JPS6311364B2 - - Google Patents

Info

Publication number
JPS6311364B2
JPS6311364B2 JP14189783A JP14189783A JPS6311364B2 JP S6311364 B2 JPS6311364 B2 JP S6311364B2 JP 14189783 A JP14189783 A JP 14189783A JP 14189783 A JP14189783 A JP 14189783A JP S6311364 B2 JPS6311364 B2 JP S6311364B2
Authority
JP
Japan
Prior art keywords
formula
group
cured product
hours
imide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14189783A
Other languages
Japanese (ja)
Other versions
JPS6032821A (en
Inventor
Kenzo Watanabe
Shoichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14189783A priority Critical patent/JPS6032821A/en
Publication of JPS6032821A publication Critical patent/JPS6032821A/en
Publication of JPS6311364B2 publication Critical patent/JPS6311364B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、芳香族イミド及び又はアミドイミド
アミンとノボラツク型エポキシ樹脂とからなる耐
熱性に優れた硬化性組成物に関する。 従来エポキシ樹脂硬化物の耐熱性、剛直性を向
上させるため、分子内骨格にイミド環の導入を試
みることが行なわれている。 汎用のエポキシ樹脂(例えば、ビスフエノール
Aのジグリシジルエーテル等)とイミド骨格を有
する硬化剤を反応させた例が多い。 我々は、これら汎用のエポキシ樹脂硬化物の耐
熱性を向上させる目的で鋭意研究したところ、エ
ポキシ樹脂としてフエノールノボラツク及び又は
クレゾールノボラツク型エポキシ樹脂と、硬化剤
として、芳香族イミド又はアミドイミドアミンを
使うことにより、耐熱性、特に耐熱分解性に優れ
る硬化物が得られる事を見い出し本発明を達成し
た。硬化により多官能グリシジル又はβ―メチル
グリシジルエーテルタイプのエポキシ基により架
橋密度が向上し、更に骨格にイミド環を有するた
め耐熱性が向上すると考えられる。 本発明の目的は、耐熱性の極めて良好なエポキ
シ樹脂硬化性組成物を提供するにある。 即ち本発明の要旨は、 一般式 (式中、Arは
The present invention relates to a curable composition having excellent heat resistance and comprising an aromatic imide and/or an amide imide amine and a novolak type epoxy resin. Conventionally, attempts have been made to introduce imide rings into the intramolecular skeleton in order to improve the heat resistance and rigidity of cured epoxy resin products. There are many examples in which a general-purpose epoxy resin (for example, diglycidyl ether of bisphenol A, etc.) is reacted with a curing agent having an imide skeleton. We conducted extensive research to improve the heat resistance of cured products of these general-purpose epoxy resins, and found that phenol novolak and/or cresol novolak type epoxy resins were used as the epoxy resin, and aromatic imide or amide imide amine was used as the curing agent. The present invention has been achieved by discovering that by using the above method, a cured product having excellent heat resistance, particularly heat decomposition resistance, can be obtained. It is thought that the crosslinking density is improved by the polyfunctional glycidyl or β-methylglycidyl ether type epoxy group upon curing, and the heat resistance is further improved due to the imide ring in the skeleton. An object of the present invention is to provide an epoxy resin curable composition having extremely good heat resistance. That is, the gist of the present invention is the general formula (In the formula, Ar is

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】及びこれら の異性体よりなる群から選ばれる2価の芳香族有
機基であり、Ar′は
A divalent aromatic organic group selected from the group consisting of [Formula] and their isomers, and Ar' is

【式】【formula】

【式】及び[Formula] and

【式】よりな る群から選ばれる4価の芳香族有機基であり4個
のカルボニル基はそれぞれ別の炭素原子に直接結
合し、かつ各対のカルボニル基はAr′基中におけ
る隣接炭素原子に結合しておりAr″は
[Formula] A tetravalent aromatic organic group selected from the group consisting of It is connected and Ar″ is

〔イミド重合体:IO―A〕[Imide polymer: IO-A]

精製2,4―ジアミノトルエン0.45moleと乾
燥N―メチル―2―ピロリドン溶液リフラツクス
中に精製3,3′,4,4′―ベンゾフエノンテトラ
カルボン酸ジ無水物〔以下BTDAと略〕
0.15moleの乾燥N―メチル―2―ピロリドン溶
液を滴下し、生成した水を系外に追い出した後、
リフラツクス状態で4時間保ちイミド化する事に
より、アミン末端基含有イミド重合体を得た。生
成物の全アミン量3.70×10-3(eq・mol/g)、
Tm〔コフラー法〕216℃であつた。 〔イミド重合体:IO―B〕 2,4―ジアミノトルエン0.375moleとN―メ
チル―2―ピロリドン溶液にBTDA0.250moleの
N―メチル―2―ピロリドン溶液を滴下し、30℃
で6時間保つた。その後昇温して生成した水を系
外に追い出しつつリフラツクス状態で6時間保
ち、アミン末端基含有イミド重合体を得た。全ア
ミン量2.01×10-3(eq・mol/g)、Tm260℃ 〔イミド重合体:IO―C〕 3,3′―ジアミノベンゾフエノン0.0094moleと
N―メチル―2―ピロリドン溶液リフラツクス中
にBTDA0.0063mole N―メチル―2―ピロリド
ン溶液を滴下し、生成した水を系外に追い出しな
がらリフラツクス状態で6時間保ちアミン末端基
含有イミド重合体を得た。全アミン量1.30×10-3
(eq・mol/g)、Tm275℃ 〔イミド重合体:IO―D〕 3,3′―ジアミノジフエニルスルフオン
0.0081moleとBTDA0.0054moleからIO―Cと同
様の方法により、アミン末端基含有イミド重合体
を得た。全アミン量1.65×10-3(eq・mol/g)、
Tm265℃ (アミドイミド重合体:IO―E〕 3,3′―ジアミノジフエニルスルフオン
0.15moleとN―メチル―2―ピロリドン溶液に
室温でトリメリツト酸無水物の4―酸クロライド
0.075moleのN―メチル―2―ピロリドン溶液を
滴下し、30℃で6時間保つた。その後昇温して生
成した水を系外に追い出し、リフラツクス状態で
6時間保ちアミン末端基含有アミドイミド重合体
を得た。全アミン量3.8×10-3(eq・mol/g)、
Tm250℃ 硬化物の作製 比較例 1 4,4′―ジアミノジフエニルメタンのテトラグ
リシジルアミンタイプのエポキシ(商品名:住友
化学社、ELM―434)〔エポキシ当量110〜130
g/eq〕50gと4,4′―ジアミノジフエニルスル
フオン(DDS)25.5gをメチルエチルケトンに溶
解し、ガラスプレート上又は炭素繊維(商品名:
東レ社、トレカT―300)に含浸乾燥したものを
金型中で加熱プレスし(炭素繊維含量60vol%)
170℃/2時間+200℃/17時間硬化し、硬化物を
得た。ガラスプレート上硬化物については熱天秤
〔TGA〕による熱分解開始温度及び重量保持率を
測定し(10%重量減、Heating Rate 15℃/
min、air中)コンポジツト硬化物についてはピ
カツト軟化点温度〔Ts〕を測定した。 結果を表―1に示した。 比較例 2 ビスフエノールAジグリシジルエーテルタイプ
のエポキシ(商品名:シエル社、エピコート828)
〔エポキシ当量189g/eq〕151gにDDS49.0gを
加熱混合し、金型で150℃/3時間+170℃/2時
間+200℃/17時間硬化して硬化物を得た。この
硬化物のTGA,Tsを測定した。結果を表―1に
示した。 比較例 3 トリグリシジルイソシアヌレートタイプのエポ
キシ(商品名:チバガイギー社、TGIC)〔エポ
キシ当量103〜105g/eq〕100gにDDS59.6gを
加熱混合し、金型で150℃/1時間+200℃/17時
間硬化して硬化物を得た。この硬化物のTGA,
Tsを測定した。結果を表―1に示した。 比較例 4 β―メチルグリシジルフエノールノボラツクタ
イプのエポキシ(商品名:大日本インキ社、エピ
クロンN―730S)〔エポキシ当量170〜190g/
eq〕10gとDDS3.5gをメチルエチルケトンに溶
解し、ワニスを調整した。比較例1と同様の方法
により160℃/3時間+200℃/17時間硬化し、硬
化物を得た。この硬化物のTGA,Tsを測定し、
結果を表―1に示した。 比較例 5 ビスフエノールAジグリシジルエーテルタイプ
のエポキシ(商品名:シエル社、エピコート828)
〔エポキシ当量189g/eq〕50gとイミド重合体
(IO―A)36gをメチルエチルケトン29gとN,
N―ジメチルホルムアミド60gに溶解し、比較例
1と同様の方法により、170℃/2時間+200℃/
17時間硬化し、硬化物を得た。この硬化物の
TGA,Tsを測定し、結果を表―1に示した。 実施例 1 フエノールノボラツク型エポキシ樹脂(商品
名:シエル社、エピコート154)〔エポキシ当量
176〜181g/eq〕10gとイミド重合体(IO―A)
7.5gをメチルエチルケトン7.5gとN,N―ジメ
チルホルムアミド10gの混合溶媒に溶解し、ワニ
スを調整した。ガラスプレート上又は炭素繊維
(商品名:東レ社、トレカT―300)に含浸乾燥し
たものを金型中で加熱プレスし(炭素繊維含量
60vol%)160℃/3時間+200℃/17時間硬化し
硬化物を得た。硬化物を比較例1と同様の方法に
よりTGA,Tsを測定を行なつた。結果を表―1
に示した。 実施例 2 クレゾールノボラツク型エポキシ樹脂(商品
名:チバガイギー社、EPN1273)〔エポキシ当量
225g/eq〕10gとイミド重合体(IO―B)11.1
gをメチルエチルケトン7gとN,N―ジメチル
ホルムアミド14.1gの混合溶媒に溶解し、ワニス
を調整した。実施例1と同条件により硬化物を作
製し、TGA,Tsの測定を行なつた。結果を表―
1に示した。 実施例 3 β―メチルグリシジルクレゾールノボラツク型
エポキシ樹脂(商品名:大日本インキ社、エピク
ロンN―665)〔エポキシ当量210〜230g/eq〕
10gとイミド重合体(IO―A)11.5gをメチルエ
チルケトン10gとN,N―ジメチルホルムアミド
11.5gの混合溶媒に溶解し、ワニスを調整した。
実施例1と同条件により硬化物を作製し、TGA,
Tsの測定を行なつた。結果を表―1に示した。 実施例 4 β―メチルグリシジルフエノールノボラツク型
エポキシ樹脂(商品名:大日本インキ社、エピク
ロンN―730S)〔エポキシ当量170〜190g/eq〕
10gとイミド体(IO―A)13.7gをメチルエチル
ケトン10gとN,N―ジメチルホルムアミド13.7
gの混合溶媒に溶解してワニスを調整した。実施
例1と同条件により硬化物を作製し、TGA,Ts
の測定を行なつた。結果を表―1に示した。 実施例 5 β―メチルグリシジルフエノールノボラツク型
エポキシ樹脂(商品名:エピクロンN―730S)
〔エポキシ当量170〜190g/eq〕10gとイミド重
合体(IO―B)14.2gをメチルエチルケトン8g
とN,N―ジメチルホルムアミド16.2gの混合溶
媒に溶解しワニスを調整した。実施例1と同様の
方法により160℃/3時間+230℃/17時間硬化
し、硬化物を得た。TGA,Tsの測定を行ない、
その結果を表―1に示した。 実施例 6 β―メチルグリシジルフエノールノボラツク型
エポキシ樹脂(商品名:エピクロンN―730s)5
gとイミド重合体(IO―C)11gをメチルエチ
ルケトン4gとN,N―ジメチルホルムアミド12
gの混合溶媒に溶解し、ワニスを調整した。実施
例5と同条件により硬化物を作製し、TGA,Ts
の測定を行なつた。結果を表―1に示した。 実施例 7 β―メチルグリシジルフエノールノボラツク型
エポキシ樹脂(商品名:エピクロンN―730s)10
gとイミド重合体(IO―D)17.3gをメチルエチ
ルケトン8gとN,N―ジメチルホルムアミド
19.3gの混合溶媒に溶解し、ワニスを調整した。
実施例5と同条件により硬化物を作製し、TGA,
Tsの測定を行なつた。結果を表―1に示した。 実施例 8 β―メチルグリシジルフエノールノボラツク型
エポキシ樹脂(商品名:エピクロンN―730s)10
gとイミド重合体(IO―E)7.5gをN,N―ジ
メチルホルムアミド17.5gに溶解し、ワニスを調
整した。実施例5と同条件により硬化物を作製
し、TGA,Tsの測定を行なつた。結果を表―1
に示した。 比較例1,2,4および実施例3,4,6につ
いての熱分解性比較結果(Heating Rate 15℃/
min、air50ml/minでの熱天秤でのデータ)を第
1図に示す。
Purified 3,3',4,4'-benzophenonetetracarboxylic dianhydride [hereinafter abbreviated as BTDA] in reflux with 0.45 mole of purified 2,4-diaminotoluene and dry N-methyl-2-pyrrolidone solution.
After dropping 0.15 mole of dry N-methyl-2-pyrrolidone solution and expelling the generated water from the system,
An imide polymer containing an amine end group was obtained by imidizing the mixture by keeping it in a reflux state for 4 hours. Total amine amount of product 3.70×10 -3 (eq mol/g),
Tm [Kofler method] was 216°C. [Imide polymer: IO-B] A solution of 0.250 mole of BTDA in N-methyl-2-pyrrolidone was added dropwise to a solution of 0.375 mole of 2,4-diaminotoluene and N-methyl-2-pyrrolidone, and the mixture was heated at 30°C.
It lasted for 6 hours. Thereafter, the temperature was raised and the produced water was expelled from the system while the system was kept in a reflux state for 6 hours to obtain an imide polymer containing an amine end group. Total amine amount 2.01×10 -3 (eq mol/g), Tm 260℃ [Imide polymer: IO-C] 0.0094 mole of 3,3'-diaminobenzophenone and N-methyl-2-pyrrolidone solution in reflux A solution of 0.0063 mole BTDA in N-methyl-2-pyrrolidone was added dropwise, and the system was kept in a reflux state for 6 hours while expelling the generated water from the system to obtain an imide polymer containing an amine end group. Total amine amount 1.30×10 -3
(eq・mol/g), Tm275℃ [Imide polymer: IO-D] 3,3′-diaminodiphenylsulfonate
An imide polymer containing an amine end group was obtained from 0.0081 mole and 0.0054 mole of BTDA in the same manner as IO-C. Total amine amount 1.65×10 -3 (eq・mol/g),
Tm265℃ (amideimide polymer: IO-E) 3,3'-diaminodiphenylsulfon
Add 0.15 mole 4-acid chloride of trimellitic anhydride to N-methyl-2-pyrrolidone solution at room temperature.
0.075 mole of N-methyl-2-pyrrolidone solution was added dropwise and kept at 30°C for 6 hours. Thereafter, the temperature was raised to expel generated water from the system, and the system was kept in a reflux state for 6 hours to obtain an amide-imide polymer containing an amine end group. Total amine amount 3.8×10 -3 (eq・mol/g),
Tm250℃ Comparative example of preparation of cured product 1 4,4′-diaminodiphenylmethane tetraglycidylamine type epoxy (product name: Sumitomo Chemical Co., Ltd., ELM-434) [Epoxy equivalent 110-130
g/eq] and 25.5 g of 4,4'-diaminodiphenylsulfonate (DDS) were dissolved in methyl ethyl ketone and placed on a glass plate or carbon fiber (trade name:
Toray Industries, Inc., Torayka T-300) was impregnated and dried and heated and pressed in a mold (carbon fiber content 60vol%).
It was cured at 170°C for 2 hours + 200°C for 17 hours to obtain a cured product. For the cured product on the glass plate, the thermal decomposition onset temperature and weight retention rate were measured using a thermobalance (TGA) (10% weight loss, Heating Rate 15℃/
For the cured composite (in air), the Picato softening point temperature [Ts] was measured. The results are shown in Table-1. Comparative Example 2 Bisphenol A diglycidyl ether type epoxy (trade name: Ciel Corporation, Epicote 828)
49.0 g of DDS was heated and mixed with 151 g [epoxy equivalent weight 189 g/eq] and cured in a mold at 150° C. for 3 hours + 170° C. for 2 hours + 200° C. for 17 hours to obtain a cured product. The TGA and Ts of this cured product were measured. The results are shown in Table-1. Comparative Example 3 59.6 g of DDS was heated and mixed with 100 g of triglycidyl isocyanurate type epoxy (trade name: Ciba Geigy, TGIC) [epoxy equivalent weight 103-105 g/eq], and heated at 150°C/1 hour + 200°C/17°C in a mold. A cured product was obtained by curing for a period of time. TGA of this cured product,
Ts was measured. The results are shown in Table-1. Comparative Example 4 β-Methylglycidylphenol novolak type epoxy (product name: Dainippon Ink Co., Ltd., Epicron N-730S) [Epoxy equivalent: 170 to 190 g/
eq]10g and DDS3.5g were dissolved in methyl ethyl ketone to prepare a varnish. A cured product was obtained by curing at 160°C for 3 hours + 200°C for 17 hours in the same manner as in Comparative Example 1. Measure the TGA and Ts of this cured product,
The results are shown in Table-1. Comparative Example 5 Bisphenol A diglycidyl ether type epoxy (trade name: Ciel Corporation, Epicote 828)
[Epoxy equivalent 189g/eq] 50g and imide polymer (IO-A) 36g, methyl ethyl ketone 29g and N,
Dissolved in 60 g of N-dimethylformamide and heated at 170°C for 2 hours + 200°C in the same manner as in Comparative Example 1.
After curing for 17 hours, a cured product was obtained. This cured product
TGA and Ts were measured and the results are shown in Table 1. Example 1 Phenol novolac type epoxy resin (trade name: Ciel Co., Ltd., Epicoat 154) [Epoxy equivalent
176-181g/eq〕10g and imide polymer (IO-A)
A varnish was prepared by dissolving 7.5 g of the solution in a mixed solvent of 7.5 g of methyl ethyl ketone and 10 g of N,N-dimethylformamide. Impregnated and dried on a glass plate or carbon fiber (trade name: Torayka T-300), heated and pressed in a mold (carbon fiber content
(60vol%) 160°C/3 hours + 200°C/17 hours to obtain a cured product. TGA and Ts of the cured product were measured in the same manner as in Comparative Example 1. Table of results-1
It was shown to. Example 2 Cresol novolac type epoxy resin (trade name: Ciba Geigy, EPN1273) [Epoxy equivalent
225g/eq〕10g and imide polymer (IO-B) 11.1
g was dissolved in a mixed solvent of 7 g of methyl ethyl ketone and 14.1 g of N,N-dimethylformamide to prepare a varnish. A cured product was produced under the same conditions as in Example 1, and TGA and Ts were measured. Display the results.
Shown in 1. Example 3 β-Methylglycidyl cresol novolac type epoxy resin (trade name: Dainippon Ink Co., Ltd., Epicron N-665) [Epoxy equivalent 210-230 g/eq]
10g of imide polymer (IO-A) and 11.5g of methyl ethyl ketone and N,N-dimethylformamide.
A varnish was prepared by dissolving it in 11.5 g of a mixed solvent.
A cured product was prepared under the same conditions as in Example 1, and TGA,
Ts was measured. The results are shown in Table-1. Example 4 β-Methylglycidylphenol novolak type epoxy resin (trade name: Dainippon Ink Co., Ltd., Epicron N-730S) [Epoxy equivalent: 170 to 190 g/eq]
10g and imide form (IO-A) 13.7g, methyl ethyl ketone 10g and N,N-dimethylformamide 13.7g
A varnish was prepared by dissolving it in a mixed solvent of g. A cured product was prepared under the same conditions as in Example 1, and TGA, Ts
Measurements were made. The results are shown in Table-1. Example 5 β-Methylglycidylphenol novolac type epoxy resin (trade name: Epicron N-730S)
[Epoxy equivalent 170 to 190 g/eq] 10 g and imide polymer (IO-B) 14.2 g to 8 g of methyl ethyl ketone
and N,N-dimethylformamide (16.2 g) to prepare a varnish. A cured product was obtained by curing at 160° C. for 3 hours + 230° C. for 17 hours in the same manner as in Example 1. Measure TGA and Ts,
The results are shown in Table-1. Example 6 β-Methylglycidylphenol novolak type epoxy resin (trade name: Epicron N-730s) 5
g and 11 g of imide polymer (IO-C), 4 g of methyl ethyl ketone and 12 g of N,N-dimethylformamide.
g to prepare a varnish. A cured product was produced under the same conditions as in Example 5, and TGA, Ts
Measurements were made. The results are shown in Table-1. Example 7 β-Methylglycidylphenol novolac type epoxy resin (trade name: Epicron N-730s) 10
g and 17.3 g of imide polymer (IO-D) with 8 g of methyl ethyl ketone and N,N-dimethylformamide.
A varnish was prepared by dissolving it in 19.3 g of a mixed solvent.
A cured product was prepared under the same conditions as in Example 5, and TGA,
Ts was measured. The results are shown in Table-1. Example 8 β-Methylglycidylphenol novolac type epoxy resin (trade name: Epicron N-730s) 10
g and 7.5 g of imide polymer (IO-E) were dissolved in 17.5 g of N,N-dimethylformamide to prepare a varnish. A cured product was prepared under the same conditions as in Example 5, and TGA and Ts were measured. Table of results-1
It was shown to. Thermal decomposition comparison results for Comparative Examples 1, 2, 4 and Examples 3, 4, 6 (Heating Rate 15℃/
Fig. 1 shows the data on a thermobalance at air 50 ml/min.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、比較例1,2,4および実施例3,
4,6についての熱分解性比較結果を示した図で
ある。(Heating Rate 15℃/分、air50ml/分で
の熱天秤でのデータ)
Figure 1 shows Comparative Examples 1, 2, 4 and Example 3,
It is a figure showing the thermal decomposition comparison result about No. 4 and No. 6. (Data on thermobalance at heating rate 15℃/min, air 50ml/min)

Claims (1)

【特許請求の範囲】 1 一般式() (式中Arは【式】 【式】 【式】 【式】 【式】 【式】 【式】 【式】 【式】 【式】【式】及びこれら の異性体よりなる群から選ばれる2価の芳香族有
機基であり、Ar′は【式】 【式】及び【式】よりな る群から選ばれる4価の芳香族有機基であり、4
個のカルボニル基はそれぞれ別の炭素原子に直接
結合し、かつ各対のカルボニル基はAr′基中にお
ける隣接炭素原子に結合しており、Ar″は
【式】で示される3価の芳香族有機基で あり、3個のカルボニル基はそれぞれ別の炭素原
子に直接結合し、かつ一対のカルボニル基は
Ar″基中における隣接炭素原子に結合しており、
そしてn,mは0又は正の整数であり、5≧m+
n>0である。)で表わされるジアミンとβ―ア
ルキルグリシジル基を含有する芳香族アミンエポ
キシ樹脂とからなる硬化性樹脂組成物。
[Claims] 1 General formula () (In the formula, Ar is 2 selected from the group consisting of [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] and isomers thereof Ar′ is a tetravalent aromatic organic group selected from the group consisting of [Formula] [Formula] and [Formula],
Each carbonyl group is directly bonded to a different carbon atom, and each pair of carbonyl groups is bonded to an adjacent carbon atom in the Ar′ group, where Ar″ is a trivalent aromatic group represented by the formula It is an organic group, and each of the three carbonyl groups is directly bonded to a different carbon atom, and a pair of carbonyl groups is
bonded to adjacent carbon atoms in the Ar″ group,
And n and m are 0 or positive integers, and 5≧m+
n>0. ) and an aromatic amine epoxy resin containing a β-alkylglycidyl group.
JP14189783A 1983-08-04 1983-08-04 Curable resin composition Granted JPS6032821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14189783A JPS6032821A (en) 1983-08-04 1983-08-04 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14189783A JPS6032821A (en) 1983-08-04 1983-08-04 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS6032821A JPS6032821A (en) 1985-02-20
JPS6311364B2 true JPS6311364B2 (en) 1988-03-14

Family

ID=15302704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14189783A Granted JPS6032821A (en) 1983-08-04 1983-08-04 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS6032821A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218627A (en) * 1985-03-23 1986-09-29 Sumitomo Chem Co Ltd Thermally curable heat-resistant resin composition
JPH083030B2 (en) * 1985-01-17 1996-01-17 住友化学工業株式会社 Heat-curable heat-resistant resin composition
JPS61225164A (en) * 1985-03-29 1986-10-06 Agency Of Ind Science & Technol Imide group-containing aromatic polyamine and its production

Also Published As

Publication number Publication date
JPS6032821A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US4579885A (en) Epoxy compositions containing substituted diamine hardeners
EP0379468B1 (en) Curable epoxy resin composition containing a thermoplastic resin having phenolic end groups
US4244857A (en) Curing agent for polyepoxides and epoxy resins and composites cured therewith
JPS6354434A (en) Polyimide oligomer containing carbinol having epoxy reactive end group and epoxide adduct
US4760105A (en) Polyimide modified epoxy resins in aqueous emulsions for lamination and electrodeposition
JPS6311364B2 (en)
KR0139001B1 (en) Epoxy resins and compositions containing aromatic diamine curing agent
EP0475042B1 (en) Thermosetting compound and its production method
JPH05156003A (en) Imino-functional polyethers and their use
CN102307933B (en) Oligomers with di-phenylethynyl endcaps
JPH0116408B2 (en)
JPS61167684A (en) Aromatic imidoepoxy ether
US4996268A (en) Carbinol-containing polyimide oligomers terminated with epoxide-reactive groups
JPS6311363B2 (en)
JP2743185B2 (en) Circuit board and method of manufacturing the same
JP2983616B2 (en) Compound for heat-resistant laminate and method for producing laminate using the compound
JPH0125510B2 (en)
JP2792209B2 (en) Flexible bisimide compound
JP3026587B2 (en) Heat-resistant laminated material and method for producing the laminated material
JPS6317857B2 (en)
JP3329861B2 (en) Manufacturing method of heat-resistant laminated material
JP3249854B2 (en) Compound for heat-resistant laminate and method for producing heat-resistant laminate
JPS61223021A (en) Production of prepreg
JPS59136320A (en) Epoxy resin composition
JPS6232207B2 (en)