JPS63114144A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63114144A
JPS63114144A JP25851386A JP25851386A JPS63114144A JP S63114144 A JPS63114144 A JP S63114144A JP 25851386 A JP25851386 A JP 25851386A JP 25851386 A JP25851386 A JP 25851386A JP S63114144 A JPS63114144 A JP S63114144A
Authority
JP
Japan
Prior art keywords
crystal
wiring
insulator layer
grain boundaries
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25851386A
Other languages
Japanese (ja)
Other versions
JP2577363B2 (en
Inventor
Shohei Shima
昇平 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61258513A priority Critical patent/JP2577363B2/en
Publication of JPS63114144A publication Critical patent/JPS63114144A/en
Application granted granted Critical
Publication of JP2577363B2 publication Critical patent/JP2577363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To decrease crystal grain boundaries having a large number of defects existing in a metallic wiring, and to improve the reliability of the metallic wiring by previously arranging and forming a plurality of fine grooves in parallel to each other to the surface of an insulator layer before shaping a metallic wiring layer. CONSTITUTION:A plurality of fine grooves 13 are disposed and shaped in parallel to each other to the surface of a insulator layer 12, and an Al film 14 is formed onto the insulator layer 12 through a sputtering method. When a semiconductor substrate is heated during sputtering at that time, an effect that surface mobility is increased is displayed at a time when sputtering Al atoms are shaped onto the insulator layer, and a crystal orientation is made easy to be further aligned. Accordingly, since separate crystal grain constituting a metallic wiring layer mutually has approximately the same crystal orientation, there hardly exist crystal defects on the crystal grain boundaries, and the wiring approximately close to a single crystal can be formed, thus preventing the generation of defective such as stress migration, then improving the reliability of the wiring.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、半導体装置の製造方法に係わり、特に金属配
線層の改良をはかった半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device in which a metal wiring layer is improved.

(従来の技術) 近年、半導体装置の高集積化を目的とした半導体素子寸
法の微細化が進められており、1[μmコ以下のサブミ
クロン寸法の素子が現実のものとなっている。素子間の
金属配線としては、アルミニウム(17’)が最も一般
的に使用されている。AI配線は、成膜加工の容品さ、
低抵抗性。
(Prior Art) In recent years, the dimensions of semiconductor elements have been miniaturized for the purpose of increasing the integration of semiconductor devices, and elements with submicron dimensions of 1 μm or less have become a reality. Aluminum (17') is most commonly used as metal wiring between elements. AI wiring depends on the quality of the film forming process,
Low resistance.

Siとのコンタクト形成が容易等の多くの利点ををして
いるからである。一方、A、f’配線には、ヒロックが
成長し易い、エレクトロマイグレーションに弱い、スト
レスに弱い等の欠点もあり、1[μm]以下のサブミク
ロン幅の配線として用いるには多くの未解決の問題点が
ある。
This is because it has many advantages such as easy formation of contact with Si. On the other hand, A and f' wirings have drawbacks such as easy growth of hillocks, weakness to electromigration, and weakness to stress, and there are many unresolved problems in using them as wiring with a submicron width of 1 [μm] or less. There is a problem.

そこで最近、AIの代りにタングステン(W)。Recently, tungsten (W) has been used instead of AI.

モリブデン(MO)等の高融点金属を配線として用いる
試みがなされている。高融点金属配線は、ヒロックやエ
レクトロマイグレーション等に強く、AIと比較して高
い信頼性を有する。しかしながら、サブミクロン幅の配
線では、配線抵抗が高いと云う欠点の他に、パッシベー
ション絶縁層と熱膨張率が1桁程異なるために、配線幅
が細くなると配線金属に加わる応力が大きくなり、スト
レスによる断線不良の発生が懸念される。
Attempts have been made to use high melting point metals such as molybdenum (MO) as wiring. High melting point metal wiring is resistant to hillocks, electromigration, etc., and has higher reliability than AI. However, in addition to the drawback of high interconnect resistance, submicron-width interconnects have a coefficient of thermal expansion that is about an order of magnitude different from that of the passivation insulating layer, so as the interconnect width becomes thinner, the stress applied to the interconnect metal increases, causing stress. There is a concern that wire breakage may occur.

以上述べてきた金属配線の信頼性上の諸問題は、次に述
べる現象が原因であると考えられている。
The various reliability problems of metal wiring described above are thought to be caused by the following phenomenon.

A、f?、W、Mo等の金属配線は、スパッタや蒸着等
の方法で形成されているが、このようにして形成された
金属膜は多数の微細な結晶粒からなる多結晶構造を示す
。従って、多結晶構造である金属膜から形成した配線に
は、第4図に示す如く個々の結晶粒41間に結晶粒界4
2が存在する。結晶粒界には転位や積層欠陥、ボイド等
の結晶欠陥が多く存在しており、結晶粒界は構成する金
属原子の拡散経路としての役目を果たしている。金属配
線におけるヒロック、エレクトロマイグレーション、ス
トレスマイグレーション等の信頼性上の問題点は、全て
この結晶粒界の存在が原因と言っても過言ではない(文
献 “Th1n  Films  −!ntcrdil
’(’usions and Reactions ’
 、 Edited byPoate、 J、M、、T
u、に、n、and Mayer、J、M、 John
 Wlley(1987) )。
A, f? , W, Mo, etc. are formed by methods such as sputtering and vapor deposition, and the metal films formed in this way exhibit a polycrystalline structure consisting of many fine crystal grains. Therefore, in wiring formed from a metal film having a polycrystalline structure, grain boundaries 4 are formed between individual crystal grains 41 as shown in FIG.
2 exists. Many crystal defects such as dislocations, stacking faults, and voids exist in the grain boundaries, and the grain boundaries serve as diffusion paths for the constituent metal atoms. It is no exaggeration to say that reliability problems such as hillocks, electromigration, and stress migration in metal wiring are all caused by the existence of these grain boundaries (Reference “Th1n Films -!ntcrdil
'('usions and Reactions'
, Edited by Poate, J.M.,T.
u, ni, n, and mayer, j, m, john
Willey (1987)).

従って、これら信頼性上の問題点を解決するためには、
結晶粒界のない単結晶金属配線を形成することが望まし
い。しかしながら、スパッタや蒸着法等によってLSI
チップのサイズ(10+u+2前後)全体に亙って単結
晶金属膜を形成することは非常に困難である。例えば、
スパッタAノ膜の場合では、現在、膜形成速度が大きい
(1μm/m1nt)ために、粒径が数[μ77Z]と
比較的大きな多結晶膜を形成でき、しかも第5図(a)
に示す如く基板面に平行な面が[1111面で揃った優
先方位を持っている。なお、図中43は結晶方位の揃っ
た結晶粒、44は結晶方位の大きく異なった結晶粒、4
5は下地絶縁物層を示している。しかし、第5図(b)
に示す如く面内では方位がお互いにバラライでおり、し
かも一部には必ず大きく異なった方位の結晶粒が存在し
ている。
Therefore, in order to solve these reliability problems,
It is desirable to form single crystal metal interconnects without grain boundaries. However, using sputtering, vapor deposition, etc., LSI
It is extremely difficult to form a single crystal metal film over the entire size of the chip (approximately 10+u+2). for example,
In the case of the sputtered A film, since the film formation rate is currently high (1 μm/m 1 nt), it is possible to form a relatively large polycrystalline film with a grain size of several [μ77Z], and moreover, as shown in Fig. 5(a).
As shown in the figure, the planes parallel to the substrate surface have a preferred orientation aligned with the [1111 plane. In the figure, 43 indicates crystal grains with uniform crystal orientation, 44 indicates crystal grains with greatly different crystal orientations, and 4 indicates crystal grains with substantially different crystal orientations.
5 indicates a base insulating layer. However, Fig. 5(b)
As shown in the figure, the orientations vary within the plane, and moreover, there are always crystal grains with greatly different orientations in some parts.

このように配線内部には異種方位を持つ結晶粒が少なか
らず存在しているため、このような箇所から配線不良が
発生し易い。なお、以上述べてきた互いに異なる方位を
持つ結晶粒が必ず存在するのは、下地絶縁膜上にAノ膜
が成長するt月切過程で、既に異なる方位を持つ微小結
晶粒が成長するためである。
As described above, since a considerable number of crystal grains having different orientations exist inside the wiring, wiring defects are likely to occur from such locations. The reason why crystal grains with different orientations as described above always exist is because microcrystal grains with different orientations have already grown during the t-month cutting process in which the A film grows on the underlying insulating film. be.

(発明が解決しようとする問題点) このように従来方法では、結晶粒界のない単結晶金属配
線を形成することは困難であり、且つ異種方位を持つ結
晶粒が多く存在する。そして、結晶方位が大きく異なる
結晶粒界においてヒロック、エレクトロマイグレーショ
ン及びストレスマイグレーション等の欠陥が生じ、これ
が配線不良を招く要因となっていた。
(Problems to be Solved by the Invention) As described above, in the conventional method, it is difficult to form a single-crystal metal wiring without grain boundaries, and there are many crystal grains with different orientations. Defects such as hillocks, electromigration, and stress migration occur at crystal grain boundaries where the crystal orientations differ greatly, which causes wiring defects.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、配線中に存在する欠陥の多い結晶粒界
を低減することができ、金属配線の信頼性向上をはかり
得る半導体装置の製造方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a semiconductor device that can reduce defect-prone crystal grain boundaries that exist in interconnects and improve the reliability of metal interconnects. The purpose of this invention is to provide a method for manufacturing the same.

[発明の構成] (問題点を解決するための手段) 本発明の骨子は、金属膜の成長する初期過程の微小結晶
粒の方位を制御して、より単結晶に近い金属膜を絶縁膜
上に形成することにあり、結晶粒の方位を制御する手段
として下地絶縁物層上に微細な溝を形成することにある
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to control the orientation of microcrystal grains in the initial growth process of a metal film to form a metal film closer to a single crystal on an insulating film. The purpose is to form fine grooves on the underlying insulating layer as a means of controlling the orientation of crystal grains.

即ち本発明は、素子の形成された半導体基板上に絶縁物
層を形成したのち、この絶縁物層上に金属配線層を形成
する工程を含む半導体装置の製造方法において、金属配
線層の形成前に、予め絶縁物層の表面に複数本の微細な
溝を平行に配列形成するようにした方法である。
That is, the present invention provides a method for manufacturing a semiconductor device including a step of forming an insulating layer on a semiconductor substrate on which an element is formed and then forming a metal wiring layer on the insulating layer. In this method, a plurality of fine grooves are arranged and formed in parallel on the surface of the insulating layer in advance.

(作用) 本発明によれば、金属配線層を構成する個々の結晶粒が
互いに略同−の結晶方位を持つため、その結晶粒界には
結晶欠陥が殆どなく、略単結晶に近い配線を形成するこ
とができる。従って、従来、結晶粒界が原因となって生
じていたヒロック。
(Function) According to the present invention, since the individual crystal grains constituting the metal wiring layer have substantially the same crystal orientation, there are almost no crystal defects at the grain boundaries, and the wiring is almost monocrystalline. can be formed. Therefore, conventionally, hillocks were caused by grain boundaries.

エレクトロマイグレーション、ストレスマイグレーショ
ン等の不良が生じ難くなり、配線の信頼性が向上する。
Defects such as electromigration and stress migration are less likely to occur, and the reliability of wiring is improved.

さらに、結晶粒界による電子散乱の影響が小さくなるこ
とがら、配線抵抗の増加を最少限に抑制することが可能
となる。
Furthermore, since the influence of electron scattering due to grain boundaries is reduced, it becomes possible to suppress an increase in wiring resistance to a minimum.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる半導体装置の製造工
程を示す断面図である。まず、第1図(a)に示す如く
、素子の形成されたSi基板(半導体基板)11上に、
5i02等の絶縁物層12を堆積する。ここまでの工程
は、従来方法と全く同様である。
FIG. 1 is a cross-sectional view showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. First, as shown in FIG. 1(a), on a Si substrate (semiconductor substrate) 11 on which an element is formed,
Deposit an insulator layer 12, such as 5i02. The steps up to this point are completely the same as the conventional method.

次いで、第1図(b)に示す如く、絶縁物層12の表面
に、複数本の微細な溝13を平行に配列形成する。ここ
で、)笥13は、後述する金属配線形成時に、ステップ
カバーレッジ不良や金属配線パターンのエツチング残り
等を生じない程度の段差を有することが望ましい。例え
ば、望ましい段差量は、成長させる金属原子の直径以上
(1Å以上)で、ステップカバーレッジ不良を全く生じ
ない程度の段差以下(金属配線層の膜厚の1/1゜以下
)、即ち1〜1000 [入]程度である。さらに、パ
ターニング密度は、成長させる金属原子の表面移動度を
考慮して、100 [入]〜1[μml程度で十分であ
る。また、微細な溝の形成方法としては、通常のレジス
トを利用したパターン形成方法でもよいし、微細なイオ
ンビームによる直接的なエツチングによる方法であって
もよい。
Next, as shown in FIG. 1(b), a plurality of fine grooves 13 are formed in parallel on the surface of the insulating layer 12. Here, it is desirable that the tray 13 has a level difference that does not cause defective step coverage or etching residue of the metal wiring pattern when forming metal wiring, which will be described later. For example, a desirable amount of step is greater than or equal to the diameter of the metal atom to be grown (1 Å or more), but less than a step that does not cause step coverage defects at all (1/1 degree or less of the thickness of the metal wiring layer), that is, 1 to 1. It is about 1000 [in]. Furthermore, considering the surface mobility of the metal atoms to be grown, it is sufficient for the patterning density to be about 100 μml to 1 μml. Further, the method for forming the fine grooves may be a pattern forming method using a normal resist, or a direct etching method using a fine ion beam.

次いで、第1図(c)に示す如く、スパッタ法により絶
縁物層12上にA!膜14を形成する。
Next, as shown in FIG. 1(c), A! is deposited on the insulating layer 12 by sputtering. A film 14 is formed.

この際、スパッタ中に半導体基板を100〜500[’
C]程度に加熱することが望ましい。この加熱は、スパ
ッタAノ原子が絶縁物層上に形成された時点で、表面移
動度を大きくする効果があり、結晶方位がより揃い易く
なる。また、結晶粒をより大きく成長させるには、A、
11’膜14を形成したのちに上記温度で熱処理を施す
ようにすればよい。
At this time, the semiconductor substrate was heated at 100 to 500 ['
It is desirable to heat to about C]. This heating has the effect of increasing the surface mobility at the time when the sputtered A atoms are formed on the insulating layer, making it easier to align the crystal orientation. In addition, in order to grow larger crystal grains, A,
After forming the 11' film 14, heat treatment may be performed at the above temperature.

上記のAノ膜形成において、凹凸を有する下地上に到達
した金属原子は、一般に下地」二を移動した後、段差部
に沿って核形成をする。この理由は、段差部において、
金属原子の自由エネルギーが最も低くなり、安定な場所
となるからである(Journal of Chemi
cal Physics、38 p2698−2704
(1963)、D、Walton et al、“Nu
cleation of 511veron Sodi
um Chlorlde ” ) o Aノの場合、凹
凸のない下地でも(111)優先方位を示すことは前に
述べたが、凹凸のある下地上では、下地面内で凹凸の方
向に沿って、2次元的にも結晶方位が揃い易くなる。従
って、このようにして形成されたA、11’膜は、たと
え粒界が存在してもその方位差は小さいものとなり、単
結晶に近い膜が広い面積に亙って形成される。
In the above-mentioned A film formation, the metal atoms that have reached the uneven substrate generally move through the substrate and then form nuclei along the stepped portions. The reason for this is that at the step part,
This is because the free energy of metal atoms is the lowest, making it a stable place (Journal of Chemi
cal Physics, 38 p2698-2704
(1963), Walton et al., “Nu
creation of 511veron Sodi
um Chlorlde'') o In the case of A, it was mentioned earlier that the (111) preferred direction is shown even on an uneven substrate, but on an uneven substrate, the two-dimensional direction is shown along the direction of the unevenness within the substrate. Therefore, in the A, 11' film formed in this way, even if grain boundaries exist, the difference in orientation is small, and the film, which is close to a single crystal, has a large area. It is formed over a period of time.

ここで、第2図に如くAノ膜14を形成した状態におけ
る結晶方位は第3図に示す如くなる。即ち、第2図に示
すA 、17 Ill 14を矢視A方向から見た場合
、第3図(a)に示す如く結晶粒21が矩形に近いもの
となり、且つ面内における各結晶粒21の結晶方位が良
く揃ったものとなる。同様に、第2図に示すAノ膜14
を矢視B方向から見た厚み方向における結晶方位も、第
3図(b)に示す如く良(揃ったものとなる。特に、第
3図(a)に示す如く、面内における結晶方位が揃うこ
とが従来と大きく異なる点である。
Here, the crystal orientation in the state where the A-no film 14 is formed as shown in FIG. 2 is as shown in FIG. 3. That is, when A, 17 Ill 14 shown in FIG. 2 is viewed from the direction of arrow A, the crystal grains 21 are nearly rectangular as shown in FIG. 3(a), and each crystal grain 21 in the plane is The crystal orientation becomes well aligned. Similarly, the A membrane 14 shown in FIG.
The crystal orientation in the thickness direction when viewed from the direction of arrow B is also well aligned as shown in Figure 3(b).In particular, as shown in Figure 3(a), the crystal orientation in the plane is The main difference from the conventional method is that they are all aligned.

次いで、第1図(d)に示す如く、Aノ膜14をパター
ニングして、配線を形成する。このようにして得られた
AI!配線は、配線全体に亙って単結晶に近いか、結晶
粒界を含んでいてもその方位差は小さいために、欠陥を
多く含まない。従って、配線全体に亙って弱い部分がな
く強化されており、ヒロック、エレクトロマイグレーシ
ョン及びストレスマイグレーション等に強い高信頼性A
、f?配線となっている。
Next, as shown in FIG. 1(d), the A film 14 is patterned to form wiring. AI obtained in this way! The wiring does not contain many defects because it is close to a single crystal throughout the wiring, or even if it includes grain boundaries, the difference in orientation is small. Therefore, the entire wiring is strengthened without any weak points, and is highly reliable against hillocks, electromigration, stress migration, etc.
, f? It is wired.

かくして本実施例方法によれば、絶縁物層12上に形成
するAI膜14の結晶方位を揃えることができ、結晶粒
界における欠陥の発生を大幅に低減することができる。
Thus, according to the method of this embodiment, the crystal orientation of the AI film 14 formed on the insulator layer 12 can be aligned, and the occurrence of defects at crystal grain boundaries can be significantly reduced.

このため、Aノ配線の信頼性の向上をはかることができ
、半導体装置の製造における有用性は絶大である。また
、絶縁物層12の表面に溝13を設けるのみの簡易な工
程で実現し得る等の利点がある。
Therefore, the reliability of the A wiring can be improved, and its usefulness in manufacturing semiconductor devices is enormous. Another advantage is that it can be realized by a simple process of just providing the grooves 13 on the surface of the insulating layer 12.

なお、本発明は上述した実施例方法に限定されるもので
はない。例えば、前記金属膜はA、l?に限るものでは
なく、WやMo等の高融点金属を用いることが可能であ
る。また、溝の段差は垂直である必要はなく、傾斜を持
っていてもよい。さらに、溝の配置パターンは多線状に
限るものではなく、格子状であってもよい。その他、本
発明の要旨を逸脱しない範囲で、種々変形して実施する
ことができる。
Note that the present invention is not limited to the method of the embodiment described above. For example, the metal film is A, l? The material is not limited to, and high melting point metals such as W and Mo can be used. Further, the step of the groove does not need to be vertical, and may be inclined. Furthermore, the arrangement pattern of the grooves is not limited to a multiline pattern, but may be a grid pattern. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、絶縁物層の表面に
予め溝を形成しておくことにより、絶縁物層上に形成す
る金属膜の結晶方位を揃えることができる。従って、結
晶粒界における欠陥の発生を少なくすることができる。
[Effects of the Invention] As detailed above, according to the present invention, by forming grooves in advance on the surface of the insulating layer, the crystal orientation of the metal film formed on the insulating layer can be aligned. . Therefore, the occurrence of defects at grain boundaries can be reduced.

金属配線の信頼性の向上をはかり得る。The reliability of metal wiring can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法に係わる半導体装置の製
造工程を示す断面図、第2図及び第3図はそれぞれ上記
実施例の作用を説明するためのもので第2図はAI膜を
形成した状態を示す斜視図、第3図は第2図の矢視A方
向及びB方向における結晶方位の状態を示す模式図、第
4図及び第5図はそれぞれ従来の問題点を説明するため
のもので第4図は結晶粒界の状態を示す模式図、第5図
は厚み方向及び面内における結晶方位の状態を示す模式
図である。 11・・・Si基板(半導体基板)、12・・・絶縁物
層、13・・・溝、14・・・Aノ膜(金属膜)、21
・・・結晶粒、22・・・結晶粒界。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図
FIG. 1 is a cross-sectional view showing the manufacturing process of a semiconductor device according to an embodiment of the present invention, and FIGS. 2 and 3 are for explaining the operation of the above embodiment, respectively. FIG. 3 is a schematic diagram showing the state of crystal orientation in the direction of arrows A and B in FIG. 2, and FIGS. 4 and 5 each explain the problems of the conventional method. FIG. 4 is a schematic diagram showing the state of grain boundaries, and FIG. 5 is a schematic diagram showing the state of crystal orientation in the thickness direction and in-plane. DESCRIPTION OF SYMBOLS 11... Si substrate (semiconductor substrate), 12... Insulator layer, 13... Groove, 14... A film (metal film), 21
...Crystal grain, 22...Crystal grain boundary. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (6)

【特許請求の範囲】[Claims] (1)素子の形成された半導体基板上に絶縁物層を形成
する工程と、上記絶縁物層の表面に複数本の微細な溝を
平行に配列形成する工程と、次いで上記絶縁物層上に金
属配線層を形成する工程とを含むことを特徴とする半導
体装置の製造方法。
(1) A step of forming an insulating layer on the semiconductor substrate on which the element is formed, a step of forming a plurality of fine grooves in parallel on the surface of the insulating layer, and then a step of forming a plurality of fine grooves on the surface of the insulating layer. 1. A method for manufacturing a semiconductor device, comprising the step of forming a metal wiring layer.
(2)前記溝の深さは、1〜1000[Å]であること
を特徴とする特許請求の範囲第1項記載の半導体装置の
製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the depth of the groove is 1 to 1000 [Å].
(3)前記溝の相互間隔は、100[Å]〜1[μm]
であることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
(3) The mutual spacing between the grooves is 100 [Å] to 1 [μm]
A method for manufacturing a semiconductor device according to claim 1, characterized in that:
(4)前記溝は、傾斜を有することを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the groove has an inclination.
(5)前記金属配線層は、前記絶縁物層上に形成された
のち加熱処理されることを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
(5) The method for manufacturing a semiconductor device according to claim 1, wherein the metal wiring layer is formed on the insulator layer and then subjected to a heat treatment.
(6)前記溝は、格子状に配列形成されていることを特
徴とする特許請求の範囲第1項記載の半導体装置の製造
方法。
(6) The method of manufacturing a semiconductor device according to claim 1, wherein the grooves are arranged in a grid pattern.
JP61258513A 1986-10-31 1986-10-31 Method for manufacturing semiconductor device Expired - Lifetime JP2577363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258513A JP2577363B2 (en) 1986-10-31 1986-10-31 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258513A JP2577363B2 (en) 1986-10-31 1986-10-31 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63114144A true JPS63114144A (en) 1988-05-19
JP2577363B2 JP2577363B2 (en) 1997-01-29

Family

ID=17321252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258513A Expired - Lifetime JP2577363B2 (en) 1986-10-31 1986-10-31 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2577363B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392879A2 (en) * 1989-04-14 1990-10-17 Murata Manufacturing Co., Ltd. Surface acoustic wave device
EP0407163A2 (en) * 1989-07-06 1991-01-09 Murata Manufacturing Co., Ltd. Surface acoustic wave device
EP0895288A2 (en) * 1989-07-01 1999-02-03 Kabushiki Kaisha Toshiba Electrode line for semiconducor device and method of manufacturing it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504576A (en) * 1973-05-18 1975-01-17
JPS5788757A (en) * 1980-11-21 1982-06-02 Toshiba Corp Preparation of semiconductor device
JPS5797647A (en) * 1980-12-10 1982-06-17 Toshiba Corp Forming of electrode wiring in semiconductor device
JPS61225837A (en) * 1985-03-29 1986-10-07 Fujitsu Ltd Layer connection of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504576A (en) * 1973-05-18 1975-01-17
JPS5788757A (en) * 1980-11-21 1982-06-02 Toshiba Corp Preparation of semiconductor device
JPS5797647A (en) * 1980-12-10 1982-06-17 Toshiba Corp Forming of electrode wiring in semiconductor device
JPS61225837A (en) * 1985-03-29 1986-10-07 Fujitsu Ltd Layer connection of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392879A2 (en) * 1989-04-14 1990-10-17 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US5162690A (en) * 1989-04-14 1992-11-10 Murata Manufacturing Co., Ltd. Surface acoustic wave device
EP0895288A2 (en) * 1989-07-01 1999-02-03 Kabushiki Kaisha Toshiba Electrode line for semiconducor device and method of manufacturing it
EP0895288A3 (en) * 1989-07-01 1999-04-28 Kabushiki Kaisha Toshiba Electrode line for semiconducor device and method of manufacturing it
EP0407163A2 (en) * 1989-07-06 1991-01-09 Murata Manufacturing Co., Ltd. Surface acoustic wave device

Also Published As

Publication number Publication date
JP2577363B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US5580823A (en) Process for fabricating a collimated metal layer and contact structure in a semiconductor device
US5510642A (en) Semiconductor device
JPS63114144A (en) Manufacture of semiconductor device
JPS60115221A (en) Manufacture of semiconductor device
JPH0435439B2 (en)
JPS5893220A (en) Preparation of semiconductor single crystal film
JPS5842227A (en) Manufacture of semiconductor device
JPH03268324A (en) Manufacture of semiconductor device
JPS6355932A (en) Manufacture of semiconductor device
JPH0242729A (en) Aluminum-based thin-film wiring
JPS63260052A (en) Semiconductor device and its manufacture
JPS5893344A (en) Semiconductor device and its manufacture
JPS6362893B2 (en)
JP3042075B2 (en) Method for manufacturing semiconductor device
JPH04286323A (en) Manufacture of semiconductor device
JPS60147136A (en) Electrode and wiring for semiconductor device
KR100212007B1 (en) Method for forming metal wiring in semiconductor device
JPH04354337A (en) Manufacture of semiconductor device
JP2793241B2 (en) SOI formation method
JPS63164315A (en) Manufacture of semiconductor device
JPS6079711A (en) Manufacture of semiconductor device
JPH04132218A (en) Formation method of aluminum film
JPS594014A (en) Manufacture of semiconductor device
JPS59175764A (en) Semiconductor device
JPH04247625A (en) Wiring formation