JPH0125510B2 - - Google Patents

Info

Publication number
JPH0125510B2
JPH0125510B2 JP4077783A JP4077783A JPH0125510B2 JP H0125510 B2 JPH0125510 B2 JP H0125510B2 JP 4077783 A JP4077783 A JP 4077783A JP 4077783 A JP4077783 A JP 4077783A JP H0125510 B2 JPH0125510 B2 JP H0125510B2
Authority
JP
Japan
Prior art keywords
formula
hours
group
imide
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4077783A
Other languages
Japanese (ja)
Other versions
JPS59166531A (en
Inventor
Kenzo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4077783A priority Critical patent/JPS59166531A/en
Publication of JPS59166531A publication Critical patent/JPS59166531A/en
Publication of JPH0125510B2 publication Critical patent/JPH0125510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエポキシ末端基含有芳香族イミド又は
アミドイミド重合体と芳香族イミド又はアミドイ
ミドアミン化合物とからなる耐熱性にすぐれた硬
化性組成物に関する。 従来エポキシ樹脂の耐熱性、剛直性を向上させ
るため、分子内骨格にイミド環の導入を試みるこ
とが行われている。しかし、汎用のエポキシ樹脂
(例えばビスフエノールAのジグリシジルエーテ
ル等)とイミド骨格を有する硬化剤を反応させた
プレポリマー型が多く、直接エポキシ末端を有す
るイミド又はアミドイミド重合体の報告例はほと
んど無かつた。それは、内在するイミド骨格がエ
ポキシ化する際に使用する塩基に対して、極めて
弱く加水分解しやすく十分満足できる物が得られ
なかつたからである。極端な場合は、加水分解に
よつて生ずるカルボン酸基やアミノ基によつて折
角付加したエポキシ基が硬化反応を起こし、ゲル
化し全く使用に耐えない物しか得られなかつた。 我々は加水分解を起こさない方法について鋭意
研究した結果有機カルボン酸及び要すれば第4級
アンモニウム塩の存在下、エポキシ化反応を行え
ば、加水分解のないエポキシ末端基含有イミド又
はアミドイミド重合体を製造できることを見い出
し本発明を達成した。 本発明の目的は、加水分解の無いか又は極めて
少ないエポキシ末端基含有芳香族イミド又はアミ
ドイミド重合体を含む硬化性組成物を提供するに
ある。即ち本発明の要旨は、 (式中、Arは2価の芳香族有機基であり、
Ar′は4価の芳香族有機基であり、4個のカルボ
ニル基はそれぞれ別の炭素原子に直接結合し、か
つ各対のカルボニル基はAr基中における隣接炭
素原子に結合しており、Ar″は3価の芳香族有機
基であり3個のカルボニル基は、それぞれ別の炭
素原子に直接結合し、かつ一対のカルボニル基は
Ar″基中における隣接炭素原子に結合しており、
そしてn,mは0又は正の整数である、但しn+
m>0である。)で表わされるジアミンと一般式
() 〔式中、Ar,Ar′,Ar″,n,mは前述の定義
を意味し、Y1,Y2,Y3およびY4は水素、
The present invention relates to a curable composition with excellent heat resistance comprising an epoxy end group-containing aromatic imide or amide imide polymer and an aromatic imide or amide imide amine compound. Conventionally, in order to improve the heat resistance and rigidity of epoxy resins, attempts have been made to introduce imide rings into the intramolecular skeleton. However, there are many prepolymer types in which a general-purpose epoxy resin (e.g., diglycidyl ether of bisphenol A) is reacted with a curing agent having an imide skeleton, and there are almost no reports of imide or amide-imide polymers having direct epoxy ends. Katta. This is because the inherent imide skeleton is extremely weak and easily hydrolyzed by the base used for epoxidation, and a fully satisfactory product could not be obtained. In extreme cases, the epoxy groups painstakingly added by the carboxylic acid groups and amino groups produced by hydrolysis cause a curing reaction, resulting in gelation, resulting in a product that is completely unusable. As a result of intensive research on methods that do not cause hydrolysis, we have found that if the epoxidation reaction is carried out in the presence of an organic carboxylic acid and, if necessary, a quaternary ammonium salt, an imide or amide-imide polymer containing epoxy end groups can be produced without hydrolysis. The present invention was achieved by discovering that it can be manufactured. An object of the present invention is to provide a curable composition containing an aromatic imide or amide imide polymer containing epoxy end groups with no or very little hydrolysis. That is, the gist of the present invention is (In the formula, Ar is a divalent aromatic organic group,
Ar' is a tetravalent aromatic organic group, each of the four carbonyl groups is directly bonded to a different carbon atom, and each pair of carbonyl groups is bonded to an adjacent carbon atom in the Ar group, '' is a trivalent aromatic organic group, each of the three carbonyl groups is directly bonded to a different carbon atom, and the pair of carbonyl groups is
is bonded to the adjacent carbon atom in the Ar″ group,
and n and m are 0 or positive integers, provided that n+
m>0. ) and the general formula () [In the formula, Ar, Ar′, Ar″, n, m mean the above definitions, Y 1 , Y 2 , Y 3 and Y 4 are hydrogen,

【式】または[expression] or

【式】 (Rは水素原子又は有機基、Xはハロゲン原子を
表わす。)である。但し、Y1、Y2、Y3およびY4
のうちの少なくとも1つは
[Formula] (R represents a hydrogen atom or an organic group, and X represents a halogen atom.) However, Y 1 , Y 2 , Y 3 and Y 4
at least one of

〔IO−A〕[IO-A]

精製2,4−ジアミノトルエン0.45moleと乾
燥N−メチルピロリドン溶液リフラツクス中に精
製3,3,′4,4′−ベンゾフエノンテトラカル
ボン酸ジ無水物〔以下BTDAと略〕0.15moleの
乾燥N−メチルピロリドン溶液を滴下し、生成し
た水を系外に追い出した後リフラツクス状態で4
時間保ちイミド化する事により、アミン末端基含
有イミド重合体を得た。 〔IO−B〕 2,4−ジアミノトルエン0.375moleとN−メ
チルピロリドン溶液に室温でBTDA0.125moleの
N−メチルピロリドン溶液を滴下し、30℃で6時
間保つた。その後昇温して生成した水を系外に追
い出し、リフラツクス状態で5.5時間保ちアミン
末端基含有イミド重合体を得た。 〔IO−C〕 3,3′−ジアミノベンゾフエノン0.0094moleN
−メチルピロリドン溶液リフラツクス中に
BTDA0.0063moleN−メチルピロリドン溶液を
滴下し、生成した水を系外に追い出しながらリフ
ラツクス状態で6時間保ちアミン末端基含有イミ
ド重合体を得た。 〔IO−D〕 3,3′−ジアミノジフエニルスルホン
0.0081moleとBTDA0.0054moleからIO−Aと同
様の方法によりアミン末端基含有イミド重合体を
得た。 〔IO−E〕 3,3′−ジアミノジフエニルスルホン0.15mole
とトリメリツト酸無水物の4−酸クロライド
0.1moleからIO−Bと同様の方法によりアミン末
端基含有アミドイミド重合体を得た。 グリシジル化反応物の製造 〔GAI−1〕 アミン末端基含有イミド重合体IO−
A0.0369mole(理論計算量)とエピクロルヒドリ
ン1.476moleとテトラエチルアンモニウムブロマ
イド0.0019moleを氷酢酸中で60℃、5時間反応
後NaOH(化学量論的必要量の15%過剰)を固体
で添加し、130℃リフラツクス状態で3時間保ち
グリシジル化物を得た。 NMRスペクトルより閉環によるエポキシ化率
およそ95%であつた。 〔GAI−2〕 IO−B0.0092mole(理論計算量)とβ−メチル
エピクロルヒドリン0.369moleを氷酢酸中で60
℃、6.5時間反応後、NaOH0.0425moleを固体で
反応し、120〜130℃リフラツクス状態で2時間保
ちβ−メチルグリシジル化物を得た。NMRより
エポキシ化率はおよそ98%であつた。 〔GAI−3〕 IO−C0.0083mole(理論計算量)とβ−メチル
エピクロルヒドリン0.416moleとLioH(IO−Cの
5mole%)を氷酢酸とN,N−ジメチルホルムア
ミド混合溶媒中で60℃、6.5時間反応を行なつた。
その後、固体NaOHを0.0318%mole添加して150
℃で2時間リフラツクスを行ない、β−メチルグ
リシジル化物を得た。NMRよりエポキシ化率は
およそ89%であつた。 〔GAI−4〕 IO−D0.0038mole(理論計算量)とβ−メチル
エピクロルヒドリン0.152moleとLiOH(IO−Dの
4mole%)を氷酢酸とN,N−ジメチルホルムア
ミド混合溶媒中で70℃、5時間反応を行なつた。
その後固体NaOHを0.0175mole添加し、150℃ま
で加温して2時間リフラツクスを行ないβ−メチ
ルグリシジル化物を得た。NMRよりエポキシ化
率はおよそ92%であつた。 〔GAI−5〕 アミン末端基含有アミドイミド重合体IO−
E0.0095mole(理論計算量)とβ−メチルエピク
ロルヒドリン0.455moleおよびLiOH(IO−Eの
5mole%)を氷酢酸とN,N−ジメチルホルムア
ミド混合溶媒中で50℃、10時間反応を行なつた。
その後固体NaOH0.044mole添加し、120〜130℃
リフラツクス状態で3時間撹拌を続けβ−メチル
グリシジル化物を得た。NMRよりエポキシ化率
はおよそ90%であつた。 硬化物の作製 比較例 1 ビスフエノールAジグリシジルエーテルタイプ
のエポキシ(商品名シエル社、エピコート828)
〔エポキシ当量1898g/eq〕151gに4,4′−ジア
ミノジフエニルスルホン(DDS)49.0gを加熱混
合し、金型で150℃/3時間+170℃/2時間+
200℃/17時間硬化して硬化物を得た。この硬化
物のビカツト軟化点温度〔TS〕、熱天秤TGAに
よる熱分解開始温度(5%重量減、Heating
Rate15℃/mm、air中)を測定した。 比較例 2 4,4′−ジアミノジフエニルメタンのテトラグ
リシジルアミンタイプのエポキシ(商品名住友化
学社、ELM−434)〔エポキシ当量110〜130g/
eq〕132gと4,4′−ジアミノジフエニルスルホ
ン68.2gをメチルエチルケトンに溶解し、ガラス
プレート上又は炭素繊維(商品名東レ社、トレカ
T−300)に含浸乾燥したものを炭素繊維含有量
60%として金型加熱プレスで170℃/2時間+200
℃/17時間硬化し、硬化物を得た。これらについ
て、TS、TGA、曲げ強度試験を行なつた。(曲
げ強度試験はJISK−6911に準じて測定を行なつ
た。) 比較例 3 テトラフエニルエタンのテトラグリシジルエー
テルタイプの多官能エポキシ(商品名シエル社、
エピコート1031)〔エポキシ当量200〜220g/
eq〕21gとアミン末端基含有イミド重合体(IO
−A合成品)15.4gをN,N−ジメチルホルムア
ミドに溶解し、ガラスプレート上又は炭素繊維に
含浸乾燥したものを金型加熱プレスで180℃/2
時間+230℃/15時間硬化し、硬化物を得た。こ
れらについてTS、TGA、曲げ強度試験を行なつ
た。 実施例 1 GAI−1 19.1gとIO−A13.6gをメチルエチ
ルケトンとN,N−ジメチルホルムアミド混合溶
剤に溶解したワニスを調整した。炭素繊維にワニ
スを含浸し、乾燥後金型に入れ(炭素繊維含有量
60vo1%)加熱プレスにより180℃/3時間硬化
後さらにオープン中で230℃/18時間硬化を行な
い、曲げ試験片を作製した。又熱分解測定用試料
は、ガラスプレート上で同様の硬化条件により硬
化したものを用いた。 実施例 2 GAI−2 28.7gとジアミノジフエニルスルホ
ン4.6g及びIO−B10.4gをメチルエチルケトンに
溶解しワニスを調整した。その後実施例−1と同
様の方法により硬化物を作製した。 実施例 3 GAI−2 18.8gとIO−B13.6gをメチルエチ
ルケトンとN,N−ジメチルホルムアミド混合溶
剤に溶解しワニスを調整した。その後実施例−1
と同様の方法により硬化物を作製した。 実施例 4 GAI−3 16.2gとIO−B6.8gから実施例−1
と同様の硬化条件によりTGA及びTS測定用試料
を作製した。 実施例 5 GAI−4 12.5gとIO−B3.4gから実施例−4
同様の方法により硬化物を作製した。 実施例 6 GAI−5 13.7gとIO−E12.5gから実施例−
4同様の方法により硬化物を作製した。 比較例1〜3および実施例1〜6についてのデ
ータを表−1に示す。 また、比較例1,3および実施例3,5につい
ての熱分解性比較結果(加熱速度15℃/分、空気
50ml/分での熱天秤のデータ)を第1図に示す。
0.45 mole of purified 2,4-diaminotoluene and 0.15 mole of purified 3,3,'4,4'-benzophenonetetracarboxylic dianhydride [hereinafter abbreviated as BTDA] in dry N-methylpyrrolidone solution during reflux. - After dropping the methylpyrrolidone solution and expelling the generated water from the system, the
An imide polymer containing an amine end group was obtained by imidization for a period of time. [IO-B] A solution of 0.125 mole of BTDA in N-methylpyrrolidone was added dropwise to a solution of 0.375 mole of 2,4-diaminotoluene and N-methylpyrrolidone at room temperature, and the mixture was kept at 30°C for 6 hours. Thereafter, the temperature was raised to expel generated water from the system, and the system was kept in a reflux state for 5.5 hours to obtain an imide polymer containing an amine end group. [IO-C] 3,3'-diaminobenzophenone 0.0094moleN
- during methylpyrrolidone solution reflux
A 0.0063 mole N-methylpyrrolidone solution of BTDA was added dropwise, and the system was kept in a reflux state for 6 hours while expelling the generated water from the system to obtain an imide polymer containing an amine end group. [IO-D] 3,3'-diaminodiphenylsulfone
An imide polymer containing an amine end group was obtained from 0.0081 mole and 0.0054 mole of BTDA in the same manner as IO-A. [IO-E] 3,3'-diaminodiphenylsulfone 0.15mole
and 4-acid chloride of trimellitic anhydride
An amide-imide polymer containing an amine end group was obtained from 0.1 mole by the same method as IO-B. Production of glycidylation reaction product [GAI-1] Amine end group-containing imide polymer IO-
After reacting 0.0369 mole of A (theoretical calculated amount), 1.476 mole of epichlorohydrin, and 0.0019 mole of tetraethylammonium bromide in glacial acetic acid at 60°C for 5 hours, NaOH (15% excess of the stoichiometric requirement) was added as a solid. The mixture was kept in a reflux state for 3 hours to obtain a glycidylated product. The NMR spectrum showed that the epoxidation rate due to ring closure was approximately 95%. [GAI-2] 0.0092 mole of IO-B (theoretical calculation amount) and 0.369 mole of β-methylepichlorohydrin in glacial acetic acid for 60
After reaction at 6.5 hours at 120 DEG C., 0.0425 mole of NaOH was reacted as a solid, and the mixture was kept in a reflux state at 120 to 130 DEG C. for 2 hours to obtain a β-methylglycidylated product. NMR showed that the epoxidation rate was approximately 98%. [GAI-3] IO-C0.0083mole (theoretical calculation amount), β-methylepichlorohydrin 0.416mole and LioH (IO-C
5mole%) was reacted in a mixed solvent of glacial acetic acid and N,N-dimethylformamide at 60°C for 6.5 hours.
Then, add 0.0318% mole of solid NaOH to 150
Reflux was performed at ℃ for 2 hours to obtain β-methylglycidylated product. NMR showed that the epoxidation rate was approximately 89%. [GAI-4] 0.0038 mole of IO-D (theoretical calculation amount), 0.152 mole of β-methylepichlorohydrin, and LiOH (the amount of IO-D
(4mole%) was reacted in a mixed solvent of glacial acetic acid and N,N-dimethylformamide at 70°C for 5 hours.
Thereafter, 0.0175 mole of solid NaOH was added, and the mixture was heated to 150°C and refluxed for 2 hours to obtain a β-methylglycidylated product. According to NMR, the epoxidation rate was approximately 92%. [GAI-5] Amine end group-containing amide-imide polymer IO-
E0.0095mole (theoretical calculation amount), β-methylepichlorohydrin 0.455mole and LiOH (IO-E)
5mole%) was reacted in a mixed solvent of glacial acetic acid and N,N-dimethylformamide at 50°C for 10 hours.
Then add 0.044mole of solid NaOH, 120~130℃
Stirring was continued for 3 hours in a reflux state to obtain a β-methylglycidylated product. NMR showed that the epoxidation rate was approximately 90%. Comparative example of preparation of cured product 1 Bisphenol A diglycidyl ether type epoxy (trade name: Ciel Co., Ltd., Epicoat 828)
[Epoxy equivalent: 1898 g/eq] 49.0 g of 4,4'-diaminodiphenylsulfone (DDS) was heated and mixed with 151 g, and heated in a mold at 150°C/3 hours + 170°C/2 hours +
A cured product was obtained by curing at 200°C for 17 hours. Vikatsu softening point temperature [TS] of this cured product, thermal decomposition start temperature (5% weight loss, Heating
Rate15℃/mm, in air) was measured. Comparative Example 2 Tetraglycidylamine type epoxy of 4,4'-diaminodiphenylmethane (trade name: Sumitomo Chemical Co., Ltd., ELM-434) [Epoxy equivalent: 110 to 130 g/
carbon fiber content
60% with mold heating press at 170℃/2 hours +200
C./17 hours to obtain a cured product. TS, TGA, and bending strength tests were conducted on these. (The bending strength test was carried out in accordance with JISK-6911.) Comparative Example 3 Polyfunctional epoxy of tetraglycidyl ether type of tetraphenylethane (trade name: Ciel Co., Ltd.)
Epicoat 1031) [Epoxy equivalent 200-220g/
eq] 21g and imide polymer containing amine end groups (IO
-A synthetic product) 15.4g was dissolved in N,N-dimethylformamide, impregnated and dried on a glass plate or carbon fiber, and heated at 180℃/2.
It was cured for 15 hours at +230°C to obtain a cured product. TS, TGA, and bending strength tests were conducted on these. Example 1 A varnish was prepared by dissolving 19.1 g of GAI-1 and 13.6 g of IO-A in a mixed solvent of methyl ethyl ketone and N,N-dimethylformamide. Carbon fiber is impregnated with varnish, dried and placed in a mold (carbon fiber content
After curing at 180°C for 3 hours using a heating press (60vo 1%), it was further cured at 230°C for 18 hours in an open environment to prepare a bending test piece. The samples for pyrolysis measurement were cured on a glass plate under the same curing conditions. Example 2 A varnish was prepared by dissolving 28.7 g of GAI-2, 4.6 g of diaminodiphenylsulfone, and 10.4 g of IO-B in methyl ethyl ketone. Thereafter, a cured product was produced in the same manner as in Example-1. Example 3 A varnish was prepared by dissolving 18.8 g of GAI-2 and 13.6 g of IO-B in a mixed solvent of methyl ethyl ketone and N,N-dimethylformamide. Then Example-1
A cured product was prepared in the same manner as above. Example 4 Example-1 from GAI-3 16.2g and IO-B6.8g
Samples for TGA and TS measurements were prepared under the same curing conditions. Example 5 Example-4 from 12.5g of GAI-4 and 3.4g of IO-B
A cured product was produced by the same method. Example 6 Example from GAI-5 13.7g and IO-E 12.5g-
4. A cured product was produced by the same method. Data regarding Comparative Examples 1 to 3 and Examples 1 to 6 are shown in Table-1. In addition, thermal decomposition comparison results for Comparative Examples 1 and 3 and Examples 3 and 5 (heating rate 15°C/min, air
Thermobalance data at 50 ml/min) are shown in Figure 1.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明樹脂組成物の一例および比較
品について熱天秤を用いて熱分解性を測定したと
きの加熱温度と重量係数保持率との関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between heating temperature and weight coefficient retention when the thermal decomposition properties of an example of the resin composition of the present invention and a comparative product were measured using a thermobalance.

Claims (1)

【特許請求の範囲】 1 一般式() (式中、Arは2価の芳香族有機基であり、
Ar′は4価の芳香族有機基であり4個のカルボニ
ル基はそれぞれ別の炭素原子に直接結合しかつ各
対のカルボニル基はAr′基中における隣接炭素原
子に結合しており、Ar″は3価の芳香族有機基で
あり3個のカルボニル基は、それぞれ別の炭素原
子に直接結合し、かつ一対のカルボニル基は
Ar″基中における隣接炭素原子に結合しており、
そして、n,mは0又は正の整数である。但しn
+m>0である。) で表わされるジアミンと一般式() (式中、Ar,Ar′,Ar″,nmは前述の定義を意
味し、Y1,Y2,Y3およびY4は水素原子、 【式】または【式】 (Rは水素原子又は有機基、Xはハロゲン原子を
表わす。)である。但し、Y1,Y2,Y3およびY4
のうち少なくとも一つは【式】であ る)で表わされるエポキシ末端基含有芳香族イミ
ド又はアミドイミド重合体とからなる硬化性樹脂
組成物。
[Claims] 1 General formula () (In the formula, Ar is a divalent aromatic organic group,
Ar' is a tetravalent aromatic organic group, each of the four carbonyl groups is directly bonded to a different carbon atom, and each pair of carbonyl groups is bonded to an adjacent carbon atom in the Ar' group, and Ar' is a trivalent aromatic organic group, each of the three carbonyl groups is directly bonded to a different carbon atom, and the pair of carbonyl groups is
is bonded to the adjacent carbon atom in the Ar″ group,
Further, n and m are 0 or positive integers. However, n
+m>0. ) and the general formula () (In the formula, Ar, Ar′, Ar″, nm mean the above definitions, Y 1 , Y 2 , Y 3 and Y 4 are hydrogen atoms, [Formula] or [Formula] (R is a hydrogen atom or an organic group, X represents a halogen atom).However, Y 1 , Y 2 , Y 3 and Y 4
A curable resin composition comprising an epoxy end group-containing aromatic imide or amide imide polymer, at least one of which is represented by the following formula:
JP4077783A 1983-03-14 1983-03-14 Curable resin composition Granted JPS59166531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077783A JPS59166531A (en) 1983-03-14 1983-03-14 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077783A JPS59166531A (en) 1983-03-14 1983-03-14 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS59166531A JPS59166531A (en) 1984-09-19
JPH0125510B2 true JPH0125510B2 (en) 1989-05-18

Family

ID=12590054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077783A Granted JPS59166531A (en) 1983-03-14 1983-03-14 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS59166531A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218627A (en) * 1985-03-23 1986-09-29 Sumitomo Chem Co Ltd Thermally curable heat-resistant resin composition
US10450406B2 (en) * 2017-08-30 2019-10-22 Saudi Arabian Oil Company Fluorinated polyimide-based epoxy materials

Also Published As

Publication number Publication date
JPS59166531A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
EP0047530B1 (en) Maleimide resin composition and process for its production
CN105504282B (en) A kind of fluorenyl Cardo types polyimides diluent and its preparation method and application
EP0099268B1 (en) Process for producing polymaleimide
JPH0433809B2 (en)
JPH0125510B2 (en)
JPS60142973A (en) Triglycidyl compound of aminophenol
JPS58110552A (en) Amino-containing carboxylic acid amide, manufacture and hardenable mixture containing same and epoxy resin
JP2551902B2 (en) Novel bisnadic imide compound and method for producing the same
KR910003512B1 (en) Polyetherimide/epoxyimide resin composition
JPH0522699B2 (en)
JPH0562893B2 (en)
JP2014080494A (en) Curable imide compound, method for producing the same, curable resin composition, and cured material
JPS6311364B2 (en)
JPS629250B2 (en)
JPH0319857B2 (en)
JPH01135765A (en) Novel imide compound and production thereof
JP3103503B2 (en) Method for producing polyamideimide resin by direct polymerization method
JPS6395220A (en) Epoxyimide and production thereof
JPS6311363B2 (en)
JPH0213657B2 (en)
JPH02160752A (en) Butadiyne amideacid and imide
JPH047369B2 (en)
JPS6317857B2 (en)
JPS6138730B2 (en)
JPH0559933B2 (en)