JPS60147180A - Piezoelectric element - Google Patents

Piezoelectric element

Info

Publication number
JPS60147180A
JPS60147180A JP59001907A JP190784A JPS60147180A JP S60147180 A JPS60147180 A JP S60147180A JP 59001907 A JP59001907 A JP 59001907A JP 190784 A JP190784 A JP 190784A JP S60147180 A JPS60147180 A JP S60147180A
Authority
JP
Japan
Prior art keywords
zinc oxide
film
film thickness
electrode
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59001907A
Other languages
Japanese (ja)
Inventor
Keiko Kushida
恵子 櫛田
Hiroyuki Takeuchi
裕之 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59001907A priority Critical patent/JPS60147180A/en
Publication of JPS60147180A publication Critical patent/JPS60147180A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To improve electroacoustic conversion efficiency by forming a zinc oxide thin-film on an amorphous substrate coated with a gold electrode in not less than 1,000Angstrom film thickness. CONSTITUTION:Both end surfaces of a quartz glass rod 1 are ground optically, and extremely thin chromium Cr and gold Au in film thickness of 100-2,000Angstrom are evaporated on one end surface. A zinc oxide thin-film 3 in film thickness of approximately 3mum is formed on the electrode 2 through high-frequency magnetron sputtering. A substrate temperature of 220 deg.C and the gas pressure of argon-oxygen (50%-50%) introducing gas of 3Pa are used as all of the conditions of sputtering. Since the zinc oxide thin-film formed on the Au electrode in comparatively thick film thickness has excellent crystallizability and distribution of light on a C axis, an electric mechanical coupling coefficient is increased, thus obtaining a high performance element.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は酸化亜鉛ZnOを用いた薄膜圧電素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film piezoelectric element using zinc oxide ZnO.

【発明の背景〕[Background of the invention]

酸化亜鉛は六方晶ウルツアイト構造をした結晶で、C軸
方向を圧電軸とする圧電体である。電気機械結合係数は
バルクの場合で0.3 と余り大きくないが、スパッタ
リングなどにより比較的容易に薄膜化できるため、弾性
表面波素子や超高周波トランスデユーサとして広く応用
されている。製造方法としては、気相成長(CVD)法
とスパッタリング法があるが、スパッタリング法が主流
である。スパッタリングにも、直流スパッタリング、交
流スパッタリングがあり、またZnOそのものをターゲ
ットとしてスパッタを行なう方法、Znをターゲットと
して酸素雰囲気中でスパッタを行なう反応性スパッタ法
など多様である。しかし、いずれの方法を用いた場合で
も薄膜化したことによる特性の劣下が避けられない。
Zinc oxide is a crystal with a hexagonal wurtzite structure, and is a piezoelectric material whose piezoelectric axis is in the C-axis direction. Although the electromechanical coupling coefficient is not very large at 0.3 in the bulk case, it can be relatively easily made into a thin film by sputtering, etc., so it is widely applied as surface acoustic wave elements and ultra-high frequency transducers. Manufacturing methods include a vapor phase growth (CVD) method and a sputtering method, with the sputtering method being the mainstream. Sputtering includes direct current sputtering and alternating current sputtering, and there are various methods such as a method in which sputtering is performed using ZnO itself as a target, and a reactive sputtering method in which sputtering is performed in an oxygen atmosphere using Zn as a target. However, no matter which method is used, deterioration in characteristics due to thinning the film is unavoidable.

酸化亜鉛は非晶質基板上にほぼC軸配向した多結晶膜が
形成されるが、結晶性及び基板に対するC軸配向性の優
れた酸化亜鉛薄膜はど電気機械結合係数が高い、したが
って、結晶性及びC軸配向性の良い酸化亜鉛薄膜を形成
することが重要なポイントとなる。
Zinc oxide forms a polycrystalline film with approximately C-axis orientation on an amorphous substrate, but a zinc oxide thin film with excellent crystallinity and C-axis orientation with respect to the substrate has a high electromechanical coupling coefficient, and therefore is crystalline. The important point is to form a zinc oxide thin film with good properties and C-axis orientation.

〔発明の目的〕[Purpose of the invention]

そこで1本発明の目的は結晶性、及びC軸配向性の良い
酸化亜鉛薄膜を用いて電気音響変換効率の高い圧電素子
を得ることにある。
Therefore, one object of the present invention is to obtain a piezoelectric element with high electroacoustic conversion efficiency using a zinc oxide thin film with good crystallinity and C-axis orientation.

〔発明の概要〕[Summary of the invention]

圧電素子を構成するためには、電圧を印加するための電
極が必要である。電極材としては、A u 。
In order to configure a piezoelectric element, electrodes for applying voltage are required. As the electrode material, A u is used.

AQ、Ptなどがあるが、これらの金属を非晶質基板上
に形成すると(111)配向した多結晶膜となる。電極
材料としてAuを用いた場合、(111)配向したA 
u膜上に酸化亜鉛薄膜を形成すると、非晶質基板の場合
と同様にほぼC軸配向するが、酸化亜鉛薄膜の結晶性及
びC軸配向性は電極として用い゛たA’uの結晶性に大
きく依存していることが実験により明らかになった。A
uは導電性が大きいため電極としては100〜200へ
の厚みがあればよい。しかし、Au電極の厚みを変えて
実験を行なったところ、膜厚が薄い場合には表面の結晶
性が悪く、その上に形成された酸化亜鉛薄膜の結晶性、
配向性も劣下することが明らかになった。
There are AQ, Pt, etc., and when these metals are formed on an amorphous substrate, a polycrystalline film with (111) orientation is formed. When Au is used as an electrode material, (111) oriented A
When a zinc oxide thin film is formed on the U film, the C-axis orientation is almost the same as in the case of an amorphous substrate, but the crystallinity and C-axis orientation of the zinc oxide thin film depend on the crystallinity of the A'u film used as an electrode. Experiments have shown that it is highly dependent on A
Since u has high conductivity, the electrode only needs to have a thickness of 100 to 200 mm. However, when we conducted experiments with different thicknesses of the Au electrodes, we found that when the film thickness was thin, the surface crystallinity was poor, and the crystallinity of the zinc oxide thin film formed on it was poor.
It became clear that the orientation was also degraded.

そこで、本発明になる圧電素子は比較的膜厚の厚いAu
電極上に形成された酸化亜鉛薄膜を有することを特徴と
している。この薄膜は結晶性及びC軸配向性に優れ、し
たがって電気機械結合係数が大きいため、高性能素子が
実現される。
Therefore, the piezoelectric element according to the present invention is made of relatively thick Au film.
It is characterized by having a zinc oxide thin film formed on the electrode. This thin film has excellent crystallinity and C-axis orientation, and therefore has a large electromechanical coupling coefficient, so that a high-performance device can be realized.

以下、本発明を実施例を参照しながら詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

第1図に示すように、10mmφ×1011II+の石
英ガラスロッド1の両端面を光学研磨し、一方の端面に
極く薄いクロムCrと膜厚100〜200〇への金Au
を蒸着した。この電極2上に高周波マグネトロンスパッ
タリングにより膜厚的3μmの酸化亜鉛薄膜3を形成し
た。スパッタ条件はすべて、基板温度を220℃、アル
ゴン−酸素(50%−50%)導入ガスのガス圧を3P
aとした。膜厚の異なるAu電極上に作成したZn○膜
の結晶学的特性をX線回折で評価した。第2図に示すよ
うに金の膜厚が厚いほど、(002)回折線のロッキン
グカーブより計算された標準偏差σは小さくなっている
。標準偏差σが大きい試料については、(002)、(
004)回折線強度が弱< (103) 。
As shown in Fig. 1, both end surfaces of a 10 mmφ x 1011 II+ quartz glass rod 1 are optically polished, and one end surface is coated with extremely thin chromium Cr and gold Au to a thickness of 100 to 2000.
was deposited. A zinc oxide thin film 3 having a thickness of 3 μm was formed on this electrode 2 by high frequency magnetron sputtering. All sputtering conditions were a substrate temperature of 220°C and a gas pressure of argon-oxygen (50%-50%) introduced gas of 3P.
It was set as a. The crystallographic properties of Zn○ films prepared on Au electrodes with different film thicknesses were evaluated by X-ray diffraction. As shown in FIG. 2, the thicker the gold film, the smaller the standard deviation σ calculated from the rocking curve of the (002) diffraction line. For samples with large standard deviation σ, (002), (
004) Diffraction line intensity is weak (103).

(102)、(101)、(100)回折線も現 2わ
れ混合配向していることがわかった。次に、酸化亜鉛薄
膜上に2mmφの穴のあいたモリブデンMoマスクを用
いて室温、で金を蒸着し、上部電極4とした。両電極間
に周波数0.1〜1.2GHzのバースト波を印加して
音波を発生させ、石英ロンドのもう一方の端面で反射し
て戻ってくる第1エコー強度を測定して、その周波数特
性を各試料について比較した。第2図に示すように、金
の膜厚が100〇八付近を境にしてそれ以下の場合には
急激に感度が低下する。図中、相対感度の基準は、非常
に結晶性の良好な場合として基板にサファイア単結晶の
C板を用い、約2000への金膜を形成した後、前記と
同様の方法で作成した試料の感度としている。金電極の
膜厚が1000八以上であれば。
The (102), (101), and (100) diffraction lines were also found to be mixedly oriented. Next, gold was vapor-deposited on the zinc oxide thin film at room temperature using a molybdenum Mo mask with holes of 2 mm diameter to form the upper electrode 4. A burst wave with a frequency of 0.1 to 1.2 GHz is applied between both electrodes to generate a sound wave, and the intensity of the first echo reflected back from the other end of the quartz iron is measured to determine its frequency characteristics. were compared for each sample. As shown in FIG. 2, when the gold film thickness reaches around 10,000 mm and is less than that, the sensitivity rapidly decreases. In the figure, the relative sensitivity is based on a sample prepared in the same manner as above, using a C plate of sapphire single crystal as the substrate and forming a gold film of about 2000 nm, in the case of very good crystallinity. Sensitivity. If the film thickness of the gold electrode is 10008 or more.

感度は基準から一5dB内にあり、圧電素子として十分
で利用できる範囲である。
The sensitivity is within 15 dB from the standard, which is sufficient for use as a piezoelectric element.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、膜厚1000八以
上の金電極で被覆した非晶質基板上に酸化亜鉛薄膜を形
成することにより、電気音響変換効率の高い圧電素子を
安定に作業できることは明らかである。
As explained above, according to the present invention, by forming a zinc oxide thin film on an amorphous substrate coated with a gold electrode with a film thickness of 1000 mm or more, a piezoelectric element with high electroacoustic conversion efficiency can be stably operated. is clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第2図は、下部金電極の膜厚と素子の感度および酸化亜
鉛薄膜のC軸配向性の関係を示す特性曲線図。第2図に
おいて、 5・・・金電極の膜厚と素子の感度の関係を示す特性曲
線、6・・・金電極の膜厚と酸化亜鉛薄膜のC軸配向性
の関係を示す特性曲線。 第1図は、素子の構造を示す断面図。第1図において、 1・・・基板、2・・・クロムおよび金電極、3・・・
酸化亜鉛薄膜、4・・・上部電極。
FIG. 2 is a characteristic curve diagram showing the relationship between the film thickness of the lower gold electrode, the sensitivity of the device, and the C-axis orientation of the zinc oxide thin film. In FIG. 2, 5... Characteristic curve showing the relationship between the film thickness of the gold electrode and the sensitivity of the element, 6... Characteristic curve showing the relationship between the film thickness of the gold electrode and the C-axis orientation of the zinc oxide thin film. FIG. 1 is a sectional view showing the structure of the element. In FIG. 1, 1...substrate, 2...chromium and gold electrode, 3...
Zinc oxide thin film, 4...upper electrode.

Claims (1)

【特許請求の範囲】[Claims] 厚さ1000八以上のAuで被覆した非晶質基板上に、
スパッタリングにより酸化亜鉛ZnO薄膜を形成し、さ
らに上部電極を設けたことを特徴とする圧電素子。
On an amorphous substrate coated with Au with a thickness of 1000 mm or more,
A piezoelectric element comprising a zinc oxide ZnO thin film formed by sputtering and further provided with an upper electrode.
JP59001907A 1984-01-11 1984-01-11 Piezoelectric element Pending JPS60147180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001907A JPS60147180A (en) 1984-01-11 1984-01-11 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001907A JPS60147180A (en) 1984-01-11 1984-01-11 Piezoelectric element

Publications (1)

Publication Number Publication Date
JPS60147180A true JPS60147180A (en) 1985-08-03

Family

ID=11514648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001907A Pending JPS60147180A (en) 1984-01-11 1984-01-11 Piezoelectric element

Country Status (1)

Country Link
JP (1) JPS60147180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244184A (en) * 2004-01-28 2005-09-08 Toshiba Corp Thin-film piezoelectric element and method of manufacturing the thin-film piezoelectric element
JP2006186831A (en) * 2004-12-28 2006-07-13 Kyocera Kinseki Corp Piezoelectric thin film device and its manufacturing method
US7770274B2 (en) 2004-01-28 2010-08-10 Kabushiki Kaisha Toshiba Piezoelectric thin film device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244184A (en) * 2004-01-28 2005-09-08 Toshiba Corp Thin-film piezoelectric element and method of manufacturing the thin-film piezoelectric element
US7770274B2 (en) 2004-01-28 2010-08-10 Kabushiki Kaisha Toshiba Piezoelectric thin film device and method for manufacturing the same
JP2006186831A (en) * 2004-12-28 2006-07-13 Kyocera Kinseki Corp Piezoelectric thin film device and its manufacturing method

Similar Documents

Publication Publication Date Title
US3846649A (en) Piezoelectric transducer comprising oriented zinc oxide film and method of manufacture
Martin et al. Piezoelectric films for 100-MHz ultrasonic transducers
US6475931B2 (en) Method for producing devices having piezoelectric films
US4692653A (en) Acoustic transducers utilizing ZnO thin film
US7642693B2 (en) Wurtzite thin film, laminate containing wurtzite crystalline layer and their manufacturing methods
Foster et al. Zinc oxide film transducers
KR20010082097A (en) A method of fabricating a zinc oxide based resonator
JPS61177900A (en) Piezo-electric element and its manufacture
EP0534355A1 (en) Method of manufacturing a surface acoustic wave device
JPH10270978A (en) Surface acoustic wave element and its manufacture
JP3198691B2 (en) Zinc oxide piezoelectric crystal film
US4482833A (en) Method for obtaining oriented gold and piezoelectric films
US20220385267A1 (en) Surface acoustic wave device with high electromechanical coupling coefficient based on double-layer electrodes and preparation method thereof
JPS6341449B2 (en)
JPS60147180A (en) Piezoelectric element
CN109217842A (en) The SAW filter and preparation method thereof of nearly zero-temperature coefficient
US4236095A (en) Surface acoustic wave device comprising piezoelectric substrate having zinc oxide layer on α-alumina layer
JP3079509B2 (en) Thin film laminated crystal and manufacturing method thereof
JPS6119218A (en) Piezoelectric element
JP3110491B2 (en) Surface acoustic wave device using diamond-like film
Hillman et al. Influence of nucleating surface on sputtered ZnO thin films
US4156050A (en) Piezoelectric crystalline films and method of preparing the same
Krzesiński A study of the effect of technological parameters of rf sputtering on the size of grains and the texture of thin ZnO films
Majima et al. High efficiency ultrasonic transducer using polarity inverted ZnO film
JPH0542880B2 (en)