JPS6311700Y2 - - Google Patents

Info

Publication number
JPS6311700Y2
JPS6311700Y2 JP12872682U JP12872682U JPS6311700Y2 JP S6311700 Y2 JPS6311700 Y2 JP S6311700Y2 JP 12872682 U JP12872682 U JP 12872682U JP 12872682 U JP12872682 U JP 12872682U JP S6311700 Y2 JPS6311700 Y2 JP S6311700Y2
Authority
JP
Japan
Prior art keywords
semiconductor
ohmic electrode
porcelain
ceramic
reoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12872682U
Other languages
Japanese (ja)
Other versions
JPS5933230U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12872682U priority Critical patent/JPS5933230U/en
Publication of JPS5933230U publication Critical patent/JPS5933230U/en
Application granted granted Critical
Publication of JPS6311700Y2 publication Critical patent/JPS6311700Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Insulating Bodies (AREA)

Description

【考案の詳細な説明】 本考案は磁器コンデンサ、特に、小型で大容量
が得られる還元再酸化型半導体磁器コンデンサに
関するものである。
[Detailed Description of the Invention] The present invention relates to a ceramic capacitor, and particularly to a reduction and reoxidation type semiconductor ceramic capacitor that is small and has a large capacity.

従来、磁器コンデンサとしては、筒形、板形の
コンデンサなどの形式のものが実用に供されてい
るが、の形式のものでは、1μF前後の大容量のコ
ンデンサを得ようとすると形状が著しく大きくな
つて実用に供し得ないという問題があつた。この
ため小型で大容量の得られる磁器コンデンサとし
て、積層型磁器コンデンサや半導体磁気コンデン
サが開発され、実用に供されるようになつてい
る。積層型の磁気コンデンサは、小型で大容量の
ものを製造できるが、セラミツクシート上に内部
電極を形成したものを複数積層した後、焼成する
という製造上の理由から、内部電極材料として
Au,Pt,Pdなど高価な高融点の貴金属を使用し
なければならないため、1μF程度の大容量のコン
デンサを製造しようとすると非常に高価なものに
なり、特定の用途にしか採用しえないという問題
がある。他方、半導体磁気コンデンサのうち還元
再酸化型半導体磁器コンデンサは、半導体の表面
に再酸化層を形成させ、これを誘導体としたもの
で、比較的小型でありながら大きな容量が得ら
れ、他の磁器コンデンサと同様に無極性で、耐熱
性および周波数特性が良好で、リーク電流が小さ
く安価であるなどの利点を有してはいるが、それ
でも面積容量はたかだか300nF/cm2程度であり、
1μF前後の大容量になると形状が大きくなるとい
う問題があつた。この還元再酸化型磁器コンデン
サにおける問題を解決する手段として、円板形の
還元再酸化型半導体磁器の中央に貫通孔をあけ、
その内壁部に露出した半導体部分にオーム性電極
を形成する一方、外部表面たる誘電体部分に電極
を形成した構造が提案されている。この構造のコ
ンデンサは、板形還元再酸化型半導体磁器の両表
面に一対の電極を形成した構造のものに比べて、
容量を約3倍程大きくできるが、還元再酸化処理
前に予め貫通孔を形成していたとしても、貫通孔
の壁面に形成された再酸化層を除去する工程は極
めて煩雑であり、また還元再酸化処理後に貫通孔
を形成することは非能率的であることから工業的
には不適当であつた。この為、実願昭56−46648
号明細書(実開昭57−159232号公報)にて、貫通
孔にオーム性電極を形成する代りに、円板形の還
元再酸化型半導体磁器の外周面にオーム性電極を
形成した構造のものが提案された。この構造のコ
ンデンサは貫通孔にオーム性電極を形成したもの
に比べて、さらに容量を大きくできる利点はある
が、オーム性電極を形成するため円板の外周面を
切削し、半導体を露出させる際、個々に加工する
か、円板を積み重ねてワツクスで固めて柱状にし
てから加工しなければならず煩雑であり、しかも
後者の場合には加工後にワツクスの除去が必要で
あるという問題があつた。
Conventionally, cylindrical and plate-shaped capacitors have been used as ceramic capacitors, but when trying to obtain a capacitor with a large capacity of around 1 μF, the size of the capacitors becomes extremely large. There was a problem that it became too old to be put to practical use. For this reason, multilayer ceramic capacitors and semiconductor magnetic capacitors have been developed and put into practical use as small-sized magnetic capacitors with large capacity. Multilayer magnetic capacitors can be manufactured in a small size with a large capacity, but because of the manufacturing process of laminating multiple layers of ceramic sheets with internal electrodes formed on them and then firing them, they are not used as internal electrode materials.
Because expensive precious metals with high melting points such as Au, Pt, and Pd must be used, manufacturing capacitors with a large capacity of around 1 μF would be extremely expensive, and they could only be used for specific applications. There's a problem. On the other hand, among semiconductor magnetic capacitors, reduction and reoxidation type semiconductor ceramic capacitors form a reoxidation layer on the surface of a semiconductor and use this as a dielectric. Like capacitors, they are non-polar, have good heat resistance and frequency characteristics, have low leakage current, and are inexpensive. However, their areal capacitance is only about 300nF/ cm2 ,
There was a problem that when the capacitance was increased to around 1 μF, the size became larger. As a means to solve this problem with reduction and reoxidation type ceramic capacitors, a through hole is made in the center of the disk-shaped reduction and reoxidation type semiconductor ceramic capacitor.
A structure has been proposed in which an ohmic electrode is formed on the semiconductor portion exposed on the inner wall, and an electrode is formed on the dielectric portion, which is the outer surface. A capacitor with this structure has a structure in which a pair of electrodes are formed on both surfaces of a plate-shaped reduction-reoxidation type semiconductor porcelain.
The capacity can be increased by about three times, but even if the through-hole is formed in advance before the reduction-reoxidation treatment, the process of removing the re-oxidation layer formed on the wall of the through-hole is extremely complicated; Forming through-holes after reoxidation treatment is inefficient and therefore industrially inappropriate. For this reason, Jitsugan 56-46648
No. 57-159232 describes a structure in which an ohmic electrode is formed on the outer peripheral surface of a disk-shaped reduction-reoxidation type semiconductor ceramic instead of forming an ohmic electrode in the through hole. something was proposed. Capacitors with this structure have the advantage of being able to increase the capacitance even more than those with ohmic electrodes formed in the through holes, but when cutting the outer circumferential surface of the disk to expose the semiconductor to form the ohmic electrodes, However, it is complicated to process the disks individually, or to stack the disks and harden them with wax to form a column, which is complicated, and in the latter case, there is a problem in that the wax must be removed after processing. .

本考案は、前記問題に鑑みてなされたものであ
つて、1μF前後の大容量のものでも小形で、量産
性に優れた還元再酸化型半導体磁器コンデンサを
提供することを目的とし、その要旨は、厚さ方向
に形成された貫通孔を有する角板形還元再酸化型
半導体磁器と、該角板形磁器の両表面および該表
面に開口する前記貫通孔の壁面に形成され、かつ
相互に導通してなる非オーム性電極と、前記角板
形磁器の少なくとも一端面に形成され、かつ前記
非オーム性電極と絶縁されたオーム性電極とから
なることを特徴とする還元再酸化型半導体磁器コ
ンデンサにある。
The present invention was developed in view of the above-mentioned problems, and the purpose is to provide a reduction and reoxidation type semiconductor ceramic capacitor that is small in size and excellent in mass production even though it has a large capacity of around 1 μF. , a rectangular plate-shaped reduction and reoxidation type semiconductor porcelain having a through hole formed in the thickness direction; and a rectangular plate-shaped reduced and reoxidized semiconductor porcelain having a through-hole formed on both surfaces of the rectangular plate-shaped porcelain and a wall surface of the through-hole opening to the surface, and being electrically conductive with each other. and an ohmic electrode formed on at least one end surface of the square plate-shaped ceramic and insulated from the non-ohmic electrode. It is in.

非オーム性電極は、通常用いられている銀ペー
ストなどの電極材料を用いて磁器の両表面、すな
わち、表側表面および裏側表面に形成し、それら
の間を貫通孔の壁面に形成した導電部で導通させ
ればよいが、オーム性電極との絶縁のため、両表
面の全体に形成せず、該非オーム性電極の縁と磁
器の縁との間に磁器の再酸化層が露出するように
磁器の表面寸法より弱干小さな寸法にするのが好
ましい。両表面上の非オーム性電極を接続する導
電部は、特に形成しなくとも非オーム性電極材料
を磁器の表面に印刷することにより、該電極材料
が貫通孔に侵入して、その壁面に塗布されるの
で、これを焼付けることにより形成することがで
きる。オーム性電極は角板形磁器の少なくとも一
つの端面に形成すればよいが、二以上の端面に形
成する方が良好な特性が得られる。このオーム性
電極の材料は通常用いられている材料、例えば、
Ag−Zn−Sb合金等を用いればよい。
A non-ohmic electrode is a conductive part formed on both surfaces of the porcelain, that is, the front surface and the back surface, using a commonly used electrode material such as silver paste, and formed on the wall of the through hole between them. However, in order to insulate the ohmic electrode, it is not formed on the entire surface of both surfaces, and the porcelain reoxidation layer is exposed between the edge of the non-ohmic electrode and the edge of the porcelain. It is preferable to make the dimensions slightly smaller than the surface dimensions of. The conductive part that connects the non-ohmic electrodes on both surfaces can be formed by printing a non-ohmic electrode material on the surface of the porcelain without forming it in particular, so that the electrode material enters the through hole and is applied to the wall surface. Therefore, it can be formed by baking this. The ohmic electrode may be formed on at least one end face of the square plate-shaped porcelain, but better characteristics can be obtained if it is formed on two or more end faces. The material of this ohmic electrode is a commonly used material, for example,
Ag-Zn-Sb alloy or the like may be used.

以下、本考案の実施例を示す図面を参照して具
体的に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図において、1は角板形の還元再酸化型半導体
磁器、2は非オーム性電極、3はオーム性電極、
4,5はリード線で、半導体磁器1は半導体部分
1aと誘電体層1bからなり、誘電体層1bは磁
器1の両表面側および貫通孔6の壁面部分に形成
されている。磁器1の両表面7a,7bには、そ
の表面に開口する貫通孔6を包囲して磁器1の表
面寸法より弱干小さな寸法の非オーム性電極2が
それぞれ形成され、両者は貫通孔6の壁面に形成
された導電部8により短絡されている。オーム性
電極3は磁器1の相対する端面に形成され、リー
ド線4により短絡されている。
In the figure, 1 is a square plate-shaped reduced and reoxidized semiconductor porcelain, 2 is a non-ohmic electrode, 3 is an ohmic electrode,
4 and 5 are lead wires, and the semiconductor ceramic 1 consists of a semiconductor portion 1a and a dielectric layer 1b, and the dielectric layer 1b is formed on both surfaces of the ceramic 1 and on the wall surface of the through hole 6. On both surfaces 7a and 7b of the porcelain 1, non-ohmic electrodes 2 having dimensions slightly smaller than the surface dimensions of the porcelain 1 are formed, surrounding the through holes 6 opening in the surfaces. It is short-circuited by a conductive portion 8 formed on the wall surface. The ohmic electrodes 3 are formed on opposing end faces of the porcelain 1 and are short-circuited by a lead wire 4.

前記構造の還元再酸化型半導体磁器コンデンサ
は、例えば、次のようにして製造することができ
る。
The reduction and reoxidation type semiconductor ceramic capacitor having the above structure can be manufactured, for example, as follows.

すなわち、還元再酸化型半導体磁器材料、例え
ば、BaTiO3−BaZrO3系半導体磁器材料をシー
ト状に成形する一方、成形体9に相互に所定間隔
をおいて貫通孔6を形成し(第3図イ参照)、こ
れを空気中にて1200〜1400℃で焼成した後、1100
〜1200℃で還元処理して半導体化し、800〜1100
℃で再酸化処理して表面に誘電体層を形成する。
次いで、還元再酸化型半導体磁器10の表面に銀
ペーストを塗布後、焼付け、両表面および貫通孔
6の壁面に非オーム性電極2および導電部8を形
成し、ダイヤモンドカツタ等で個々のコンデンサ
チツプ11(第3図ハ参照)に切断し、その切断
面(端面)に露出した半導体部分に、例えば、
Ag−Zn−Sb系オーム性電極材料で電極3を形成
することによりコンデンサを得ることができる。
That is, while a reduced and reoxidized semiconductor ceramic material, for example, a BaTiO 3 -BaZrO 3 -based semiconductor ceramic material, is formed into a sheet shape, through holes 6 are formed in the molded body 9 at predetermined intervals (see FIG. 3). ), and after firing it in air at 1200 to 1400℃,
Semiconductor by reduction treatment at ~1200℃, 800 ~ 1100
A dielectric layer is formed on the surface by reoxidation treatment at ℃.
Next, after applying silver paste to the surface of the reduced and reoxidized semiconductor ceramic 10, the non-ohmic electrode 2 and the conductive part 8 are formed on both surfaces and the wall surface of the through hole 6 by baking, and the individual capacitor chips are cut with a diamond cutter or the like. 11 (see Figure 3 C), and the semiconductor portion exposed on the cut surface (end surface) is coated with, for example,
A capacitor can be obtained by forming the electrode 3 with an Ag-Zn-Sb ohmic electrode material.

実施例 1 BaTiO3 86.0モル%、BaZrO3 9.6モル%、
Bi2O3 1.4モル%、TiO2 2.9モル%、Y2O3 0.1モ
ル% を原料として用い、前記方法により10mm×7mm×
0.5mmの角板の両面に8mm×5mmの銀焼付電極か
らなる非オーム性電極を形成したコンデンサチツ
プを得、その一端面にAg−Zn−Sb系のオーム性
電極を形成して磁器コンデンサを得た。その容量
は0.39μF、10KHzでの誘電正接(tanδ)は13%
であつた。
Example 1 BaTiO 3 86.0 mol%, BaZrO 3 9.6 mol%,
Using 1.4 mol% Bi 2 O 3 , 2.9 mol % TiO 2 , and 0.1 mol % Y 2 O 3 as raw materials, 10 mm × 7 mm ×
A capacitor chip was obtained in which non-ohmic electrodes consisting of 8 mm x 5 mm baked silver electrodes were formed on both sides of a 0.5 mm square plate, and an ohmic electrode of Ag-Zn-Sb system was formed on one end surface to form a ceramic capacitor. Obtained. Its capacitance is 0.39μF, and the dielectric loss tangent (tanδ) at 10KHz is 13%
It was hot.

実施例 2 実施例1で得たコンデンサチツプの相対する二
つの端面にオーム性電極を形成して第1図に示す
構造の磁器コンデンサを得た。その容量は
0.48μF、10kHzでのtanδは9%であつた。
Example 2 Ohmic electrodes were formed on two opposing end faces of the capacitor chip obtained in Example 1 to obtain a ceramic capacitor having the structure shown in FIG. Its capacity is
The tan δ at 0.48 μF and 10 kHz was 9%.

比較例 1 実施例1の同組成の磁器組成物を原料とし、貫
通孔がない同寸法のチツプを形成し、従来法によ
り対向電極を形成して磁器コンデンサを得た。そ
の容量は0.11μF、10KHzでのtanδは4%であつ
た。
Comparative Example 1 A ceramic capacitor was obtained by using a ceramic composition having the same composition as in Example 1 as a raw material, forming a chip of the same size without a through hole, and forming a counter electrode by a conventional method. Its capacitance was 0.11 μF, and tan δ at 10 KHz was 4%.

以上の説明から明らかなように、本考案の磁器
コンデンサは、同じ磁器組成物を用いても、従来
構造の比較例1のものに比べ約4倍もの大きな容
量を示し、しかも角板形磁器の2端面以上にオー
ム性電極を形成することにより誘電体部分による
容量のほとんど全てを効率よく、周波数特性をそ
こなうことなく取り出せるという優れた利点を有
している。また、オーム性電極を形成する部分を
角板形磁器の端面としているため、切断するだけ
で半導体部分が露出し、従つて還元再酸化処理に
よつて形成される誘電体層部分を除去する必要が
なくオーム性電極の形成も容易であり量産性に優
れ、積層型磁器コンデンサに比べて著しく安価に
製造することができるなど優れた利点を有してい
る。
As is clear from the above description, the ceramic capacitor of the present invention exhibits a capacitance approximately four times larger than that of Comparative Example 1 with the conventional structure, even if the same ceramic composition is used. By forming ohmic electrodes on two or more end faces, it has the excellent advantage that almost all of the capacitance due to the dielectric portion can be extracted efficiently without impairing the frequency characteristics. In addition, since the part where the ohmic electrode is formed is the end face of the square plate-shaped porcelain, the semiconductor part is exposed just by cutting it, so it is necessary to remove the dielectric layer part formed by reduction and reoxidation treatment. It has the advantage of being easy to form ohmic electrodes, being easy to form, and being mass-producible, and can be manufactured at a significantly lower cost than multilayer ceramic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す磁器コンデン
サの斜視図、第2図は第1図の−線における
拡大断面図、第3図はその製造過程を示す斜視図
である。 1……磁器、2……非オーム性電極、3……オ
ーム性電極、4,5……リード線、6……貫通
孔。
FIG. 1 is a perspective view of a ceramic capacitor showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view taken along the line - in FIG. 1, and FIG. 3 is a perspective view showing the manufacturing process thereof. 1...Porcelain, 2...Non-ohmic electrode, 3...Ohmic electrode, 4, 5...Lead wire, 6...Through hole.

Claims (1)

【実用新案登録請求の範囲】 厚さ方向に形成された貫通孔を有する半導体磁
器であつて、該半導体磁器は半導体部分と誘電体
層からなり、該誘電体層は半導体磁器の両表面側
および貫通孔の壁面部分に形成されている角板形
還元再酸化型半導体磁器と、 該角板形磁器の両表面および該表面に開口する
前記貫通孔の壁面に形成され、かつ相互に導通し
てなる非オーム性電極と、 前記角板形磁器の少なくとも一端面に形成さ
れ、かつ前記非オーム性電極と絶縁されたオーム
性電極とからなることを特徴とする還元再酸化型
半導体磁器コンデンサ。
[Claims for Utility Model Registration] A semiconductor porcelain having a through hole formed in the thickness direction, the semiconductor porcelain consisting of a semiconductor portion and a dielectric layer, the dielectric layer extending from both surface sides of the semiconductor porcelain and A rectangular plate-shaped reduction and reoxidation type semiconductor porcelain formed on the wall surface of the through-hole; A reduction and reoxidation semiconductor ceramic capacitor comprising: a non-ohmic electrode; and an ohmic electrode formed on at least one end surface of the square plate-shaped ceramic and insulated from the non-ohmic electrode.
JP12872682U 1982-08-26 1982-08-26 Reduction-reoxidation type semiconductor porcelain capacitor Granted JPS5933230U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12872682U JPS5933230U (en) 1982-08-26 1982-08-26 Reduction-reoxidation type semiconductor porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12872682U JPS5933230U (en) 1982-08-26 1982-08-26 Reduction-reoxidation type semiconductor porcelain capacitor

Publications (2)

Publication Number Publication Date
JPS5933230U JPS5933230U (en) 1984-03-01
JPS6311700Y2 true JPS6311700Y2 (en) 1988-04-05

Family

ID=30291917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12872682U Granted JPS5933230U (en) 1982-08-26 1982-08-26 Reduction-reoxidation type semiconductor porcelain capacitor

Country Status (1)

Country Link
JP (1) JPS5933230U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353625Y2 (en) * 1985-08-13 1991-11-25

Also Published As

Publication number Publication date
JPS5933230U (en) 1984-03-01

Similar Documents

Publication Publication Date Title
US4533931A (en) Reduction reoxidation type semiconductor ceramic condenser
JPS63169014A (en) Method of forming external electrode terminal of chip capacitor
JPS609112A (en) Thin film condenser of low cost
JPH0613259A (en) Multilayered ceramic capacitor and its manufacture
JPH07272975A (en) Composite capacitor
US4394532A (en) Multilayer current distribution systems and methods of fabrication thereof
JPS6311700Y2 (en)
JPH0158850B2 (en)
JPS6240423Y2 (en)
JPH0420245B2 (en)
JPS6311699Y2 (en)
JPS6314853B2 (en)
JPH0831393B2 (en) Multilayer ceramic capacitor with fuse
JPS6226565B2 (en)
JPS5933248B2 (en) composite electronic components
JPS6248889B2 (en)
JPH06260302A (en) Chip-type ptc thermistor
JPS6228740Y2 (en)
JPS6240424Y2 (en)
JPH046200Y2 (en)
JPS6214931B2 (en)
JPH04243173A (en) Electrostrictive effect element
JPH0396204A (en) Capacitor
JPH0314209A (en) Laminated electronic part
JPS62245617A (en) Small size monolithic electric capacitor