-4M L 7738-4M H05K 3/38 B 7011-4E

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体デバイスの配線用アルミニウム薄
膜において、下地層としてチタンのC面配向膜を用いた
ことを特徴とするアルミニウム薄膜。
1. An aluminum thin film for wiring of a semiconductor device, wherein a C-plane orientation film of titanium is used as an underlayer.
【請求項2】 前記チタンのC面配向膜の厚さが500
Å以下であることを特徴とする請求項1に記載のアルミ
ニウム薄膜。
2. The titanium C-plane alignment film has a thickness of 500.
The aluminum thin film according to claim 1, wherein the thickness is Å or less.
【請求項3】 Al(111)/Ti(002)の結晶
構造を有することを特徴とする請求項1に記載のアルミ
ニウム薄膜。
3. The aluminum thin film according to claim 1, having an Al (111) / Ti (002) crystal structure.
【請求項4】 半導体デバイスにおける配線用アルミニ
ウム薄膜において、下地層として金の薄膜を用いたこと
を特徴とするアルミニウム薄膜。
4. An aluminum thin film for wiring in a semiconductor device, wherein a gold thin film is used as a base layer.
【請求項5】 前記金の薄膜の厚さが500Å以下であ
ることを特徴とする請求項4に記載のアルミニウム薄
膜。
5. The aluminum thin film according to claim 4, wherein the thickness of the gold thin film is 500 Å or less.
【請求項6】 前記下地層として更にZnOのC軸配向
膜を用いたことを特徴とする請求項4に記載のアルミニ
ウム薄膜。
6. The aluminum thin film according to claim 4, wherein a C-axis alignment film of ZnO is further used as the underlayer.
【請求項7】 前記アルミニウムが前記下地層のAu
(111)面上にエピタキシャル成長していることを特
徴とする請求項4に記載のアルミニウム薄膜。
7. The aluminum of the underlayer is Au.
The aluminum thin film according to claim 4, which is epitaxially grown on the (111) plane.
JP4087895A 1992-03-11 1992-03-11 Alumininum thin film Pending JPH05259163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087895A JPH05259163A (en) 1992-03-11 1992-03-11 Alumininum thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087895A JPH05259163A (en) 1992-03-11 1992-03-11 Alumininum thin film

Publications (1)

Publication Number Publication Date
JPH05259163A true JPH05259163A (en) 1993-10-08

Family

ID=13927625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087895A Pending JPH05259163A (en) 1992-03-11 1992-03-11 Alumininum thin film

Country Status (1)

Country Link
JP (1) JPH05259163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251835A (en) * 1997-03-13 1998-09-22 Tanaka Kikinzoku Kogyo Kk Au-coated sheet and its production
WO2013042449A1 (en) * 2011-09-22 2013-03-28 住友化学株式会社 Process for producing metallic particle assembly
CN118374786A (en) * 2024-06-25 2024-07-23 嘉兴市豪能科技股份有限公司 Single crystal transformation method of polycrystalline aluminizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251835A (en) * 1997-03-13 1998-09-22 Tanaka Kikinzoku Kogyo Kk Au-coated sheet and its production
WO2013042449A1 (en) * 2011-09-22 2013-03-28 住友化学株式会社 Process for producing metallic particle assembly
CN118374786A (en) * 2024-06-25 2024-07-23 嘉兴市豪能科技股份有限公司 Single crystal transformation method of polycrystalline aluminizer

Similar Documents

Publication Publication Date Title
Kwon et al. Evidence of heteroepitaxial growth of copper on beta-tantalum
JP3344441B2 (en) Surface acoustic wave device
US20030211948A1 (en) Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
Felmetsger et al. Sputter process optimization for Al 0.7 Sc 0.3 N piezoelectric films
EP0594286B1 (en) Electronic parts with metal wiring and manufacturing method thereof
US20100065417A1 (en) Methods for forming superconducting conductors
JP3033331B2 (en) Manufacturing method of thin film wiring
CN112831766B (en) Method for preparing zirconium metal film on silicon substrate by utilizing magnetron sputtering and application
Igarashi et al. High‐quality single‐crystal Nb and Ta films formed by an ultrahigh vacuum arc method
US5364468A (en) Method for the growth of epitaxial metal-insulator-metal-semiconductor structures
JPH05259163A (en) Alumininum thin film
US5529640A (en) Epitaxial metal-insulator-metal-semiconductor structures
JPS6096599A (en) Production of superconductive thin film of oxide
JP2741814B2 (en) Method for producing tantalum metal thin film
Hayek et al. The effect of amorphous intermediate layers on nucleation and epitaxial growth of fcc metals on sodium chloride
JP3288301B2 (en) Thin film resistor, method of manufacturing the same, and wiring board incorporating the thin film resistor
KR100338250B1 (en) Method for improving the surface smoothness of YBa2Cu3O7-δhigh-temperature superconductor films grown on CeO2-buffered r-cut sapphire substrates
JPH10209160A (en) Wiring and display using the same
JP2716595B2 (en) Substrate for forming oxide superconductor single crystal thin film and method for producing the same
JPH0681141A (en) Sputtering target
JP3559290B2 (en) Metal thin film and method for producing the same
JP2002367999A (en) Electronic component and manufacturing method therefor
Ikeda et al. Semi-epitaxial bcc Ta growth on metal nitride
JPH0242729A (en) Aluminum-based thin-film wiring
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050203

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090401

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100401

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees