JPH07242491A - Dispersion strengthening molybdenum single crystal and production thereof - Google Patents

Dispersion strengthening molybdenum single crystal and production thereof

Info

Publication number
JPH07242491A
JPH07242491A JP6054809A JP5480994A JPH07242491A JP H07242491 A JPH07242491 A JP H07242491A JP 6054809 A JP6054809 A JP 6054809A JP 5480994 A JP5480994 A JP 5480994A JP H07242491 A JPH07242491 A JP H07242491A
Authority
JP
Japan
Prior art keywords
molybdenum
single crystal
dispersion
weight
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6054809A
Other languages
Japanese (ja)
Other versions
JP2702669B2 (en
Inventor
Tadayuki Fujii
忠行 藤井
Kinichi Honda
均一 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP6054809A priority Critical patent/JP2702669B2/en
Publication of JPH07242491A publication Critical patent/JPH07242491A/en
Application granted granted Critical
Publication of JP2702669B2 publication Critical patent/JP2702669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To improve high temp. strength without recrystallization brittleness by annealing a molybdenum polycrystalline body contg. a rare earth metal oxide after forming. CONSTITUTION:Molybdenum oxide contg. 0.005-0.2wt.% rare earth metal oxide is press-compacted and sintered in a hydrogen atmosphere to obtain a molybdenum polycrystalline body contg. the rare earth metal oxide. This polycrystalline body is formed into a shape and annealed at 1,800-2,300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、分散強化型モリブデ
ン単結晶とその製造方法に関するものである。さらに詳
しくは、この発明は、原子炉や核融合炉などの炉材、セ
ラミック焼成用敷板やウラン還元用敷板、発熱体、ボー
ト、ルツボなどの容器などに用いられる耐熱性材料とし
て有用な、分散強化型モリブデン単結晶とその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion strengthened molybdenum single crystal and a method for producing the same. More specifically, the present invention is useful as a heat-resistant material used for furnace materials such as nuclear reactors and nuclear fusion reactors, ceramic firing floor plates and uranium reduction floor plates, heating elements, boats, vessels such as crucibles, and the like. The present invention relates to a reinforced molybdenum single crystal and a method for manufacturing the same.

【従来の技術とその課題】従来から原子炉や核融合炉な
どの炉材、セラミック焼成用敷板やウラン還元用敷板、
発熱体、ボート、ルツボなどの容器などに用いられてい
る耐熱性材料については、近年、さらに高温強度に優れ
た材料が求められており、このような耐熱性材料のひと
つとして、モリブデン耐熱材料が知られている。この高
温強度に優れたモリブデン耐熱材料としては、K2 O,
SiO2 ,Al2 3 ,ZrO2 、または、希土類酸化
物をモリブデンに単独添加または複合添加し、適量分散
させた分散強化型のモリブデン多結晶材料が知られてい
る。しかしながら、分散型強化型モリブデン多結晶材料
は、その結晶粒界の脆弱性、成形加工性および耐垂下性
(クリープ特性)の点において、必ずしも、実用的に満
足できるものではなかった。それと言うのも、分散強化
型モリブデン多結晶材料の場合には結晶粒界が脆弱であ
り、また、分散微粒子が結晶粒界に偏析しやすいため
に、室温近傍下での成形加工性が極めて悪く、またさら
に、高温使用時における、結晶粒の粗大化および分散微
粒子の結晶粒界偏析の促進作用に伴うなどの金属組織学
的変化により、再結晶脆性に起因した耐垂下性(クリー
プ特性)が著しく減少するからである。このように、分
散強化型モリブデン多結晶材料は、耐熱材料に適した材
料であるものの、その特性を充分に発揮することができ
ず、用途もきわめて限られているのが現状である。そこ
で、最近になって、このようなモリブデン多結晶材料に
対して、延性脆性遷移温度の低下、再結晶脆性の皆無、
クリープ、垂下性特性などの高温特性の向上、溶融状態
まで金属組織の無変化、耐腐食性、溶接および接合性の
向上を実現することが可能であると思われるモリブデン
単結晶材料が注目され、これまでの検討の結果からも、
結晶粒界がなく、微粒子が均一に分散した状態で、しか
も任意形状に成形加工後においても、それらの状態が維
持できるものと考えられている。しかしながら、この分
散強化型モリブデン単結晶材料を実際に製造することは
容易ではない。従来からモリブデンなどの高融点金属材
料の単結晶製造法は、帯溶融法などによって作成が可能
であるが、異相微粒子を添加して作成される分散型モリ
ブデン単結晶の場合には、溶融時の結晶育成段階で、分
散微粒子の偏析、分解溶融が生じるため、その製造は実
際には不可能と考えられている。また、たとえその作成
が可能であっても、単結晶の規模、形状などが制約さ
れ、さらに製造技術に熟練を要するという問題がある。
この発明は以上の通りの事情に鑑みてなされたものであ
り、従来の分散強化型モリブデン単結晶技術の欠点を解
消し、添加した異相微粒子が均一に分散された、任意形
状を有する分散強化型単結晶とその製造方法を提供する
ことを目的としている。
2. Description of the Related Art Reactor materials such as nuclear reactors and nuclear fusion reactors, ceramic baking sheets and uranium reducing floor sheets,
Regarding heat-resistant materials used in heating elements, boats, crucibles, and other containers, in recent years, materials with even higher high-temperature strength have been sought, and molybdenum heat-resistant materials are one of such heat-resistant materials. Are known. As the molybdenum heat-resistant material excellent in high temperature strength, K 2 O,
A dispersion-strengthening type molybdenum polycrystalline material is known in which SiO 2 , Al 2 O 3 , ZrO 2 , or a rare earth oxide is added to molybdenum alone or in combination, and dispersed in an appropriate amount. However, the dispersion-strengthening-type molybdenum polycrystalline material is not always practically satisfactory in terms of brittleness of the crystal grain boundary, moldability and droop resistance (creep property). This is because in the case of dispersion-strengthened molybdenum polycrystalline material, the crystal grain boundaries are fragile, and since dispersed fine particles are easily segregated at the crystal grain boundaries, the moldability at room temperature is extremely poor. Furthermore, the droop resistance (creep property) due to recrystallization embrittlement is caused by metallographic changes such as coarsening of crystal grains and promotion of grain boundary segregation of dispersed fine particles at high temperature use. This is because it is significantly reduced. As described above, although the dispersion-strengthening type molybdenum polycrystalline material is a material suitable for a heat-resistant material, it is not possible to sufficiently exhibit its characteristics, and its application is extremely limited under the present circumstances. Therefore, recently, with respect to such a molybdenum polycrystalline material, there is no decrease in ductile brittle transition temperature, no recrystallization brittleness,
Molybdenum single crystal materials, which are believed to be capable of improving high-temperature characteristics such as creep and drooping characteristics, no change in metal structure up to the molten state, corrosion resistance, and improved weldability and bondability, have attracted attention. From the results of the examination so far,
It is considered that these states can be maintained in a state in which there are no crystal grain boundaries and the fine particles are uniformly dispersed, and even after molding into an arbitrary shape. However, it is not easy to actually manufacture this dispersion-strengthened molybdenum single crystal material. Conventionally, a method for producing a single crystal of a refractory metal material such as molybdenum can be produced by a zone melting method, but in the case of a dispersion type molybdenum single crystal produced by adding different phase fine particles, In the crystal growth stage, segregation of dispersed fine particles and decomposition and melting occur, so that it is considered impossible to manufacture them in practice. Further, even if it can be produced, there is a problem that the scale, shape, etc. of the single crystal are limited, and that the manufacturing technique requires skill.
The present invention has been made in view of the above circumstances, eliminates the drawbacks of the conventional dispersion-strengthening type molybdenum single crystal technology, the added heterophase fine particles are uniformly dispersed, dispersion-strengthening type having an arbitrary shape It is intended to provide a single crystal and a manufacturing method thereof.

【課題を解決するための手段】この発明は上記の課題を
解決するものとして、モリブデンに希土類酸化物が、
0.005重量%〜0.2重量%含有されていることを
特徴とする分散強化型モリブデン単結晶を提供する。さ
らにこの発明は、希土類酸化物を0.005重量%〜
0.2重量%含有するモリブデン多結晶体を、あらかじ
め定められた形状の成形体に加工し、その成形体を焼鈍
してなる分散強化型モリブデン単結晶の製造方法をも提
供する。
Means for Solving the Problems In order to solve the above problems, the present invention provides molybdenum with a rare earth oxide,
Disclosed is a dispersion-strengthened molybdenum single crystal characterized by containing 0.005% by weight to 0.2% by weight. Furthermore, the present invention is based on 0.005% by weight of rare earth oxide.
Also provided is a method for producing a dispersion-strengthened molybdenum single crystal obtained by processing a molybdenum polycrystal containing 0.2% by weight into a molded body having a predetermined shape and annealing the molded body.

【作用】この発明は、上記の通り、これまでに実現され
てこなかった希土類酸化物微粒子が均一に分散された分
散強化型モリブデン単結晶を提供するものであるが、こ
のモリブデン単結晶は、希土類酸化物の含有割合を0.
005〜0.2重量%の特定範囲に限定し、かつ、成形
後に焼鈍することによって製造可能とされている。この
焼鈍は、単結晶の結晶成長において欠かせない工程であ
る。すなわち、この発明の分散強化型モリブデン単結晶
の製造過程での結晶粒成長では、高温焼鈍過程で生じる
正常結晶粒成長を分散微粒子により抑制させることによ
り特定優先方位の結晶粒が急激に成長し結果として異常
結晶粒成長が生じたものと考えられる。なお、この発明
で規定するところの「単結晶」は、材料すべてが1つの
結晶粒で覆われた状態を意味している。この「単結
晶」、すなわち希土類酸化物を0.005〜0.2重量
%含有する分散強化型モリブデン単結晶においては、そ
の含有量が0.005重量%未満の場合には、結晶粒界
の少ない、または皆無の粗粒もしくは単結晶とすること
が難しく、また、0.2重量%を超える場合には、細粒
化して単結晶になりにくい。このため、特有の希土類酸
化物含有割合を有するこの発明のモリブデン単結晶によ
り、再結晶脆化を引き起こすことなく、高温強度に優れ
た高強度耐熱材料が実現されることになる。希土類酸化
物としては、La,Sm,Ce,Nd,Y,Tb,E
r,Pr等の各種のものが考慮されるが、なかでもLa
(ランタン)酸化物は、分散強化型モリブデン単結晶の
製造に好適でもある。以下実施例を示し、さらに詳しく
この発明について説明する。
As described above, the present invention provides a dispersion-strengthened molybdenum single crystal in which rare earth oxide fine particles, which have not been realized so far, are uniformly dispersed. Oxide content ratio is 0.
It can be produced by limiting the content to a specific range of 005 to 0.2% by weight and annealing after forming. This annealing is an indispensable step in the crystal growth of a single crystal. That is, in the crystal grain growth in the manufacturing process of the dispersion-strengthened molybdenum single crystal of the present invention, by suppressing the normal crystal grain growth that occurs in the high temperature annealing process by the dispersed fine particles, the crystal grains of a specific preferential orientation rapidly grow It is considered that abnormal grain growth occurred. The "single crystal" defined in the present invention means a state in which all the materials are covered with one crystal grain. In this "single crystal", that is, in the dispersion strengthened molybdenum single crystal containing 0.005 to 0.2% by weight of the rare earth oxide, when the content is less than 0.005% by weight, the grain boundary It is difficult to make coarse particles or single crystals with few or no particles, and when it exceeds 0.2% by weight, it is difficult to make fine particles into single crystals. Therefore, the molybdenum single crystal of the present invention having a unique rare earth oxide content ratio can realize a high-strength heat-resistant material excellent in high-temperature strength without causing recrystallization embrittlement. Examples of rare earth oxides include La, Sm, Ce, Nd, Y, Tb, and E.
Various materials such as r and Pr are considered, but La
The (lanthanum) oxide is also suitable for the production of dispersion-strengthened molybdenum single crystals. The present invention will be described in more detail with reference to the following examples.

【実施例】実施例1〜5 モリブデン酸化物の粉末に希土類酸化物として、ランタ
ン酸化物を、0.005重量%〜0.2重量%の割合で
添加し、よく混合した後、粉末冶金法を用いて金属粉末
とした。この金属粉末を圧力3ton/cm2 でプレス
成形した後、温度1800℃〜2100℃の水素雰囲気
中で10時間焼結して多結晶体を作成した。さらにこの
焼結体に熱間加工(温度1300〜1700℃)および
温間加工(1100℃〜600℃)を施し、最終の圧延
率が70%〜95%の範囲で1〜2mm(厚さ)×30
mm(幅)×150mm(長さ)の標準板状試料を作成
した。この際、圧延方法として、ランタン酸化物が微細
に均一分散させることを考慮して圧下率を2〜3%ごと
にクロス圧延(交差圧延)を施した。次にこの標準板状
試料を温度1800℃〜2300℃のあらかじめ定めら
れた雰囲気で5時間焼鈍を行なった。焼鈍の際、180
0℃まで急熱昇温し、上記温度に保持した後、徐冷し
た。また、比較のために、ランタン酸化物を0.001
〜0.003重量%、0.500〜1.000重量%添
加して同様にして比較試料を作成した。以上の各試料に
ついてのそのときのランタン酸化物の添加量と結晶状態
との関係は表1に示す通りであった。
EXAMPLES Examples 1 to 5 Lanthanum oxide as a rare earth oxide was added to the powder of molybdenum oxide in a proportion of 0.005% by weight to 0.2% by weight and mixed well, followed by powder metallurgy. Was used as a metal powder. This metal powder was press-molded at a pressure of 3 ton / cm 2 and then sintered in a hydrogen atmosphere at a temperature of 1800 ° C. to 2100 ° C. for 10 hours to form a polycrystalline body. Further, this sintered body is subjected to hot working (temperature 1300 to 1700 ° C.) and warm working (1100 ° C. to 600 ° C.), and a final rolling rate of 70% to 95% in a range of 1 to 2 mm (thickness). × 30
A standard plate sample having a size of mm (width) × 150 mm (length) was prepared. At this time, as a rolling method, cross rolling (cross rolling) was performed at a rolling reduction rate of 2 to 3% in consideration of finely uniformly dispersing the lanthanum oxide. Next, this standard plate sample was annealed in a predetermined atmosphere at a temperature of 1800 ° C. to 2300 ° C. for 5 hours. 180 when annealed
The temperature was rapidly raised to 0 ° C., maintained at the above temperature, and then gradually cooled. For comparison, lanthanum oxide was added to 0.001
.About.0.003% by weight and 0.500 to 1.000% by weight were added to prepare comparative samples in the same manner. The relationship between the amount of lanthanum oxide added and the crystalline state for each of the above samples was as shown in Table 1.

【表1】 表中の細粒とは平均結晶粒径が5mm以下の結晶の状態
を示し、粗粒とは平均結晶粒径が5〜20mmの結晶状
態を示し、単結晶とはこの標準板材のすべてが、1つの
結晶粒である結晶状態を示している。表1から明らかな
ように、ランタン酸化物の添加量、0.001および
0.003重量%とした比較例1および2、ランタン酸
化物の添加量、0.5および1.0重量%とした比較例
3および4の場合には、細粒または粗粒からなる結晶粒
で覆われた結晶状態である標準試料が得られた。一方、
ランタン酸化物の添加量が0.005〜0.2重量%の
範囲であるこの発明の実施例1〜5では、標準板状試料
のすべてがひとつの結晶粒で覆われた結晶状態である単
結晶が作成された。ランタン酸化物を0.005重量%
〜0.2重量%含有したこの発明の実施例1〜5の分散
強化型モリブデン単結晶試料に対して、その結晶状態を
X線回折およびマクロ腐食により調べたところ、亜粒界
を含むことなく結晶性の優れた単結晶であることが確認
された。またさらに、この発明の実施例1〜5の試料に
ついてランタン酸化物の結晶状態を電子顕微鏡により観
察したところ、1〜5μmの粒径からなる微粒子の形態
でモリブデン単結晶中に均一に分散していることが確認
された。図1は、La2 3 添加の分散強化型モリブデ
ン単結晶(b)と、La2 30.001%以下の細粒
状態(a)とを示したものである。また、図2は、上記
単結晶(b)の板面についてのX線ラウエ回折像を示し
たものである。単結晶であることが示されている。これ
らの結果から、この発明の実施例1〜5の試料は分散強
化型モリブデン単結晶であることが確認された。また、
この発明の試料は室温以下の延性脆性遷移温度を有し、
高温においては再結晶脆性を引き起こすことなく、高温
強度および耐垂下性を有する信頼性に富んだ材料である
ことが確認された。
[Table 1] The fine grains in the table indicate the state of crystals having an average crystal grain size of 5 mm or less, the coarse grains indicate the state of crystals having an average crystal grain size of 5 to 20 mm, and the single crystal refers to all of this standard plate material. It shows a crystal state that is one crystal grain. As is clear from Table 1, Comparative Examples 1 and 2 in which the amount of lanthanum oxide added was 0.001 and 0.003% by weight, and the amount of lanthanum oxide added was 0.5 and 1.0% by weight. In the case of Comparative Examples 3 and 4, a standard sample in a crystalline state covered with crystal grains composed of fine grains or coarse grains was obtained. on the other hand,
In Examples 1 to 5 of the present invention in which the amount of lanthanum oxide added was in the range of 0.005 to 0.2% by weight, all of the standard plate-like samples were in a crystalline state covered with one crystal grain. A crystal was created. 0.005% by weight of lanthanum oxide
.About.0.2% by weight of the dispersion strengthened molybdenum single crystal samples of Examples 1 to 5 of the present invention, the crystal state was examined by X-ray diffraction and macro corrosion. It was confirmed to be a single crystal with excellent crystallinity. Furthermore, when the crystalline states of the lanthanum oxides of the samples of Examples 1 to 5 of the present invention were observed by an electron microscope, they were uniformly dispersed in the molybdenum single crystal in the form of fine particles having a particle size of 1 to 5 μm. Was confirmed. FIG. 1 shows a dispersion-strengthened molybdenum single crystal (b) with La 2 O 3 added and a fine-grain state (a) in which La 2 O 3 is 0.001% or less. Further, FIG. 2 shows an X-ray Laue diffraction image of the plate surface of the single crystal (b). It has been shown to be a single crystal. From these results, it was confirmed that the samples of Examples 1 to 5 of the present invention were dispersion strengthened molybdenum single crystals. Also,
The samples of this invention have a ductile brittle transition temperature below room temperature,
It was confirmed that it is a highly reliable material having high temperature strength and droop resistance without causing recrystallization brittleness at high temperatures.

【発明の効果】以上詳しく説明したように、この発明に
おいては、ランタン酸化物に代表される希土類酸化物を
0.005重量%〜0.2重量%含むモリブデン圧粉体
を焼結させて、所定の形状に加工した後、焼鈍させるこ
とにより、結晶粒界がなく、ランタン酸化物が均一にモ
リブデン結晶中に析出した実用規模の分散強化型モリブ
デン単結晶をきわめて容易に得ることが可能となる。こ
の分散強化型モリブデン単結晶は、高温状態において金
属組織変化および粒界スベリがないため再結晶脆化を引
き起こすことがなく、その結果、高温強度に優れ、機械
的に破損することなく、原子炉や核融合などの炉材、セ
ラミック焼成用敷板やウラン還元用敷板、発熱体、ボー
ト、ルツボなどの容器などに用いられる耐熱性材料とし
て広範囲に使用可能となる。
As described above in detail, in the present invention, a molybdenum green compact containing 0.005 wt% to 0.2 wt% of a rare earth oxide typified by lanthanum oxide is sintered, By processing into a prescribed shape and annealing, it is possible to obtain a dispersion-strengthened molybdenum single crystal on a practical scale that has no grain boundaries and in which molybdenum crystals are uniformly deposited with lanthanum oxide. . This dispersion-strengthened molybdenum single crystal does not cause recrystallization embrittlement because there is no metallographic change and grain boundary sliding at high temperatures, and as a result, it has excellent high-temperature strength and is not mechanically damaged. It can be widely used as a heat-resistant material used in furnace materials for nuclear fusion and the like, ceramic firing floor plates and uranium reduction floor plates, heating elements, vessels such as boats and crucibles.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)は、各々、細粒状態と単結晶状態
とを示した図面に代わる写真である。
1 (a) and 1 (b) are photographs replaced with drawings showing a fine grain state and a single crystal state, respectively.

【図2】単結晶のX線ラウエ回折像を示した図面に代わ
る写真である。
FIG. 2 is a photograph replacing a drawing showing an X-ray Laue diffraction image of a single crystal.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月28日[Submission date] July 28, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)は、各々、細粒状態と単結晶状態
の金属組織を表わした図面に代わる写真である。
1 (a) and 1 (b) are photographs replaced with drawings showing a metal structure in a fine grain state and a single crystal state, respectively.

【図2】単結晶のX線ラウエ回折像を示した図面に代わ
るX線写真である。
FIG. 2 is an X-ray photograph replacing a drawing showing an X-ray Laue diffraction image of a single crystal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 11/00 C 15/10 F27D 3/12 S G21C 13/08 8908−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C30B 11/00 C 15/10 F27D 3/12 S G21C 13/08 8908-2G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 モリブデンに希土類酸化物が、0.00
5重量%〜0.2重量%含有されていることを特徴とす
る分散強化型モリブデン単結晶。
1. A rare earth oxide is added to molybdenum in an amount of 0.00
Dispersion-strengthened molybdenum single crystal characterized by being contained in an amount of 5% by weight to 0.2% by weight.
【請求項2】 モリブデンにランタン酸化物が、0.0
05重量%〜0.2重量%含有されている請求項1の分
散強化型モリブデン単結晶。
2. Molybdenum containing lanthanum oxide is 0.0
The dispersion-strengthened molybdenum single crystal according to claim 1, which is contained in an amount of 05% by weight to 0.2% by weight.
【請求項3】 希土類酸化物を0.005重量%〜0.
2重量%含有するモリブデン多結晶体を、所定形状の成
形体に加工し、その成形体を焼鈍することを特徴とする
分散強化型モリブデン単結晶の製造方法。
3. A rare earth oxide in an amount of 0.005% by weight to 0.
A method for producing a dispersion-strengthened molybdenum single crystal, which comprises processing a molybdenum polycrystal containing 2% by weight into a molded body having a predetermined shape and annealing the molded body.
【請求項4】 希土類酸化物がランタン酸化物からなる
請求項3の分散強化型モリブデン単結晶の製造方法。
4. The method for producing a dispersion-strengthened molybdenum single crystal according to claim 3, wherein the rare earth oxide is lanthanum oxide.
JP6054809A 1994-03-02 1994-03-02 Dispersion-strengthened molybdenum single crystal and method for producing the same Expired - Lifetime JP2702669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6054809A JP2702669B2 (en) 1994-03-02 1994-03-02 Dispersion-strengthened molybdenum single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6054809A JP2702669B2 (en) 1994-03-02 1994-03-02 Dispersion-strengthened molybdenum single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07242491A true JPH07242491A (en) 1995-09-19
JP2702669B2 JP2702669B2 (en) 1998-01-21

Family

ID=12981056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6054809A Expired - Lifetime JP2702669B2 (en) 1994-03-02 1994-03-02 Dispersion-strengthened molybdenum single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP2702669B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297485C (en) * 2004-12-16 2007-01-31 西安交通大学 Preparation of rare earth ammonium bimolybdate
FR2892184A1 (en) * 2005-10-19 2007-04-20 Cogema TRANSPORT SHOE FOR SINTERING NUCLEAR FUEL PELLETS, METHOD OF MANUFACTURING SUCH SABOT, AND SINKING PROCESS USING SUCH SABOT
CN111560551A (en) * 2019-06-10 2020-08-21 中国兵器工业第五九研究所 Preparation method of high-compactness special-shaped molybdenum-based composite material part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197839A (en) * 1984-03-22 1985-10-07 Toshiba Corp Jig for sintering ceramics and its production
JPH02251085A (en) * 1989-03-23 1990-10-08 Tokyo Tungsten Co Ltd Molybdenum single crystal crucible and manufacture of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197839A (en) * 1984-03-22 1985-10-07 Toshiba Corp Jig for sintering ceramics and its production
JPH02251085A (en) * 1989-03-23 1990-10-08 Tokyo Tungsten Co Ltd Molybdenum single crystal crucible and manufacture of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297485C (en) * 2004-12-16 2007-01-31 西安交通大学 Preparation of rare earth ammonium bimolybdate
FR2892184A1 (en) * 2005-10-19 2007-04-20 Cogema TRANSPORT SHOE FOR SINTERING NUCLEAR FUEL PELLETS, METHOD OF MANUFACTURING SUCH SABOT, AND SINKING PROCESS USING SUCH SABOT
WO2007045647A3 (en) * 2005-10-19 2007-06-07 Cogema Transport shoe for sintering nuclear fuel pallets, method for producing said shoe and a sintering method using the shoe
CN111560551A (en) * 2019-06-10 2020-08-21 中国兵器工业第五九研究所 Preparation method of high-compactness special-shaped molybdenum-based composite material part
CN111560551B (en) * 2019-06-10 2021-05-18 中国兵器工业第五九研究所 Preparation method of high-compactness special-shaped molybdenum-based composite material part

Also Published As

Publication number Publication date
JP2702669B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
EP1295954B1 (en) Platinum material reinforced by oxide dispersion and process for producing the same
JP4659278B2 (en) Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof
US4491560A (en) Large crystal grains or single crystals of molybdenum and process for production thereof
EP0261063B1 (en) Method for producing self-supporting ceramic bodies with graded properties
JP5160660B2 (en) Molybdenum material
JP2702669B2 (en) Dispersion-strengthened molybdenum single crystal and method for producing the same
JP2535774B2 (en) Precipitation strengthened molybdenum single crystal and method for producing the same
CN116607049A (en) Light titanium-based high-entropy alloy and performance optimization method thereof
JPS6033335A (en) Heat resistant molybdenum material
JP3625928B2 (en) Method for producing Ta / Si based sintered alloy
US3285736A (en) Powder metallurgical alloy
JPS63171847A (en) Molybdenum crucible and its production
JPH11152534A (en) Tungsten sheet and its production
JPS59116356A (en) Molybdenum alloy
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
JP3803479B2 (en) Heat-resistant platinum material
JPS6048577B2 (en) Manufacturing method of reinforced Pt
JPH06128604A (en) Production of metallic material
JPH0641622B2 (en) Molybdenum plate and manufacturing method thereof
JP3385552B2 (en) Molybdenum material and manufacturing method thereof
JPH0310042A (en) Heat resistant high temperature high strength molybdenum material and its manufacture
JP3395042B2 (en) Mo alloy single crystal and method for producing the same
JPH0119458B2 (en)
CN118147502A (en) High-hardness niobium alloy and preparation method thereof
JP2003342079A (en) Process for molding heat-shrinkable ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term