JPS63119324A - Logic circuit - Google Patents

Logic circuit

Info

Publication number
JPS63119324A
JPS63119324A JP61265768A JP26576886A JPS63119324A JP S63119324 A JPS63119324 A JP S63119324A JP 61265768 A JP61265768 A JP 61265768A JP 26576886 A JP26576886 A JP 26576886A JP S63119324 A JPS63119324 A JP S63119324A
Authority
JP
Japan
Prior art keywords
transistor
fet
state
conductive
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61265768A
Other languages
Japanese (ja)
Inventor
Kenichi Kikuchi
健一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP61265768A priority Critical patent/JPS63119324A/en
Publication of JPS63119324A publication Critical patent/JPS63119324A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/09441Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET of the same canal type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To obtain an IC which is operated at high speed with a low power consumption and has the high degree of integration, by preventing a current from being conducted to a logic circuit in a steady state. CONSTITUTION:A third transistor 28 is set to the conductive state or the cut-off state in accordance with conductive states or cut-off states of a first TRs 20 and 22 due to first input signals A and. A fourth TR 30 is set to the cut-off state or the conductive state in accordance with conductive states or cut-off states of second TRs 24 and 26 due to second input signals, the inverse of A and the inverse of B complementary to first input signals, therefore, a non- inverted output or an inverted output is taken out as the logic output corresponding to first or second input signals. Since a current path is cut off and the current is not conducted in the steady state after the completion of the switching operation, power is not consumed in the steady state, and the degree of integration in the IC is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、論理回路に係り、特に、論理動作の高速化
および消費電流の低減化に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to logic circuits, and particularly to increasing the speed of logic operations and reducing current consumption.

〔従来の技術〕[Conventional technology]

従来、GaAsICで用いられる論理回路には、D C
F L (Direct Coupled PET L
ogic)や、BFL (Buffered FET 
Logic)などがある。
Conventionally, logic circuits used in GaAs ICs include DC
F L (Direct Coupled PET L
ologic), BFL (Buffered FET)
Logic), etc.

DCFLは、第3図に示すように、入力A、、Bに応じ
たFET2.4のスイッチングによって論理出力fを得
るものであるが、動作速度が遅く、消費電力が比較的小
さい特性を持っている。
As shown in Figure 3, the DCFL obtains a logical output f by switching FETs 2 and 4 according to the inputs A, B, but has the characteristics of slow operation speed and relatively low power consumption. There is.

また、BFLは、第4図に示すように、FET6.8に
対して共通の能動負荷としてのFET10を設置してイ
ンバータを構成し、そのインバータ出力をバッファとし
てのFET12、ダイオード14およびFET16から
なるレベルシフト回路を通して取り出すものであるが、
DCFLに比較して動作速度が早くなる反面、大電力を
消費する特性を持っている。
In addition, as shown in FIG. 4, the BFL configures an inverter by installing a FET 10 as a common active load for the FET 6.8, and uses the inverter output as a buffer, consisting of an FET 12, a diode 14, and an FET 16. It is taken out through a level shift circuit,
Although it operates faster than DCFL, it consumes a large amount of power.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、GaAsICは高速動作が可能であるとされ
ているが、高速動作と消費電力とは密接に関係しており
、従来の技術では、高速化を図ろうとすると、消費電力
が増加するため、集積度を高めることができず、実用化
が阻まれている。
By the way, GaAs IC is said to be capable of high-speed operation, but high-speed operation and power consumption are closely related, and with conventional technology, attempting to increase speed increases power consumption, so it is difficult to integrate It has not been possible to increase the efficiency of the technology, and its practical application has been hindered.

そこで、この発明は、GaAs1Cに適する論理回路と
して高速動作とともに電力消費を低減したものである。
Therefore, the present invention provides a logic circuit suitable for GaAs1C that operates at high speed and reduces power consumption.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の論理回路は、第1の入力信号(実施例の入力
信号A、B)に応じて導通状態または遮断状態となる第
1のトランジスタ(実施例のFET20.22のような
トランジスタ群または単一のトランジスタ)と、第1の
入力信号に対して相補的な関係を有する第2の入力信号
(実施例の入力信号τ、T)に応じて導通状態または遮
断状態となる第2のトランジスタ(実施例のFET24
.26のようなトランジスタ群または単一のトランジス
タ)と、第1のトランジスタと直列に接続されて第2の
トランジスタの導通時に第2のトランジスタを通して加
えられる人力に応じて導通状態となる第3のトランジス
タ(実施例のFET28)と、第2のトランジスタと直
列に接続されて第1のトランジスタ(実施例のFET2
0またはFET22)の導通時に第1のトランジスタ(
導通状態にあるFET20またはFET22)を通して
加えられる入力に応じて導通状態となる第4のトランジ
スタ(実施例のFET30)とを備え、第1および第2
の入力信号に応じた非反転出力(Q)または反転出力(
百)を取り出すようにしたものである。
The logic circuit of the present invention includes a first transistor (a group of transistors or a single transistor such as FETs 20 and 22 in the embodiment) which becomes conductive or cut-off depending on the first input signal (input signals A and B in the embodiment). a second transistor (1 transistor) which becomes conductive or cut-off depending on a second input signal (input signals τ, T in the embodiment) having a complementary relationship with the first input signal; Example FET24
.. a group of transistors or a single transistor such as 26) and a third transistor connected in series with the first transistor to become conductive in response to a human force applied through the second transistor when the second transistor is conductive. (FET28 in the example) and the first transistor (FET28 in the example) connected in series with the second transistor.
0 or FET22) conducts, the first transistor (
a fourth transistor (FET30 in the embodiment) that becomes conductive in response to an input applied through the FET20 or FET22 that is in a conductive state;
Non-inverting output (Q) or inverting output (Q) depending on the input signal of
100).

〔作   用〕[For production]

このよう璧構成すると、第1の人力信号による第1のト
ランジスタの導通状態または遮断状態によって第3のト
ランジスタが導通状態または遮断状態となり、また、第
1の入力信号に対して相補的な関係を有する第2の入力
信号による第2のトランジスタの導通状態または遮断状
態によって第4のトランジスタが遮断状態または導通状
態となるので、第1の入力信号または第2の入力信号に
応じた論理出力として非反転出力または反転出力を取り
出すことができる。
With this structure, the third transistor becomes conductive or cutoff depending on the conduction or cutoff state of the first transistor caused by the first human input signal, and also has a complementary relationship with respect to the first input signal. The fourth transistor is turned on or off depending on the conduction or cutoff state of the second transistor caused by the second input signal. An inverted output or an inverted output can be taken out.

〔実 施 例〕〔Example〕

第1図は、この発明の論理回路の実施例を示す。 FIG. 1 shows an embodiment of the logic circuit of the present invention.

第1のトランジスタとしてトランジスタ群を成すFET
20.22がドレインpを高電位側、ソースSを低電位
側にして並列に接続され、各ゲートGの独立した入力端
子32.34には第1の入力信号A、Bが加えられる。
FET forming a transistor group as the first transistor
20 and 22 are connected in parallel with the drain p on the high potential side and the source S on the low potential side, and the first input signals A and B are applied to independent input terminals 32 and 34 of each gate G.

各FET20.22は、たとえば、エンハンスメント形
FETで構成し、入力信号A、Bがスレッショルド電位
を越える高レベル(H)のとき、導通状態となり、スレ
ッショルド電位を下回る低レベル(L)のとき、遮断状
態となる。
Each of the FETs 20 and 22 is, for example, an enhancement type FET, which becomes conductive when the input signals A and B are at a high level (H) exceeding a threshold potential, and is cut off when the input signals are at a low level (L) below the threshold potential. state.

また、第2のトランジスタとしてFET24.26が設
置され、各ゲートの独立した入力端子36.38には、
第1の入力信号A、Bに対して相補的な関係を有する第
2の人力信号τ、T(入力信号A、Bの反転信号)が加
えられる。各FET24.26も、たとえば、エンハン
スメント形FETで構成し、入力信号−入−1■がスレ
ッショルド電位を越える高レベル(H)のとき、導通状
態、また、人力信号τ、■がスレッショルド電位を下回
る低レベル(L)のとき、遮断状態となる。
Further, FETs 24 and 26 are installed as second transistors, and independent input terminals 36 and 38 of each gate have
Second human input signals τ, T (inverted signals of input signals A, B) having a complementary relationship to the first input signals A, B are applied. Each of the FETs 24 and 26 is also configured as an enhancement type FET, and is in a conductive state when the input signal -1 is at a high level (H) exceeding the threshold potential, and the human input signal τ, is below the threshold potential. When it is at a low level (L), it is in a cutoff state.

そして、FET20.22に対して第3のトランジスタ
としてFET28を直列に接続し、このFET2Bは、
FET24.26が導通ずるとき、各FET24.26
を通してゲートに加えられる入力によって導通状態とな
る。また、FET24.26に対して第4のトランジス
タとしてFET30を直列に接続し、このFET30は
、FET20またはFET22が導通ずるとき、FET
20またはFET22を通してゲートに加えられる入力
によって導通状態となる。
Then, FET28 is connected in series with FET20 and FET22 as a third transistor, and this FET2B is
When FET24.26 conducts, each FET24.26
It is made conductive by an input applied to the gate through. Further, FET30 is connected in series with FET24 and FET26 as a fourth transistor, and when FET20 or FET22 is conductive, FET30 is connected in series with FET24 and FET26.
It is rendered conductive by an input applied to the gate through FET 20 or FET 22.

したがって、この論理回路は、FET20.22.28
によって構成されるOR回路と、FET24.26.3
0によって構成されるNOR回路とを並列化したもので
あり、電源端子39に対して電圧vddが加えられて、
FET20,22(7)ソース側に設けられた出力端子
40から論理出力として非反転出力Q、FET26のソ
ース側に設けられた出力端子42から反転出力百を取り
出すようにしたものである。
Therefore, this logic circuit consists of FET20.22.28
OR circuit configured by and FET24.26.3
0 is paralleled with the NOR circuit configured by 0, and voltage vdd is applied to the power supply terminal 39,
A non-inverted output Q is taken out as a logic output from an output terminal 40 provided on the source side of FETs 20 and 22 (7), and an inverted output 100 is taken out from an output terminal 42 provided on the source side of FET 26.

この論理回路の論理動作を第2図の(a)および(b)
を参照して説明する。
The logical operation of this logic circuit is shown in Fig. 2 (a) and (b).
Explain with reference to.

論理入力として入力信号A、B、A、Bをそれぞれ入力
端子32.34.36.38に加える。
Input signals A, B, A, B are applied as logic inputs to input terminals 32.34.36.38, respectively.

第2図の(a)に示すように、入力信号A、Bのうちの
何れかが高電位Hまたは低電位してあると、H入力側の
FET20.22の何れかが導通状態(第2図の(a)
ではFET20が導通状態、破線で表したFET22が
遮断状態)となり、FET20.22の共通化されたソ
ースSの電位が電圧V a aによって高電位となると
、出力端子40の非反転出力QがH出力となる。そして
、FET20.22のソースSの電位がFET30のゲ
ートGに加えられるので、FET30は導通状態となり
、そのドレインDの電位は接地電位となる。
As shown in FIG. 2(a), when either of the input signals A and B is at a high potential H or a low potential, one of the FETs 20 and 22 on the H input side becomes conductive (second Figure (a)
(in this case, the FET 20 is in a conductive state and the FET 22 represented by a broken line is in a cut-off state), and when the potential of the common source S of the FET 20.22 becomes a high potential due to the voltage V a a, the non-inverting output Q of the output terminal 40 becomes H. This becomes the output. Then, since the potential of the source S of FET20.22 is applied to the gate G of FET30, FET30 becomes conductive, and the potential of its drain D becomes the ground potential.

このとき、入力信号A、Bの何れかがH入力であるから
、入力信号τ、■の何れかがし入力となっており、FE
T24.26の何れかが遮断状態となる(第2図の(a
)では、破線で示したFET24が遮断状態で、FET
26が導通している)が、FET24.26は直列に接
続されているので、双方が導通しない限り、FET26
のソースSの電位はFET30のスイッチング動作に委
ねられる。FET30は、FET20のソースSのH電
位によって導通状態となっているので、FET26のソ
ースSおよびFET30のドレインDの電位は接地電位
となり、出力端子42の反転出力ではL出力となる。そ
して、FET26のソースSのL電位は、FET28の
ゲートGに加えられているので、破線で示すようにFE
T28は遮断状態となり、出力端子40の非反転出力Q
が安定した状態で維持される。
At this time, since either input signal A or B is an H input, either input signal τ or ■ becomes an input, and the FE
Either T24 or T26 is in the cut-off state ((a in Figure 2)
), the FET 24 indicated by the broken line is in the cut-off state, and the FET
26 is conducting), but since FETs 24 and 26 are connected in series, unless both are conducting, FET 26
The potential of the source S of is left to the switching operation of the FET 30. Since the FET 30 is in a conductive state due to the H potential of the source S of the FET 20, the potentials of the source S of the FET 26 and the drain D of the FET 30 become the ground potential, and the inverted output of the output terminal 42 becomes an L output. Since the L potential of the source S of the FET 26 is applied to the gate G of the FET 28, the FE
T28 is in the cut-off state, and the non-inverting output Q of the output terminal 40
is maintained in a stable state.

また、第2図の(b)に示すように、入力信号A、Bが
共にLとなった場合、入力信号τ、■は共にHとなり、
破線で示すように、FET20.22は共に遮断状態、
FET24.26は共に導通状態となる。このとき、F
ET26のソースSの電位は電圧VaaによってH電位
となり、FET28が導通状態となるので、そのドレイ
ンDの電位が接地電位となり、また、FET20.22
が遮断状態であるため、FET28のドレインDは電源
電圧vddから切り離されて確実に接地電位となる。こ
の接地電位となっているFET28のドレインDは、F
ET30のゲートGに接続されているため、FET30
は遮断状態となる。この結果、出力端子40の非反転出
力QはL出力、出力端子42の反転出力iはH出力とな
る。
Furthermore, as shown in FIG. 2(b), when input signals A and B both become L, input signals τ and ■ both become H,
As shown by the broken line, both FETs 20 and 22 are in the cut-off state,
Both FETs 24 and 26 become conductive. At this time, F
The potential of the source S of ET26 becomes H potential due to the voltage Vaa, and the FET28 becomes conductive, so the potential of its drain D becomes the ground potential, and the potential of the FET20.22 becomes the ground potential.
Since FET 28 is in a cut-off state, the drain D of FET 28 is disconnected from power supply voltage vdd and becomes reliably at ground potential. The drain D of the FET 28, which is at this ground potential, is F
Since it is connected to the gate G of ET30, FET30
is in a cut-off state. As a result, the non-inverted output Q of the output terminal 40 becomes an L output, and the inverted output i of the output terminal 42 becomes an H output.

この論理動作について、論理式は、 A+B=Q      ・・・(1) A−B=A+B=Q  ・・・(2) となり、その真理値表を第1表に示す。For this logical operation, the logical formula is A+B=Q...(1) A-B=A+B=Q...(2) The truth table is shown in Table 1.

第1表 したがって、論理入力A、Bの何れかがHであるとき、
非反転出力Qは接地電位から遮断されて、FET20.
22の何れかを介して電源電圧Vdaによる電位となり
、このとき、反転出力百は電源電圧Vddから遮断され
てFET30を介して接地電位となる。
Table 1 Therefore, when either logic input A or B is H,
The non-inverting output Q is disconnected from ground potential and connected to FET 20.
At this time, the inverted output is cut off from the power supply voltage Vdd and becomes the ground potential through the FET 30.

また、論理入力A、Bの何れもがしてあるときは、非反
転出力Qが電源電圧V(ldから解放されて、導通して
いるFET28を介して接地電位となり、反転出力iは
接地電位から切り離されて電源電圧V(Il+による電
位となる。
Furthermore, when both logic inputs A and B are disconnected, the non-inverting output Q is released from the power supply voltage V (ld) and becomes the ground potential via the conductive FET 28, and the inverting output i is at the ground potential. It is disconnected from the power supply voltage V (Il+) and has a potential due to the power supply voltage V (Il+).

以上の動作から明らかなように、この論理回路では、ス
イッチング動作が完了した後の定常状態においては電流
経路が遮断されて電流が流れないため、定常状態におけ
る電力消費が生じないので、IC化において集積度を高
めることができる。
As is clear from the above operation, in this logic circuit, the current path is cut off and no current flows in the steady state after the switching operation is completed, so no power consumption occurs in the steady state, so it is difficult to integrate it into an IC. The degree of integration can be increased.

ところで、第3図または第4図に示した従来の論理回路
では、定常状態において電流が流れる、いわゆるレシオ
方式となっており、この方式では必要な論理振幅を得る
ためにスイッチングFETと負荷、FETとを一定の比
となるように条件設定を行なう必要があり、この条件設
定によって負荷FETに流し得る電流の大きさが制約さ
れるため、スイッチング動作に、容量性負荷の充放電を
十分に速く行うに必要な大きな電流駆動能力を持たせる
ことが困難であった。これに対し、この発明の論理回路
では、定常状態においては電流が流れないため、レシオ
方式のような電流の大きさに制約を受けることがなく、
十分に大きな電流駆動能力を持たせ、十分に大きな論理
振幅を取って、所望の論理動作を行うことができ、大き
な論理負荷に対しても高速スイッチングを実現できる。
By the way, the conventional logic circuit shown in FIG. 3 or 4 uses a so-called ratio method in which current flows in a steady state, and in this method, a switching FET, a load, and a FET are used to obtain the necessary logic amplitude. It is necessary to set conditions so that the It was difficult to provide the large current drive capability necessary for this purpose. On the other hand, in the logic circuit of the present invention, no current flows in the steady state, so there is no restriction on the size of the current as in the ratio method.
By providing a sufficiently large current drive capability and a sufficiently large logic amplitude, desired logic operations can be performed, and high-speed switching can be realized even with a large logic load.

特に、高集積度のICでは、配線による静電容量が大き
くなり、必然的に論理回路に対して電流駆動能力が要求
されるが、この発明の論理回路は電流駆動能力に制限を
受けることがなく、十分に大きく設定でき、高集積度の
高速ICを実現する上で極めて有益であり、定常状態で
の電力消費がなく、スイッチング時においては、十分に
大きな電流供給能力を備えているので、この発明の論理
回路を用いることによって、低消費電力で高速、高集積
度のICを実現できる。
In particular, in highly integrated ICs, the capacitance due to wiring becomes large, and the logic circuit is inevitably required to have current drive capability, but the logic circuit of the present invention is not limited in current drive capability. It is extremely useful for realizing highly integrated, high-speed ICs, as it has no power consumption in the steady state and has a sufficiently large current supply capacity during switching. By using the logic circuit of the present invention, it is possible to realize a high-speed, highly integrated IC with low power consumption.

なお、実施例では第1のトランジスタとして2組のFE
T20.22、第2のトランジスタとして2組のFET
24.26で構成したが、それぞれを単一のFETで構
成してもよく、また、3素子以上で構成してもよい。
In addition, in the embodiment, two sets of FEs are used as the first transistor.
T20.22, two sets of FETs as the second transistor
24 and 26, each of them may be composed of a single FET, or may be composed of three or more elements.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、高速スイッチングによる高速論理動
作が実現できるとともに、電流駆動能力を大きくでき、
論理動作の完了後の電流消費がなく、低消費電力化が実
現できる。
According to this invention, high-speed logic operation can be realized by high-speed switching, and the current drive capacity can be increased.
There is no current consumption after the logic operation is completed, and low power consumption can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の論理回路の実施例を示す回路図、第
2図は第1図に示した論理回路の動作状態を示す回路図
、第3図および第4図は従来の論理回路を示す回路図で
ある。 20.22・・・FET (第1のトランジスタ)24
.26・・・FET (第2のトランジスタ)28・・
・FET (第3のトランジスタ)30・・・FET 
(第4のトランジスタ)A、B・・・第1の入力信号 τ、■・・・第2の入力信号 Q・・・非反転出力 百・・・反転出力 20.22−・第1のトランジスタ 24.26・・第2のトランジスタ 28・・第3のトランジスタ 犯・・第4のトランジスタ 第  1 図 第2 (b) 図
Fig. 1 is a circuit diagram showing an embodiment of the logic circuit of the present invention, Fig. 2 is a circuit diagram showing the operating state of the logic circuit shown in Fig. 1, and Figs. 3 and 4 are circuit diagrams showing a conventional logic circuit. FIG. 20.22...FET (first transistor) 24
.. 26...FET (second transistor) 28...
・FET (third transistor) 30...FET
(Fourth transistor) A, B...First input signal τ, ■...Second input signal Q...Non-inverting output 100...Inverting output 20.22--First transistor 24.26...Second transistor 28...Third transistor Criminal...Fourth transistor Figure 1 Figure 2 (b) Figure

Claims (1)

【特許請求の範囲】 第1の入力信号に応じて導通状態または遮断状態となる
第1のトランジスタと、 第1の入力信号に対して相補的な関係を有する第2の入
力信号に応じて導通状態または遮断状態となる第2のト
ランジスタと、 第1のトランジスタと直列に接続されて第2のトランジ
スタの導通時に第2のトランジスタを通して加えられる
入力に応じて導通状態となる第3のトランジスタと、 第2のトランジスタと直列に接続されて第1のトランジ
スタの導通時に第1のトランジスタを通して加えられる
入力に応じて導通状態となる第4のトランジスタとを備
え、 第1および第2の入力信号に応じた非反転出力または反
転出力を取り出す論理回路。
[Scope of Claims] A first transistor that becomes conductive or cut off in response to a first input signal; and a first transistor that becomes conductive in response to a second input signal that has a complementary relationship to the first input signal. a third transistor that is connected in series with the first transistor and becomes conductive in response to an input applied through the second transistor when the second transistor is conductive; a fourth transistor that is connected in series with the second transistor and becomes conductive in response to an input applied through the first transistor when the first transistor is conductive; A logic circuit that outputs a non-inverted or inverted output.
JP61265768A 1986-11-07 1986-11-07 Logic circuit Pending JPS63119324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265768A JPS63119324A (en) 1986-11-07 1986-11-07 Logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265768A JPS63119324A (en) 1986-11-07 1986-11-07 Logic circuit

Publications (1)

Publication Number Publication Date
JPS63119324A true JPS63119324A (en) 1988-05-24

Family

ID=17421756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265768A Pending JPS63119324A (en) 1986-11-07 1986-11-07 Logic circuit

Country Status (1)

Country Link
JP (1) JPS63119324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060732A (en) * 2006-06-02 2014-04-03 Semiconductor Energy Lab Co Ltd Display device, display module and electronic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157331A (en) * 1983-12-22 1985-08-17 エヌ・ベ−・フィリップス・フル−イランペンファブリケン Digital integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157331A (en) * 1983-12-22 1985-08-17 エヌ・ベ−・フィリップス・フル−イランペンファブリケン Digital integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060732A (en) * 2006-06-02 2014-04-03 Semiconductor Energy Lab Co Ltd Display device, display module and electronic apparatus

Similar Documents

Publication Publication Date Title
US6188260B1 (en) Master-slave flip-flop and method
JPS6250916A (en) Minimum delay high-speed bus driver
JP2871087B2 (en) Flip-flop circuit
JP2534346B2 (en) High-speed logic circuit
JPH03192915A (en) Flip-flop
US6737898B2 (en) High speed flip-flop
US4954730A (en) Complementary FET circuit having merged enhancement/depletion FET output
JPS63119324A (en) Logic circuit
JPH05102312A (en) Semiconductor integrated circuit
JP3201020B2 (en) Latch circuit
CN219164463U (en) Motor driving circuit with single input end
JPH06326592A (en) Electronic circuit with driver circuit
JPH0385918A (en) Large current/high speed driver circuit
US20230170885A1 (en) Voltage conversion circuit and memory
JP2830244B2 (en) Tri-state buffer circuit
JPH0774620A (en) Buffer circuit
JPH03258115A (en) Inverter circuit device
JPH02196519A (en) Driver circuit
JP3418993B2 (en) Semiconductor integrated circuit
JPH02292910A (en) Master slave type flip flop circuit
JP2867504B2 (en) Output buffer circuit
JP2655912B2 (en) Semiconductor integrated circuit
JPH0431630Y2 (en)
KR200290049Y1 (en) Master-slave latch in semiconductor device
JPH03272221A (en) Chemical compound semiconductor integrated circuit