JPS63114935A - Molybdenum crucible and its production - Google Patents

Molybdenum crucible and its production

Info

Publication number
JPS63114935A
JPS63114935A JP26150586A JP26150586A JPS63114935A JP S63114935 A JPS63114935 A JP S63114935A JP 26150586 A JP26150586 A JP 26150586A JP 26150586 A JP26150586 A JP 26150586A JP S63114935 A JPS63114935 A JP S63114935A
Authority
JP
Japan
Prior art keywords
crucible
sintered
sample
molybdenum
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26150586A
Other languages
Japanese (ja)
Inventor
Seiji Yabe
矢部 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP26150586A priority Critical patent/JPS63114935A/en
Publication of JPS63114935A publication Critical patent/JPS63114935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably prolong the service life of a crucible, by manufacturing a crucible from Mo to which specific amounts of Al, K, and Si are incorporated. CONSTITUTION:The crucible has a composition which consists of, by weight, 0.01-0.05% of at least one element among Al, K, and Si and the balance Mo. In order to manufacture this crucible, the powder of Mo to which 0.01-0.05% of one or more elements among Al, K, and Si are added is compacted, and the resulting green compact is sintered. Subsequently, this sintered compact is forged at >=about 30% forging ratio and worked into a shape of a crucible, and further, by previously heating at about 1,200-2,000 deg.C, the structure of the crucible is formed into fine crystals. In this way, the crucible having >=about 180mm diameter and usable at high temp. (1,800 deg.C) can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属あるいは金属酸化物の溶融用るつぼに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crucible for melting metals or metal oxides.

(従来の技術) 従来からモリブデンを用いた溶融用るつぼとして次のも
のが知られている。
(Prior Art) The following are conventionally known as melting crucibles using molybdenum.

■ 純モリブデン粉末を用い、静水圧ラバープレスによ
ってるつぼ形状の圧粉体に成形し、この圧粉体を焼結し
て、焼結体とし、この焼結体を切削加工して得られる焼
結るつぼ。
■ Using pure molybdenum powder, it is molded into a crucible-shaped green compact using a hydrostatic rubber press, the green compact is sintered to form a sintered body, and this sintered body is cut into a sintered body. Crucible.

■ 純モリブデン粉末を用いて、静水圧ラバープレスに
よって圧粉体に成形し、この圧粉体を焼結して円柱状焼
結体を製造する。そして、この焼結体を鍛造した後、切
削加工によってるつぼ形状として得られる鍛造るつぼ。
(2) Using pure molybdenum powder, it is formed into a green compact using a hydrostatic rubber press, and the green compact is sintered to produce a cylindrical sintered body. After forging this sintered body, a forged crucible is obtained by cutting it into a crucible shape.

(発明が解決しようとする問題点) ところで、■の焼結るつぼは一般に高温における強度が
弱く、従って温度1500℃以上で使用され、かつ、径
が100m以上のものについては鍛造るつぼが用いられ
ている。
(Problems to be Solved by the Invention) Incidentally, the sintered crucible (2) generally has low strength at high temperatures, and therefore forged crucibles are used for crucibles that are used at temperatures of 1500°C or higher and have a diameter of 100 m or more. There is.

一方、■の鍛造るつぼの場合、純モリブデンを用いてい
るため、高温で使用中にモリブデン結晶粒が粗大化して
2粒界が脆化する。その結果、るつぼから溶融物が漏れ
、短時間で使用不可能となってしまうという問題点があ
る。さらに、大型のるつぼほど寿命が短く、大型のるつ
ぼ(径2001以上)を製造できないという問題点があ
る。
On the other hand, in the case of the forged crucible (2), since pure molybdenum is used, the molybdenum crystal grains become coarse and the two grain boundaries become brittle during use at high temperatures. As a result, there is a problem in that the melt leaks from the crucible and the crucible becomes unusable in a short period of time. Furthermore, there is a problem that larger crucibles have shorter lifespans, and larger crucibles (diameter of 200 mm or more) cannot be manufactured.

(問題点を解決するだめの手段) 本発明のモリブデンるつぼはアルミニウム、カリウム、
及びケイ素のうち少なくとも1つを0401乃至0.0
5重量パーセント含み、残部モリブデンよりなることを
特徴としている。また、このモリブデンるつぼの製造方
法はアルミニウム、カリウ・、及びケイ素のうち少なく
とも1つ蓄’0.05乃至0.5重量パーセント添加さ
れたモリブデン粉末を圧粉体に成形し、該圧粉体を焼結
して、アルミニウム、カリウム、スびケイ素のうち少な
くとも1つを0.01乃至0.05重量パーセント含む
焼結体とし、該焼結体を30パ一セント以上の鍛造率で
鍛造加工した後、るつぼ形状に加工し、さらに。
(Another means to solve the problem) The molybdenum crucible of the present invention contains aluminum, potassium,
and at least one of silicon from 0401 to 0.0
It is characterized by containing 5% by weight, with the remainder being molybdenum. In addition, this method for producing a molybdenum crucible involves forming molybdenum powder to which 0.05 to 0.5 weight percent of at least one of aluminum, potassium, and silicon is added into a green compact; Sintered to obtain a sintered body containing 0.01 to 0.05% by weight of at least one of aluminum, potassium, and silicon, and forged at a forging rate of 30% or more. After that, it is processed into a crucible shape and further.

予め1200乃至2000℃の温度で加熱するようにし
たことを特徴としている。
It is characterized in that it is heated in advance at a temperature of 1200 to 2000°C.

(実施例) 以下本発明について実施例によって説明する。(Example) The present invention will be explained below with reference to Examples.

(1)実施例1 酸化モリブデン(MOO2)に酸化アルミニウム(Az
203) 、酸化カリウム(K2O) 、及び二酸化ケ
イ素(SiO□)をそれぞれ0.01重量%、0.15
重量%。
(1) Example 1 Aluminum oxide (Az
203), potassium oxide (K2O), and silicon dioxide (SiO□) at 0.01% by weight and 0.15% by weight, respectively.
weight%.

及び0.20重量・2−セント(合計0.36重量%)
ドープし、とのドープ酸化モリブデンを水素雰囲気中で
還元し2粒径約3.0ミクロンのドープモリブデン粉末
を製造した。このドープモリブデン粉末を用いて、水圧
プレス(圧力1.2トン/、d’)によって円柱状の圧
粉体を成型する。この圧粉体を不活性ガス雰囲気中で温
度1800℃で10時間焼結し、径120 m X高さ
170+mの焼結体(焼結スラグ)を製造する。次にこ
の焼結スラグを鍛造率40%で鍛造の後、切削加工を行
い、外径160晒、厚さ10■、高さ60惰のるつぼを
製造し。
and 0.20w/2-cent (total 0.36wt%)
The doped molybdenum oxide was reduced in a hydrogen atmosphere to produce doped molybdenum powder having a particle size of about 3.0 microns. Using this doped molybdenum powder, a cylindrical green compact is molded by a hydraulic press (pressure: 1.2 tons/d'). This green compact is sintered in an inert gas atmosphere at a temperature of 1800° C. for 10 hours to produce a sintered body (sintered slag) with a diameter of 120 m and a height of 170+ m. Next, this sintered slag was forged at a forging rate of 40% and then cut to produce a crucible with an outer diameter of 160 mm, a thickness of 10 mm, and a height of 60 mm.

このるつぼを予め高周波炉で常温から温度1200℃ま
で加熱した後、瞬間的(5秒以内)に2000℃に加熱
しておく。そして、これを試料1とする。
This crucible is previously heated in a high frequency furnace from room temperature to 1200°C, and then instantaneously (within 5 seconds) to 2000°C. This is designated as sample 1.

一方、上述のドープモリブデン粉末から同様に外径16
0間、厚さ10 ff1I11+高さ60mのるつぼを
製造する。これを試料2とする。ただしこの試料2は予
め高周波炉で加熱されない。
On the other hand, from the above-mentioned doped molybdenum powder, an outer diameter of 16
A crucible with a thickness of 10 mm, a thickness of 10 mm, and a height of 60 meters is manufactured. This is designated as sample 2. However, this sample 2 was not heated in advance in a high frequency furnace.

さらに、酸化モリブデンを水素雰囲気中で還元し2粒径
約3.0ミクロンのモリブデン粉末を製造し、このモリ
ブデン粉末を用いて、水圧プレス(圧力1.2トン/c
rn2)によって円柱状の圧粉体を成型する。この圧粉
体を不活性ガス雰囲気中で温度1800℃で10時間焼
結し、径120m1IX高さ170瓢の焼結体(焼結ス
ラグ)を製造する。次にこの焼結スラグを鍛造率40%
で鍛造の後、切削加工を行い、外径160 rar 、
厚さ10 ttan 、高さ60−のるつぼを製造し、
これを試料3とする。
Furthermore, molybdenum oxide was reduced in a hydrogen atmosphere to produce molybdenum powder with a particle size of about 3.0 microns, and this molybdenum powder was used in a hydraulic press (pressure 1.2 tons/c).
rn2) to form a cylindrical green compact. This green compact is sintered in an inert gas atmosphere at a temperature of 1,800° C. for 10 hours to produce a sintered body (sintered slag) with a diameter of 120 m and a height of 170 mm. Next, this sintered slag is forged at a rate of 40%.
After forging, cutting is performed, and the outer diameter is 160 rar.
A crucible with a thickness of 10 ttan and a height of 60 mm is manufactured,
This is designated as sample 3.

上述の試料1,2.及び3のるつぼを温度2100℃で
50時間使用した後、結晶状態を調べた。この結果を第
1図(a)〜(C)に示す。試料1のるつぼの結晶粒は
第1図(−)に示すように極めて小さい。−方、試料2
のるつぼの結晶粒は第1図(b)に示すようにやや大き
く、試料3のるつぼの結晶粒は第1図(c)に示すよう
に極めて大きい。このように、試料1のるつぼは微結晶
構造であるから粒界からの溶融物の漏れを防止すること
ができる。
Samples 1 and 2 mentioned above. After using the crucibles No. 3 and 3 at a temperature of 2100° C. for 50 hours, the crystal state was examined. The results are shown in FIGS. 1(a) to (C). The crystal grains in the crucible of sample 1 are extremely small as shown in FIG. 1 (-). - side, sample 2
The crystal grains in the crucible of Sample 3 are somewhat large, as shown in FIG. 1(b), and the crystal grains in the crucible of Sample 3 are extremely large, as shown in FIG. 1(c). In this way, since the crucible of Sample 1 has a microcrystalline structure, leakage of melt from the grain boundaries can be prevented.

次に、上述のように、ドープモリブデン粉末を用いて焼
結体(焼結スラグ)を製造し、鍛造率を変化させて種々
のるつぼを製造し、これらるつぼの硬度を調べた。なお
、るつぼ製造後の加熱処理は行わず、鍛造率は20%、
30%、及び40チとした。
Next, as described above, a sintered body (sintered slag) was manufactured using the doped molybdenum powder, various crucibles were manufactured by changing the forging rate, and the hardness of these crucibles was examined. Note that no heat treatment was performed after producing the crucible, and the forging rate was 20%.
30% and 40 inches.

この結果を第2図に示す。第2図において、横軸はるつ
ぼ底部において一端を原点(ゼロ)として径方向にるつ
ぼ位置を長さで表わし、縦軸はビッカース(Hv)硬度
を示す。第2図に示すように鍛造率20%のるつぼ(−
点鎖線で示す)の場合。
The results are shown in FIG. In FIG. 2, the horizontal axis represents the crucible position in the radial direction with the origin (zero) at one end at the bottom of the crucible, and the vertical axis represents Vickers (Hv) hardness. As shown in Figure 2, a crucible with a forging rate of 20% (-
(indicated by the dot-dashed line).

るつぼ底部の中央部にビッカース硬度の低い部分が存在
する。つまシ、ドープ効果がそれほどない。
There is a region with low Vickers hardness in the center of the bottom of the crucible. Tsumashi, it doesn't have that much of a dope effect.

このるつぼ・を加熱すると、結晶構造が図示のように粗
大粒となってしまう。また、鍛造率30%のるつぼ(破
線で示す)の場合、同様にるつぼ底部の中央部がビッカ
ース硬度が低くなる(Hv140)が実用上問題はない
。一方、鍛造率40チのるつぼ(実線で示す)の場合、
るつぼ底部の中央部においてビッカース硬度が低くなる
ことはなく、中央部においてもビッカース硬度は320
である。
When this crucible is heated, the crystal structure becomes coarse grains as shown in the figure. Further, in the case of a crucible with a forging rate of 30% (indicated by a broken line), the Vickers hardness at the center of the bottom of the crucible is similarly low (Hv140), but there is no problem in practical use. On the other hand, in the case of a crucible with a forging rate of 40 cm (shown by the solid line),
The Vickers hardness does not decrease in the center of the bottom of the crucible, and even in the center the Vickers hardness is 320.
It is.

このように必要とするビッカース硬度を得るためには鍛
造率を30%以上とすることが必要であシ、望ましくは
鍛造率を40%以上とする。
In order to obtain the required Vickers hardness as described above, it is necessary to set the forging rate to 30% or more, and desirably the forging rate is 40% or more.

(2)実施例2 実施例1で使用した試料2及び試料3を用い。(2) Example 2 Sample 2 and Sample 3 used in Example 1 were used.

さらにモリブデン圧粉体を焼結して得た焼結スラグに切
削加工を行い、外径160 m 、厚さ10m。
Furthermore, the sintered slag obtained by sintering the molybdenum powder compact was cut into an outer diameter of 160 m and a thickness of 10 m.

高さ60調のるつぼを製造し、これ、を試料4として、
各試料2〜4のビッカース硬度(−)及び温度2200
℃で、50時間使用後の粒径を調べた。この結果を次の
表に示す。
A crucible with a height of 60 degrees was manufactured, and this was used as sample 4.
Vickers hardness (-) and temperature of each sample 2 to 4 2200
The particle size was determined after 50 hours of use at . The results are shown in the table below.

表に示すように試料2の場合、ビッカース硬度は210
〜230と高く、また、使用後の粒径も0、3〜0.5
ミクロンと極めて小さい。一方、試料3の場合、ビッカ
ース硬度は200と高いが、使用後の粒径が20〜60
ミクロンと大きく、また試料4の場合、ビッカース硬度
が120と低く。
As shown in the table, in the case of sample 2, the Vickers hardness is 210
~230, which is high, and the particle size after use is 0.3 ~ 0.5
Extremely small, microns. On the other hand, in the case of sample 3, the Vickers hardness is as high as 200, but the particle size after use is 20 to 60.
It is as large as microns, and in the case of sample 4, the Vickers hardness is as low as 120.

さらに使用後の粒径が1〜20ミクロンと大きい。Furthermore, the particle size after use is as large as 1 to 20 microns.

このように試料2の場合、ビッカース硬度1粒径ともに
従来のるつぼ(試料3及び4)よりも優れている。
As described above, Sample 2 is superior to the conventional crucibles (Samples 3 and 4) in terms of both Vickers hardness and grain size.

表 以下弦日 (4)実施例3 実施例1で使用した試料1.試料3.及び実施例2で使
用した試料4を多数個準備し、第3図に示すようにこれ
らるつぼ11をそれぞれアルゴンガス雰囲気の高周波炉
12に配置し、温度2000℃以上に加熱して、酸化ア
ルミニウム(At205)13を溶解して、各るつぼ(
試料)の寿命を調べた。
(4) Example 3 Sample 1 used in Example 1. Sample 3. A large number of samples 4 used in Example 2 were prepared, and each of these crucibles 11 was placed in a high frequency furnace 12 in an argon gas atmosphere as shown in FIG. At205)13 was dissolved in each crucible (
The lifespan of the sample) was investigated.

この結果を第4図に示す。この結果から理解できるよう
に、試料4の場合(−点鎖線で示す)。
The results are shown in FIG. As can be understood from this result, in the case of sample 4 (indicated by the - dotted chain line).

使用時間50時間で不良となる個数が最も多く。The highest number of defective products occurred after 50 hours of use.

使用時間100時間ですべてが不良となってしまう。ま
た、試料3の場合(破線で示す)、使用時間100時間
で不良となる個数が最も多く、最大の使用時間でも約2
40時間である。一方、試料1の場合(実線で示す)、
使用時間230時間で不良となる個数が最も多く、最大
約350時間まで使用可能である。
All of them became defective after 100 hours of use. In addition, in the case of sample 3 (indicated by the broken line), the number of defective pieces after 100 hours of use was the highest, and even at the maximum use time, about 2 pieces were defective.
It is 40 hours. On the other hand, in the case of sample 1 (shown by the solid line),
The highest number of defective products occurred after 230 hours of use, and the product can be used for up to about 350 hours.

上述の実施例では、酸化モリブデンにAt203゜K2
O,及び5i02をそれぞれ0.01重量%、0.15
重量%、及び0,20重量%ドープして、ドープモリブ
デン粉末を製造したが、 At203.に20.及びS
 iO2のうち少なくとも1つをドープし、ドープモリ
ブデン粉末中にAt、に、Siの合計量が0,05〜0
.5重量%含有され、さらに焼結体(焼結スラグ)ある
いはるつぼ中にAt、に、及びStの合計量が0.01
〜0.05重量%含有されるようにすればよい。
In the above example, At203°K2 was added to the molybdenum oxide.
0.01% by weight of O, and 5i02, 0.15% by weight, respectively
% by weight, and 0.20% by weight to produce doped molybdenum powder, At203. 20. and S
At least one of iO2 is doped, and the total amount of Si is 0.05 to 0 to At in the doped molybdenum powder.
.. 5% by weight, and the total amount of At, St, and St in the sintered body (sintered slag) or crucible is 0.01% by weight.
What is necessary is just to make it contain 0.05 weight%.

(発明の効果) 以上説明したように2本発明ではドープモリブデン粉を
用いて焼結した焼結体(焼結スラグ)を鍛造してるつぼ
を製造し、さらに予め熱処理を行って微細結晶としてい
るから、従来に比べて使用時間を大幅に延ばすことがで
きる。また、径が180mm以上のるつぼを高温(18
00℃)で使用することが可能である。
(Effects of the Invention) As explained above, in the present invention, a sintered body (sintered slag) sintered using doped molybdenum powder is forged to produce a crucible, and then heat-treated in advance to form fine crystals. Therefore, the usage time can be significantly extended compared to the conventional method. In addition, a crucible with a diameter of 180 mm or more can be heated to a high temperature (18
00°C).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)はるつぼの結晶構造を示す図、第
2図はるつぼの硬度(ビッカース硬度)分布を示す図、
第3図は高周波炉でのるつぼの加熱を示す図、第4図は
るつぼの寿命(使用時間)を示す図である。 11・・・るつぼ、12・・・高周波加熱炉、13・・
・酸化アルミニウム。 使用時間 (H)
Figures 1 (a) to (c) are diagrams showing the crystal structure of the crucible, Figure 2 is a diagram showing the hardness (Vickers hardness) distribution of the crucible,
FIG. 3 is a diagram showing the heating of the crucible in a high frequency furnace, and FIG. 4 is a diagram showing the life (usage time) of the crucible. 11... Crucible, 12... High frequency heating furnace, 13...
·Aluminum oxide. Usage time (H)

Claims (1)

【特許請求の範囲】 1 アルミニウム、カリウム、及びケイ素のうち少なく
とも1つを0.01乃至0.05重量パーセント含み、
残部モリブデンよりなるモリブデンるつぼ。 2 アルミニウム、カリウム、及びケイ素のうち少なく
とも1つが0.05乃至0.5重量パーセント添加され
たモリブデン粉末を圧粉体に成形し、該圧粉体を焼結し
て、アルミニウム、カリウム、及びケイ素のうち少なく
とも1つを0.01乃至0.05重量パーセント含む焼
結体とし、該焼結体を30パーセント以上の鍛造率で鍛
造加工した後、るつぼ形状に加工し、さらに、予め12
00乃至2000℃の温度で加熱するようにしたことを
特徴とするモリブデンるつぼの製造方法。
[Claims] 1 Contains 0.01 to 0.05 weight percent of at least one of aluminum, potassium, and silicon,
A molybdenum crucible made of molybdenum. 2 Molybdenum powder to which 0.05 to 0.5 weight percent of at least one of aluminum, potassium, and silicon is added is formed into a green compact, and the green compact is sintered to form aluminum, potassium, and silicon. A sintered body containing 0.01 to 0.05% by weight of at least one of the above is formed, and after the sintered body is forged at a forging rate of 30% or more, it is processed into a crucible shape, and further,
A method for producing a molybdenum crucible, characterized in that heating is performed at a temperature of 00 to 2000°C.
JP26150586A 1986-10-31 1986-10-31 Molybdenum crucible and its production Pending JPS63114935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26150586A JPS63114935A (en) 1986-10-31 1986-10-31 Molybdenum crucible and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26150586A JPS63114935A (en) 1986-10-31 1986-10-31 Molybdenum crucible and its production

Publications (1)

Publication Number Publication Date
JPS63114935A true JPS63114935A (en) 1988-05-19

Family

ID=17362837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26150586A Pending JPS63114935A (en) 1986-10-31 1986-10-31 Molybdenum crucible and its production

Country Status (1)

Country Link
JP (1) JPS63114935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163338A (en) * 1988-12-19 1990-06-22 Toshiba Corp Heat-resistant molybdenum
JPH04214836A (en) * 1990-02-01 1992-08-05 Patent Treuhand Ges Elektr Gluehlamp Mbh Molybdenum material
CN104907556A (en) * 2015-06-26 2015-09-16 广州宝狮无线供电技术有限公司 Molybdenum end cap used for magnetron pole assembly and production process thereof
JP2015187067A (en) * 2014-03-12 2015-10-29 株式会社アライドマテリアル Crucible and production method of single crystal sapphire using the same
JP6047643B1 (en) * 2015-09-17 2016-12-21 ルオヤン クーウェイ タングステン モリブデン カンパニー リミテッド Molding method of molybdenum crucible combining composite materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150070A (en) * 1983-02-10 1984-08-28 Toshiba Corp Manufacture of molybdenum material
JPS6075546A (en) * 1983-09-30 1985-04-27 Toshiba Corp Molybdenum material and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150070A (en) * 1983-02-10 1984-08-28 Toshiba Corp Manufacture of molybdenum material
JPS6075546A (en) * 1983-09-30 1985-04-27 Toshiba Corp Molybdenum material and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163338A (en) * 1988-12-19 1990-06-22 Toshiba Corp Heat-resistant molybdenum
JPH04214836A (en) * 1990-02-01 1992-08-05 Patent Treuhand Ges Elektr Gluehlamp Mbh Molybdenum material
JP2015187067A (en) * 2014-03-12 2015-10-29 株式会社アライドマテリアル Crucible and production method of single crystal sapphire using the same
CN104907556A (en) * 2015-06-26 2015-09-16 广州宝狮无线供电技术有限公司 Molybdenum end cap used for magnetron pole assembly and production process thereof
JP6047643B1 (en) * 2015-09-17 2016-12-21 ルオヤン クーウェイ タングステン モリブデン カンパニー リミテッド Molding method of molybdenum crucible combining composite materials
JP2017057466A (en) * 2015-09-17 2017-03-23 ルオヤン クーウェイ タングステン モリブデン カンパニー リミテッド Method for molding molybdenum crucible combined with composite material

Similar Documents

Publication Publication Date Title
JP2006249578A (en) Molybdenum alloy
CN110158042B (en) Molybdenum-niobium alloy rotary target material and preparation method thereof
JPH10236896A (en) Crucible for growing single crystal, its production and its use
RU1782229C (en) Method for making self-baring ceramic body
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
JPS63114935A (en) Molybdenum crucible and its production
RU2533225C2 (en) Production of nanostructured alloy based on modified tungsten carbide
WO2017146139A1 (en) Molybdenum crucible
JPS5935642A (en) Production of mo alloy ingot
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JPS63171847A (en) Molybdenum crucible and its production
US5693289A (en) Carbon or boron modified titanium silicide
JPS63192850A (en) Molybdenum plate and its production
JP2015517030A (en) Manufacturing method of oxide dispersion strengthened platinum-gold alloy
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JP7241983B2 (en) tungsten material
JPS6221066B2 (en)
JPS6048577B2 (en) Manufacturing method of reinforced Pt
JPS62275091A (en) Production of tungsten single crystal
JPH07242491A (en) Dispersion strengthening molybdenum single crystal and production thereof
JPH06220625A (en) Sputtering target stock and its production
CN114669620A (en) Sintering-bearing molybdenum plate for precision ceramic sintering and preparation process thereof
Finney et al. Long range ordered (LRO) superalloys
JPH01205054A (en) Molybdenum material and its production
CN117127075A (en) Preparation method of tungsten alloy doped with calcium oxide and magnesium oxide