JPH0420245B2 - - Google Patents

Info

Publication number
JPH0420245B2
JPH0420245B2 JP58066422A JP6642283A JPH0420245B2 JP H0420245 B2 JPH0420245 B2 JP H0420245B2 JP 58066422 A JP58066422 A JP 58066422A JP 6642283 A JP6642283 A JP 6642283A JP H0420245 B2 JPH0420245 B2 JP H0420245B2
Authority
JP
Japan
Prior art keywords
internal electrode
exposed
electrodes
dielectric
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58066422A
Other languages
Japanese (ja)
Other versions
JPS59193015A (en
Inventor
Kazuaki Uchiumi
Hideo Takamizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58066422A priority Critical patent/JPS59193015A/en
Publication of JPS59193015A publication Critical patent/JPS59193015A/en
Publication of JPH0420245B2 publication Critical patent/JPH0420245B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は積層セラミツクコンデンサの構造に関
し、特に小型で容量の大きい積層セラミツクコン
デンサを実現させる構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a laminated ceramic capacitor, and particularly to a structure for realizing a laminated ceramic capacitor that is small in size and has a large capacity.

積層セラミツクコンデンサは小型で大容量が得
られ、しかも信頼性の高いコンデンサとして実用
化が進んでいる。
Multilayer ceramic capacitors are small in size, have a large capacity, and are being put into practical use as highly reliable capacitors.

従来の積層セラミツクコンデンサは第1図に示
す様に内部電極が外部取出し電極を焼付ける部分
以外外部に露出しないように、同一誘電体で一体
化した構造になつている。そして、第1図の一点
鎖線の部分での断面図を第2図a,bに示すが、
1が内部電極,2が誘電体である。
As shown in FIG. 1, a conventional multilayer ceramic capacitor has a structure in which internal electrodes are integrated with the same dielectric material so that they are not exposed to the outside except at the part where the external electrode is baked. A cross-sectional view taken along the dashed-dotted line in FIG. 1 is shown in FIGS. 2a and 2b.
1 is an internal electrode, and 2 is a dielectric.

ここで図の中のa1〜a3は外部あるいは対向電極
との絶縁に必要な誘電体の厚さ、bとcはチツプ
の外径寸法を示している。一般にa1〜a3は同一寸
法で作られている。
Here, a 1 to a 3 in the figure indicate the thickness of the dielectric necessary for insulation from the outside or the counter electrode, and b and c indicate the outer diameter dimensions of the chip. Generally, a 1 to a 3 are made with the same dimensions.

この図から明らかなように外部絶縁のための誘
電体の厚さを確保し、しかも生産の歩留りを下げ
ない様なa1〜a3の寸法としては最小でも400μmで
ある。
As is clear from this figure, the minimum dimension of a 1 to a 3 is 400 μm to ensure the thickness of the dielectric for external insulation and not to lower the production yield.

一般に積層方向に垂直な断面積b×cに対する
内部電極面積の有効面積率Aは第2図aの中の
a1,a2,a3をすべてa0に等しいとして計算すると A=(b−2a0)(c−2a0)/bc と表わされる。
In general, the effective area ratio A of the internal electrode area to the cross-sectional area b x c perpendicular to the stacking direction is shown in Figure 2 a.
If a 1 , a 2 , and a 3 are all equal to a 0 and calculated, it is expressed as A=(b-2a 0 )(c-2a 0 )/bc.

この式から、a0が一定であり、チツプの外径寸
法であるb,cが小さくなると、内部電極の有効
面積率Aは極端に小さくなることがわかる。
From this equation, it can be seen that when a 0 is constant and the outer diameter dimensions b and c of the chip become smaller, the effective area ratio A of the internal electrode becomes extremely small.

仮に、外径寸法が2a0×2a0になると内部電極の
有効面積は0になつてしまう。
If the outer diameter dimension were 2a 0 ×2a 0 , the effective area of the internal electrode would be zero.

従つてチツプコンデンサ全体の寸法が小さくな
り1mn×2m積層になると内部電極の面積が前記
チツプの断面積の20%程度と小さくなるため、単
位体積当りの容量を大きくする上での限界があつ
た。
Therefore, as the overall dimensions of the chip capacitor become smaller and the stack becomes 1 mm x 2 m, the area of the internal electrodes becomes about 20% of the cross-sectional area of the chip, which limits the ability to increase the capacitance per unit volume. .

第2図aのa1〜a3をさらに小さくすることを制
限している理由は積層セラミツクコンデンサの製
造方法に深くかかわりをもつている。すなわち、
積層セラミツクコンデンサは、内部電極を印刷し
たグリーンシートを積層圧着して、生積層体と
し、この状態で個別の生チツプに切断するが、工
業的に量産する場合、積層時の位置のバラツキ,
切断の精度等を考慮すると、どうしても400μm
以下にすることは困難であつた。仮りにそれより
も小さくしても外部絶縁不良・対向電極間のシヨ
ートが発生し、歩留が極端に低下するため、実用
にはならなかつた。
The reason why it is restricted to further reduce a 1 to a 3 in FIG. 2a is deeply related to the manufacturing method of multilayer ceramic capacitors. That is,
Multilayer ceramic capacitors are made by laminating and pressing green sheets with internal electrodes printed on them to form a green laminate, which is then cut into individual green chips. However, when mass-producing them industrially, variations in the position of the layers during stacking,
Considering cutting accuracy, etc., 400 μm is inevitable.
It was difficult to do the following. Even if it were made smaller than that, it would not be practical because external insulation defects and shorts between opposing electrodes would occur, resulting in an extremely low yield.

本発明の目的は全く新らしい構造によつて、こ
れらの問題を解決し、小型で大容量の積層コンデ
ンサを提供するものである。
An object of the present invention is to solve these problems and provide a compact, large-capacity multilayer capacitor with a completely new structure.

すなわち本発明は誘電体と内部電極とが交互に
積層され、しかも各内部電極の外周部がその表面
に露出している構造の積層体に対して該内部電極
の表面に露出している部分及びその近傍が前記誘
電体と異なる絶縁材料で被覆され、また各内部電
極には一部被覆されない露出部が残つており、当
該内部電極露出部は一層おきにそれぞれ前記積層
体表面の相異なる2つの部分に配置され該2個所
の表面部分に外部電極が形成されている構造を有
することを特徴とする積層セラミツクコンデンサ
である。
That is, the present invention provides for a laminate having a structure in which dielectrics and internal electrodes are alternately laminated, and the outer circumferential portion of each internal electrode is exposed on the surface, and the portions of the internal electrodes exposed on the surface and The vicinity thereof is covered with an insulating material different from the dielectric, and each internal electrode has an exposed portion that is not covered, and the exposed portion of the internal electrode is separated from two different layers on the surface of the laminate at every other layer. This multilayer ceramic capacitor is characterized in that it has a structure in which external electrodes are formed on two surface portions of the capacitor.

すなわち本発明の構造とすることにより内部電
極の断面積に占める割合を80%以上にすることを
可能にしたものである。
In other words, the structure of the present invention makes it possible to increase the proportion of the internal electrode to the cross-sectional area of 80% or more.

このような構造によつて小型のチツプコンデン
サでは単位体積当りの容量も5倍以上に高めるこ
とが可能となつた。
With such a structure, it has become possible to increase the capacitance per unit volume of a small chip capacitor by more than five times.

以下図面と実施例によつて、本発明を詳細に説
明する。
The present invention will be explained in detail below with reference to the drawings and examples.

第3図は本発明の構造の一例を示す斜視図であ
り、1は内部電極、2は誘電体、3は絶縁材料を
示している。さらに第4図a,bは、第3図の一
点鎖線の部分で切断したときの断面図である。こ
れらの図に示すように誘電体と異なる材料を用い
て、内部電極を絶縁することによつて、絶縁層の
厚さを100μm以下にすることが可能となり、そ
の結果単位層の内部電極占有率を80%以上にする
ことが可能となつた。
FIG. 3 is a perspective view showing an example of the structure of the present invention, in which 1 indicates an internal electrode, 2 a dielectric material, and 3 an insulating material. Furthermore, FIGS. 4a and 4b are cross-sectional views taken along the dashed line in FIG. 3. As shown in these figures, by insulating the internal electrodes using a material different from the dielectric, it is possible to reduce the thickness of the insulating layer to 100 μm or less, and as a result, the internal electrode occupancy rate of a unit layer can be reduced. It has become possible to increase this to over 80%.

この様な構造によつて同一体積での容量を従来
の5倍以上にすることが可能となつた。
With such a structure, it has become possible to increase the capacity in the same volume by more than five times that of the conventional one.

実施例 1 誘電体はチタン酸バリウム系材料,内部電極と
してはパラジウム,絶縁材料としてはホウケイ酸
系結晶化ガラスを用いた。絶縁材料は積層生チツ
プを焼結した後、、印刷法により、側面に印刷し、
その後焼付けた。さらに内部電極の露出部に外部
電極をAgペーストを焼付けることによつて形成
した。
Example 1 A barium titanate-based material was used as the dielectric, palladium was used as the internal electrode, and borosilicate-based crystallized glass was used as the insulating material. After sintering the laminated raw chips, the insulating material is printed on the side using a printing method.
Then it was baked. Further, external electrodes were formed by baking Ag paste onto the exposed portions of the internal electrodes.

このようにして形成した積層セラミツクコンデ
ンサの外形寸法は縦1.0mm,横2.0mm、厚さ1.0mmで
あつた。積層数は20層,電極間の距離は40μmで
あり、容量として3.0mFを得た。
The outer dimensions of the multilayer ceramic capacitor thus formed were 1.0 mm long, 2.0 mm wide, and 1.0 mm thick. The number of laminated layers was 20, the distance between electrodes was 40 μm, and a capacitance of 3.0 mF was obtained.

比較のため、従来方法と同じ誘電材料によつて
外部絶縁を行つた。第1図で示した構造の同一形
状,同一材料,同一積層数,同一電極間距離のチ
ツプコンデンサでは、0.4mFの容量しか得られ
ず、本発明の構造によつて、容量が7.5倍になる
ことが明らかである。
For comparison, external insulation was performed using the same dielectric material as in the conventional method. A chip capacitor with the same shape, the same material, the same number of laminated layers, and the same distance between electrodes as shown in Figure 1 has a capacitance of only 0.4 mF, but the structure of the present invention increases the capacitance by 7.5 times. That is clear.

実施例 2 誘電体はpb(Fe1/2Nb1/2)O3−pb(Fe2/
3W1/3)O3系材料,内部電極として銀−パラ
ジウム合金,絶縁材料としてホウケイ酸鉛系の結
晶化ガラスを用いた。
Example 2 The dielectric material is pb(Fe1/2Nb1/2)O 3 −pb(Fe2/
3W1/3) O 3 based material, silver-palladium alloy as the internal electrode, and lead borosilicate crystallized glass as the insulating material.

内部電極の外周部の一部が外部電極形成面でな
い表面部分に露出した構造の積層生チツプを従来
の積層セラミツクコンデンサと同様の技術によつ
て作つた。この積層生チツプを焼結し、チツプ表
面上の露出した各内部電極の所定の位置に外部取
出し用の電極を焼付けた。
A laminated raw chip having a structure in which a part of the outer periphery of the internal electrode is exposed on the surface portion other than the surface on which the external electrode is formed was fabricated using the same technique as a conventional laminated ceramic capacitor. This laminated raw chip was sintered, and electrodes for external extraction were baked at predetermined positions of each exposed internal electrode on the chip surface.

この外部電極にリードを接続し、電気泳動用ス
ラリーのはいつた電気泳動槽の中にチツプを入れ
た対向電極とリード線の間に直流電圧を50V,30
秒間印加し、露出した内部電極表面とその近傍に
絶縁層を形成した。外部電極上に付着した絶縁層
をとり除きチツプを900℃−10分の条件で熱処理
を行い絶縁層をチツプ表面に焼付けた。
A lead is connected to this external electrode, and a DC voltage of 50 V, 30
The voltage was applied for a second to form an insulating layer on the exposed internal electrode surface and its vicinity. The insulating layer adhering to the external electrodes was removed and the chip was heat treated at 900°C for 10 minutes to bake the insulating layer onto the chip surface.

電気泳動用スラリー組成は次のものを用いた。 The following slurry composition for electrophoresis was used.

ホウケイ酸鉛系ガラス 10wt% エタノール 85wt% ポリビニルブチラール 5wt% この様にして形成した積層チツプコンデンサの
外形寸法は縦1.0mm、横3.0mm、厚さ1.0mmであつ
た。積層数は30層,電極間の距離は30μmであ
り、容量として277mFを得た。
Lead borosilicate glass 10wt% Ethanol 85wt% Polyvinyl butyral 5wt% The outer dimensions of the multilayer chip capacitor thus formed were 1.0mm long, 3.0mm wide, and 1.0mm thick. The number of laminated layers was 30, the distance between electrodes was 30 μm, and a capacitance of 277 mF was obtained.

比較のために従来技術によつて形成した同一寸
法の積層セラミツクコンデンサの容量を調らべる
と、47mFであり、本発明の積層コンデンサでは
同一形状で約6倍の容量が得られた。
For comparison, the capacitance of a multilayer ceramic capacitor of the same size formed by the prior art was found to be 47 mF, and the multilayer capacitor of the present invention had a capacitance about 6 times as large with the same shape.

以上示したように本発明の構造によつて、従来
の積層セラミツクコンデンサよりも単位体積当り
の容量を著しく大きくすることが可能となつた。
As shown above, the structure of the present invention makes it possible to significantly increase the capacitance per unit volume compared to conventional multilayer ceramic capacitors.

本発明は特に形状の小さい又は、縦横比の大き
いコンデンサに対してより効果的に容量を大きく
することができる。
The present invention can effectively increase the capacitance of a capacitor that is particularly small in shape or has a large aspect ratio.

なお実施例では絶縁材料として、結晶化ガラス
を焼付けたものを示したが、この他にも、使用用
途によつては、エポキシ樹脂,シリコーン樹脂等
の高絶縁性有機樹脂を用いても同様の効果がある
ことを確認した。
In the examples, baked crystallized glass was used as the insulating material, but depending on the intended use, highly insulating organic resins such as epoxy resins and silicone resins may also be used. It was confirmed that it was effective.

なお本発明の構造として、実施例に示した以外
でも第5図a,bの断面図に示すように、側面の
一部だけを誘電体と異なる材料で絶縁しても、本
発明の効果を損うものではない。
As shown in the cross-sectional views of FIGS. 5a and 5b, even if the structure of the present invention is insulated with a material different from the dielectric, the effect of the present invention can still be achieved. It's not a loss.

また本実施例では誘電体形状と内部電極形状が
同じ場合を示したが内部電極形状が誘電体形状よ
りやや小さい場合(すなわち前記積層体表面より
微小距離だけ内部に内部電極外周が位置する部分
がある場合)でもその部分に対応する積層体表面
部分に絶縁材料を被覆することで絶縁不良などを
改善することができる。
Furthermore, although this example shows the case where the dielectric shape and the internal electrode shape are the same, the case where the internal electrode shape is slightly smaller than the dielectric shape (i.e., the part where the outer periphery of the internal electrode is located within a minute distance from the surface of the laminate) is In some cases, insulation defects can be improved by coating the surface portion of the laminate corresponding to that portion with an insulating material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図a,bは従来の積層セラミツク
コンデンサの斜視図及び断面図である。第3図,
第4図a,bは本発明の構造を持つ積層セラミツ
クコンデンサの一例を示した斜視図及び断面図で
ある。第5図a,bは本発明の構造を持つ積層セ
ラミツクコンデンサの断面図。 図の中で1は内部電極,2は誘電体,3は絶縁
体を示している。
FIGS. 1 and 2a and 2b are a perspective view and a sectional view of a conventional multilayer ceramic capacitor. Figure 3,
FIGS. 4a and 4b are a perspective view and a sectional view showing an example of a multilayer ceramic capacitor having the structure of the present invention. FIGS. 5a and 5b are cross-sectional views of a multilayer ceramic capacitor having the structure of the present invention. In the figure, 1 is an internal electrode, 2 is a dielectric, and 3 is an insulator.

Claims (1)

【特許請求の範囲】[Claims] 1 誘電体と内部電極とが交互に積層され、しか
も各内部電極の外周部がその表面に露出している
構造の積層体に対して該内部電極の表面に露出し
ている部分及びその近傍が前記誘電体と異なる絶
縁材料で被覆され、また各内部電極には一部被覆
されない露出部が残つており、当該内部電極露出
部は一層おきにそれぞれ前記積層体表面の相異な
る2つの部分に配置され、該2個所の表面部分に
外部電極が形成されている構造を有することを特
徴とする積層セラミツクコンデンサ。
1. For a laminate with a structure in which dielectrics and internal electrodes are alternately laminated, and the outer peripheral part of each internal electrode is exposed on the surface, the exposed part of the internal electrode on the surface and its vicinity are Each internal electrode is covered with an insulating material different from the dielectric, and each internal electrode has an exposed portion that is not covered, and the exposed internal electrode portion is arranged every other layer at two different parts of the surface of the laminate. A multilayer ceramic capacitor characterized by having a structure in which external electrodes are formed on the two surface portions.
JP58066422A 1983-04-15 1983-04-15 Laminated ceramic condenser Granted JPS59193015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066422A JPS59193015A (en) 1983-04-15 1983-04-15 Laminated ceramic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066422A JPS59193015A (en) 1983-04-15 1983-04-15 Laminated ceramic condenser

Publications (2)

Publication Number Publication Date
JPS59193015A JPS59193015A (en) 1984-11-01
JPH0420245B2 true JPH0420245B2 (en) 1992-04-02

Family

ID=13315336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066422A Granted JPS59193015A (en) 1983-04-15 1983-04-15 Laminated ceramic condenser

Country Status (1)

Country Link
JP (1) JPS59193015A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306765A (en) * 1999-04-20 2000-11-02 Murata Mfg Co Ltd Laminated ceramic electronic component
KR101872531B1 (en) * 2012-07-04 2018-06-28 삼성전기주식회사 Multi-layer ceramic electronic part and method for manufacturing the same
JP6406191B2 (en) * 2015-09-15 2018-10-17 Tdk株式会社 Laminated electronic components
JP6724321B2 (en) * 2015-09-15 2020-07-15 Tdk株式会社 Laminated electronic components
JP6429027B2 (en) * 2015-09-15 2018-11-28 Tdk株式会社 Laminated electronic components

Also Published As

Publication number Publication date
JPS59193015A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
JPH07335473A (en) Laminated ceramic capacitor
JP4573956B2 (en) Multilayer electronic component and manufacturing method thereof
JPH11340089A (en) Manufacture of multilayer ceramic electronic component multilayer ceramic electronic component
JPH0613259A (en) Multilayered ceramic capacitor and its manufacture
JP3047708B2 (en) Manufacturing method of ceramic laminated electronic component
JP2992570B2 (en) Ceramic multilayer capacitor and method of manufacturing the same
US6014309A (en) Laminated ceramic electronic parts
JPS5923458B2 (en) composite parts
JPH0420245B2 (en)
JP2000340448A (en) Laminated ceramic capacitor
JPH0310212B2 (en)
JPH0115159Y2 (en)
JPS637016B2 (en)
JPS6339958Y2 (en)
JP2001044059A (en) Multilayer ceramic capacitor
JP2982335B2 (en) Multilayer ceramic capacitors
JPH1154369A (en) Multilayered electronic component
JPH0420248B2 (en)
JPS6311700Y2 (en)
JPS6028113Y2 (en) Composite parts that can be trimmed
JPH08181032A (en) Laminated ceramic capacitor
JP2739453B2 (en) Capacitor with fuse function and method of manufacturing the same
JP2001044058A (en) Multilayer ceramic capacitor
JPS6311702Y2 (en)
JPH05308020A (en) Composite electronic part