JPS6311363B2 - - Google Patents

Info

Publication number
JPS6311363B2
JPS6311363B2 JP13195983A JP13195983A JPS6311363B2 JP S6311363 B2 JPS6311363 B2 JP S6311363B2 JP 13195983 A JP13195983 A JP 13195983A JP 13195983 A JP13195983 A JP 13195983A JP S6311363 B2 JPS6311363 B2 JP S6311363B2
Authority
JP
Japan
Prior art keywords
formula
group
hours
imide
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13195983A
Other languages
Japanese (ja)
Other versions
JPS6026023A (en
Inventor
Kenzo Watanabe
Shoichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13195983A priority Critical patent/JPS6026023A/en
Publication of JPS6026023A publication Critical patent/JPS6026023A/en
Publication of JPS6311363B2 publication Critical patent/JPS6311363B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、芳香族イミド及び又はアミドイミド
アミンとβ―アルキルグリシジル基を有するエポ
キシ樹脂とからなる耐熱性に優れた硬化性組成物
に関する。 従来エポキシ樹脂硬化物の耐熱性、剛直性を向
上させるため、分子内骨格にイミド環の導入を試
みることが行われている。汎用のエポキシ樹脂
(例えばビスフエノールAのジグリシジルエーテ
ル等)とイミド骨格を有する硬化剤を反応させた
例が多い。 我々は、これら汎用のエポキシ樹脂硬化物の耐
熱性を向上させる目的で鋭意研究したところ、エ
ポキシ基として、一般に使用される、グリシジル
基の代りに、β―アルキルグリシジル基を持つた
エポキシ樹脂と、硬化剤として、芳香族イミド又
はアミドイミドアミンを使うことにより、耐熱
性、特に耐熱分解性に優れる硬化物が得られるこ
とを見い出し本発明を達成した。 硬化により生成する水酸基の分解がアルキル基
の存在により抑制され、更に骨格にイミド環を有
するため耐熱性が向上すると考えられる。本発明
の目的は、耐熱性の極めて良好な、エポキシ樹脂
硬化性組成物を提供するにある。 即ち本発明の要旨は、 一般式() (式中、Arは
The present invention relates to a curable composition having excellent heat resistance and comprising an aromatic imide and/or an amide imide amine and an epoxy resin having a β-alkylglycidyl group. Conventionally, in order to improve the heat resistance and rigidity of cured epoxy resin products, attempts have been made to introduce imide rings into the intramolecular skeleton. There are many examples in which a general-purpose epoxy resin (eg, diglycidyl ether of bisphenol A, etc.) is reacted with a curing agent having an imide skeleton. We conducted intensive research to improve the heat resistance of cured products of these general-purpose epoxy resins, and found that epoxy resins with β-alkylglycidyl groups instead of the commonly used glycidyl groups as epoxy groups, The present invention has been achieved by discovering that by using aromatic imide or amide imide amine as a curing agent, a cured product having excellent heat resistance, particularly heat decomposition resistance, can be obtained. It is thought that the presence of the alkyl group suppresses the decomposition of the hydroxyl group generated by curing, and that the heat resistance is improved because the skeleton has an imide ring. An object of the present invention is to provide an epoxy resin curable composition that has extremely good heat resistance. That is, the gist of the present invention is the general formula () (In the formula, Ar is

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】及びこれらの 異性体よりなる群から選ばれる2価の芳香族有機
基であり、Ar′は
A divalent aromatic organic group selected from the group consisting of [Formula] and their isomers, and Ar' is

【式】【formula】

【式】及び[Formula] and

【式】よりな る群から選ばれる4価の芳香族有機基であり、4
個のカルボニル基はそれぞれ別の炭素原子に直接
結合し、かつ各対のカルボニル基はAr′基中にお
ける隣接炭素原子に結合しており、Ar′は
[Formula] is a tetravalent aromatic organic group selected from the group consisting of 4
Each carbonyl group is directly bonded to a different carbon atom, and each pair of carbonyl groups is bonded to an adjacent carbon atom in the Ar′ group, and Ar′ is

〔イミド重合体:IO―A〕[Imide polymer: IO-A]

精製2,4―ジアミノトルエン0.45moleと乾
燥N―メチル―2―ピロリドン溶液リフラツクス
中に精製3,3′,4,4′―ベンゾフエノンテトラ
カルボン酸ジ無水物〔以下BTDAと略〕
0.15moleの乾燥N―メチル―2―ピロリドン溶
液を滴下し、生成した水を系外に追い出した後リ
フラツクス状態で4時間保ちイミド化する事によ
り、アミン末端基含有イミド重合体を得た。生成
物の全アミン量3.70×10-3(eq・mol/g)、Tm
〔コフラー法〕216℃であつた。 〔イミド重合体:IO―B〕 2,4―ジアミノトルエン0.375moleとN―メ
チル―2―ピロリドン溶液にBTDA0.25moleの
N―メチル―2―ピロリドン溶液を滴下し、生成
した水を系外に追い出しつつリフラツクス状態で
6時間保ちアミン末端基含有イミド重合体を得
た。全アミン量2.01×10-3(eq・mol/g)、
Tm260℃ 〔イミド重合体:IO―C〕 3,3′―ジアミノベンゾフエノン0.0094moleと
N―メチル―2―ピロリドン溶液リフラツクス中
にBTDA0.0063mole N―メチル―2―ピロリド
ン溶液を滴下し、生成した水を系外に追い出しな
がらリフラツクス状態で6時間保ちアミン末端基
含有イミド重合体を得た。全アミン量1.30×10-3
(eq・mol/g)、Tm275℃ 〔イミド重合体:IO―D〕 3,3′―ジアミノジフエニルスルフオン
0.0081moleとBTDA0.0054moleからIO―Cと同
様の方法により、アミン末端基含有イミド重合体
を得た。全アミン量1.65×10-3(eq・mol/g)、
Tm265℃ (アミドイミド重合体:IO―E〕 3,3′―ジアミノジフエニルスルフオン
0.15moleとN―メチル―2―ピロリドン溶液に
室温でトリメリツト酸無水物の4―酸クロライド
0.075moleのN―メチル―2―ピロリドン溶液を
滴下し、30℃で6時間保つた。その後昇温して生
成した水を系外に追い出し、リフラツクス状態で
6時間保ちアミン末端基含有アミドイミド重合体
を得た。全アミン量3.8×10-3(eq・mol/g)、
Tm250℃ β―メチルグリシジルアミノ基含有芳香族アミン
エポキシ樹脂の製造 〔GA―1〕 1四つ口フラスコにメタトルイジン107.2g
(1mole)とβ―メチルエピクロルヒドリン319.6
g(6mole)<当量の3倍>に水酸化リチウム
1.198g(0.05mole)とエタノール200ml、水20ml
を加え、窒素雰囲気下60℃で8時間反応した。そ
の後減圧蒸留により過剰のβ―メチルエピクロル
ヒドリンを除去し、次にトルエン500mlを加えた
後、50%水酸化ナトリウム水溶液184g<当量の
1.15倍>を滴下ロートにより滴下し、65℃で3時
間保つた。反応後生成物を分液ロートにて数回水
洗を行ない、溶剤層を分離し95℃、8mmHgで減
圧蒸留することにより低粘度液体を得た。この化
合物のエポキシ当量は148(g/eq)であつた。 〔GA―2〕 1四つ口フラスコにp―アミノフエノール
54.6g(0.5mole)、β―メチルエピクロルヒドリ
ン532.7g(5mol)<当量の3,3倍>、エタノ
ール100mlおよび水酸化リチウム―水和物0.84g
を水20gに溶解したものを加え、窒素雰囲気下60
℃で6時間反応した。その後減圧蒸留により過剰
のβ―メチルエピクロルヒドリンをほぼ除去後、
トルエン400mlを加え50%水酸化ナトリウム水溶
液138g<当量の1.15倍>を1時間要して滴下し
た。その後系内を60℃で2時間保つた。反応生成
物に約倍量の水を加えて数回水洗を行ない、有機
層を分離した。これを100℃、10mmHgで減圧蒸
留することにより液体生成物を得た。この化合物
のエポキシ当量は121(g/eq)であつた。 〔GA―3〕 4,4′―ジアミノジフエニルメタン100g
(0.51mole)、β―メチルエピクロルヒドリン861
g(8.1mole)<当量の4倍>、3弗化ホウ素―
エチルエーテルコンプレツクス0.5gを還流冷却
器、温度計、撹拌機、窒素吹込み管を備えた1
フラスコに加え、内温を70℃に6時間保つた。そ
の後減圧蒸留により過剰のβ―メチルエピクロル
ヒドリンをほぼ除去後トルエンを500ml加え、次
いで50%水酸化ナトリウム水溶液を1時間要して
滴下した。内温を65℃に3時間保ち反応を停止し
た。反応混合物を過して沈殿を除去し、更に約
2倍量の水で数回水洗して食塩および過剰のアル
カリを除いた。その後95℃、8mmHgでトルエ
ン、残留β―メチルエピクロルヒドリンを減圧蒸
留により完全に除去すると赤褐色粘稠液が得られ
た。この化合物のエポキシ当量は158(g/eq)
であつた。 硬化物の作製 比較例 1 m―アミノフエノールのトリグリシジルタイプ
のエポキシ(商品名:住友化学社、ELM―120)
〔エポキシ当量110〜125g/eq〕100gと4,4′―
ジアミノジフエニルメタン(DDM)43gを加熱
混合し、金型で150℃/1時間+180℃/5時間硬
化して硬化物を得た。この硬化物のビカツト軟化
点温度〔Ts〕、熱天秤〔TGA〕による熱分解開
始温度(10%重量減、Heating Rate 15℃/
min,air中)を測定した。 比較例 2 4,4′―ジアミノジフエニルメタンのテトラグ
リシジルアミンタイプのエポキシ(商品名:住友
化学社、ELM―434)〔エポキシ当量110〜130
g/eq〕50gと4,4′―ジアミノジフエニルスル
フオン(DDS)25.5gをメチルエチルケトンに溶
解し、ガラスプレート上又は炭素繊維(商品名:
東レ社、トレカT―300)に炭素繊維含量60vol%
として含浸乾燥したものを金型加熱プレスで170
℃/2時間+200℃/17時間硬化し、硬化物を得
た。ガラスプレート上硬化物についてはTGAに
よる熱分解開始温度を測定し、コンポジツト硬化
物についてはTSを測定した。 比較例 3 ELM―434 10gとアミン末端基含有イミド重
合体(IO―A)22.5gを48.8gのN,N―ジメチ
ルホルムアミドに溶解しワニスを調整した。比較
例2と同様の方法により、160℃/3時間+200
℃/17時間硬化した硬化物についてTGA,Tsの
測定を行なつた。 実施例 1 メタトルイジンのジβ―メチルグリシジルタイ
プのエポキシ(GA―1合成品)5gとイミド重
合体(IO―B)16.9gを32.9gのN,N―ジメチ
ルホルムアミドに溶解してワニスを調整した。比
較例2と同様の方法により、160℃/3時間+200
℃/17時間硬化した硬化物についてTGA,Tsの
測定を行なつた。 実施例 2 p―アミノフエノールのトリβ―メチルグリシ
ジルタイプのエポキシ(GA―2合成品)5gと
イミド重合体(IO―B)20.6gを38.4gのN,N
―ジメチルホルムアミドに溶解してワニスを調整
した。以下実施例1と同条件にて硬化物を作製し
たTGA,Tsの測定を行なつた。 実施例 3 4,4′―ジアミノジフエニルメタンのテトラβ
―メチルグリシジルタイプのエポキシ(GA―3
合成品)5gとイミド重合体(IO―A)8.5gを
20.3gのN,N―ジメチルホルムアミドに溶解し
ワニスを調整した。以下実施例1と同条件にて硬
化物を作製し評価した。 実施例 4 GA―3合成品5gとイミド重合体(IO―B)
15.8gを31.2gのN,N―ジメチルホルムアミド
に溶解しワニスを調整した。以下実施例1と同条
件にて硬化物を作製し評価した。 実施例 5 GA―3合成品2gとイミド重合体(IO―C)
9.7gを17.6gのN,N―ジメチルホルムアミド
に溶解し、実施例1と同様の方法により、180
℃/3時間+230℃/17時間硬化した硬化物につ
いて評価した。 実施例 6 GA―3合成品5gとイミド重合体(IO―D)
19.2gを36.3gのN,N―ジメチルホルムアミド
に溶解し、実施例5と同条件にて作製した硬化物
の評価を行なつた。 実施例 7 GA―3合成品5gとアミドイミド重合体(IO
―E)8.3gを20gのN,N―ジメチルホルムア
ミドに溶解しワニスを調整した。以下実施例1と
同条件にて硬化物を作製し評価した。 比較例1〜3および実施例1〜7についてのデ
ータを表―1に示す。 また比較例2,3および実施例3,5,6につ
いての熱分解性比較結果(Heating Rate 15℃/
min、air50ml/minでの熱天秤でのデータ)を第
1図に示す。
Purified 3,3',4,4'-benzophenonetetracarboxylic dianhydride [hereinafter abbreviated as BTDA] in reflux with 0.45 mole of purified 2,4-diaminotoluene and dry N-methyl-2-pyrrolidone solution.
0.15 mole of dry N-methyl-2-pyrrolidone solution was added dropwise, and after expelling the produced water from the system, it was kept in a reflux state for 4 hours and imidized to obtain an imide polymer containing an amine end group. Total amine amount of product 3.70×10 -3 (eq・mol/g), Tm
[Kofler method] The temperature was 216°C. [Imide polymer: IO-B] A solution of 0.25 mole of BTDA in N-methyl-2-pyrrolidone was added dropwise to a solution of 0.375 mole of 2,4-diaminotoluene and N-methyl-2-pyrrolidone, and the generated water was removed from the system. The mixture was kept in a reflux state for 6 hours while being expelled to obtain an imide polymer containing an amine end group. Total amine amount 2.01×10 -3 (eq・mol/g),
Tm260℃ [Imide polymer: IO-C] 0.0094 mole of 3,3'-diaminobenzophenone and N-methyl-2-pyrrolidone solution was added dropwise to a reflux solution of 0.0063 mole of BTDA and N-methyl-2-pyrrolidone. The system was kept in a reflux state for 6 hours while expelling water from the system to obtain an imide polymer containing an amine end group. Total amine amount 1.30×10 -3
(eq・mol/g), Tm275℃ [Imide polymer: IO-D] 3,3′-diaminodiphenylsulfonate
An imide polymer containing an amine end group was obtained from 0.0081 mole and 0.0054 mole of BTDA in the same manner as IO-C. Total amine amount 1.65×10 -3 (eq・mol/g),
Tm265℃ (amideimide polymer: IO-E) 3,3'-diaminodiphenylsulfon
Add 0.15 mole 4-acid chloride of trimellitic anhydride to N-methyl-2-pyrrolidone solution at room temperature.
0.075 mole of N-methyl-2-pyrrolidone solution was added dropwise and kept at 30°C for 6 hours. Thereafter, the temperature was raised to expel generated water from the system, and the system was kept in a reflux state for 6 hours to obtain an amide-imide polymer containing an amine end group. Total amine amount 3.8×10 -3 (eq・mol/g),
Tm250℃ Production of aromatic amine epoxy resin containing β-methylglycidylamino group [GA-1] 107.2 g of metatoluidine in a four-necked flask
(1mole) and β-methylepichlorohydrin 319.6
g (6 mole) <3 times the equivalent> of lithium hydroxide
1.198g (0.05mole) and 200ml of ethanol, 20ml of water
was added and reacted for 8 hours at 60°C under a nitrogen atmosphere. After that, excess β-methylepichlorohydrin was removed by vacuum distillation, then 500 ml of toluene was added, and 184 g of 50% aqueous sodium hydroxide solution
1.15 times the amount was added dropwise through a dropping funnel and kept at 65°C for 3 hours. After the reaction, the product was washed with water several times in a separatory funnel, and the solvent layer was separated and distilled under reduced pressure at 95° C. and 8 mmHg to obtain a low viscosity liquid. The epoxy equivalent of this compound was 148 (g/eq). [GA-2] p-aminophenol in 1 four-necked flask
54.6g (0.5mole), β-methylepichlorohydrin 532.7g (5mol) <3.3 times the equivalent>, ethanol 100ml and lithium hydroxide hydrate 0.84g
Dissolved in 20 g of water, add 60 g of water under nitrogen atmosphere.
The reaction was carried out at ℃ for 6 hours. Then, after removing most of the excess β-methylepichlorohydrin by vacuum distillation,
400 ml of toluene was added, and 138 g of a 50% aqueous sodium hydroxide solution (1.15 times the equivalent amount) was added dropwise over 1 hour. Thereafter, the inside of the system was kept at 60°C for 2 hours. Approximately twice the amount of water was added to the reaction product and washed several times with water, and the organic layer was separated. This was distilled under reduced pressure at 100°C and 10 mmHg to obtain a liquid product. The epoxy equivalent weight of this compound was 121 (g/eq). [GA-3] 4,4′-diaminodiphenylmethane 100g
(0.51mole), β-methylepichlorohydrin 861
g (8.1 mole) <4 times the equivalent>, boron trifluoride -
0.5 g of ethyl ether complex was placed in a container equipped with a reflux condenser, thermometer, stirrer, and nitrogen blowing tube.
The mixture was added to a flask and the internal temperature was kept at 70°C for 6 hours. After removing most of the excess β-methylepichlorohydrin by distillation under reduced pressure, 500 ml of toluene was added, and then a 50% aqueous sodium hydroxide solution was added dropwise over 1 hour. The reaction was stopped by keeping the internal temperature at 65°C for 3 hours. The reaction mixture was filtered to remove precipitates, and further washed several times with about twice the amount of water to remove salt and excess alkali. Thereafter, toluene and residual β-methylepichlorohydrin were completely removed by vacuum distillation at 95° C. and 8 mmHg to obtain a reddish brown viscous liquid. The epoxy equivalent of this compound is 158 (g/eq)
It was hot. Comparative example of preparation of cured product 1 m-aminophenol triglycidyl type epoxy (product name: Sumitomo Chemical Co., Ltd., ELM-120)
[Epoxy equivalent 110-125g/eq] 100g and 4,4'-
43 g of diaminodiphenylmethane (DDM) was heated and mixed and cured in a mold at 150°C for 1 hour + 180°C for 5 hours to obtain a cured product. Vikatsu softening point temperature [Ts] of this cured product, thermal decomposition start temperature (10% weight reduction, Heating Rate 15℃/
min, in air) was measured. Comparative Example 2 Tetraglycidylamine type epoxy of 4,4'-diaminodiphenylmethane (trade name: Sumitomo Chemical Co., Ltd., ELM-434) [Epoxy equivalent: 110-130
g/eq] and 25.5 g of 4,4'-diaminodiphenylsulfonate (DDS) were dissolved in methyl ethyl ketone and placed on a glass plate or carbon fiber (trade name:
Toray Industries, Trading Card T-300) contains 60vol% carbon fiber
The impregnated and dried material is heated and pressed into a mold at 170
C./2 hours + 200.degree. C./17 hours to obtain a cured product. For the cured product on a glass plate, the thermal decomposition onset temperature was measured by TGA, and for the composite cured product, T S was measured. Comparative Example 3 A varnish was prepared by dissolving 10 g of ELM-434 and 22.5 g of an amine end group-containing imide polymer (IO-A) in 48.8 g of N,N-dimethylformamide. 160℃/3 hours +200℃ by the same method as Comparative Example 2
The TGA and Ts of the cured product cured at ℃/17 hours were measured. Example 1 A varnish was prepared by dissolving 5 g of metatoluidine diβ-methylglycidyl type epoxy (GA-1 synthetic product) and 16.9 g of imide polymer (IO-B) in 32.9 g of N,N-dimethylformamide. did. 160℃/3 hours +200℃ by the same method as Comparative Example 2
The TGA and Ts of the cured product cured at ℃/17 hours were measured. Example 2 5 g of p-aminophenol triβ-methylglycidyl type epoxy (GA-2 synthetic product) and 20.6 g of imide polymer (IO-B) were mixed with 38.4 g of N,N
- A varnish was prepared by dissolving it in dimethylformamide. A cured product was prepared under the same conditions as in Example 1, and its TGA and Ts were measured. Example 3 Tetra β of 4,4′-diaminodiphenylmethane
- Methylglycidyl type epoxy (GA-3
Synthetic product) 5g and imide polymer (IO-A) 8.5g
A varnish was prepared by dissolving it in 20.3 g of N,N-dimethylformamide. A cured product was produced and evaluated under the same conditions as in Example 1. Example 4 5 g of GA-3 synthetic product and imide polymer (IO-B)
A varnish was prepared by dissolving 15.8 g in 31.2 g of N,N-dimethylformamide. A cured product was produced and evaluated under the same conditions as in Example 1. Example 5 2 g of GA-3 synthetic product and imide polymer (IO-C)
9.7g was dissolved in 17.6g of N,N-dimethylformamide, and 180
The cured product cured at 230° C. for 3 hours and 17 hours at 230° C. was evaluated. Example 6 5g of GA-3 synthetic product and imide polymer (IO-D)
19.2 g was dissolved in 36.3 g of N,N-dimethylformamide, and a cured product prepared under the same conditions as in Example 5 was evaluated. Example 7 5 g of GA-3 synthetic product and amide-imide polymer (IO
-E) 8.3g was dissolved in 20g of N,N-dimethylformamide to prepare a varnish. A cured product was produced and evaluated under the same conditions as in Example 1. Data for Comparative Examples 1 to 3 and Examples 1 to 7 are shown in Table 1. In addition, thermal decomposition comparison results for Comparative Examples 2 and 3 and Examples 3, 5, and 6 (Heating Rate 15℃/
Fig. 1 shows the data on a thermobalance at air 50 ml/min.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、比較例2,3および実施例3,5,
6について、加熱速度15℃/分、50ml/分熱天秤
における熱分解性比較結果を示したものである。
FIG. 1 shows Comparative Examples 2 and 3, Examples 3 and 5,
6 shows the thermal decomposition comparison results at a heating rate of 15° C./min and a thermal balance of 50 ml/min.

Claims (1)

【特許請求の範囲】 1 一般式() (式中Arは【式】 【式】 【式】 【式】 【式】 【式】 【式】 【式】 【式】 【式】【式】及びこれらの 異性体よりなる群から選ばれる2価の芳香族有機
基でありAr′は【式】 【式】及び【式】よりな る群から選ばれる4価の芳香族有機基であり4個
のカルボニル基はそれぞれ別の炭素原子に直接結
合し、かつ各対のカルボニル基はAr′基中におけ
る隣接炭素原子に結合しておりAr″は
【式】で示される3価の芳香族有機基で あり3個のカルボニル基はそれぞれ別の炭素原子
に直接結合し、かつ一対のカルボニル基はAr″基
中における隣接炭素原子に結合しており、そして
n,mは0又は正の整数であり、5≧m+n>0
である。)で表わされるジアミンとβ―アルキル
グリシジル基を含有する芳香族アミンエポキシ樹
脂とからなる硬化性樹脂組成物。
[Claims] 1 General formula () (In the formula, Ar is 2 selected from the group consisting of [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] [Formula] and isomers thereof Ar′ is a tetravalent aromatic organic group selected from the group consisting of [Formula] [Formula] and [Formula], and each of the four carbonyl groups is directly bonded to a different carbon atom. And each pair of carbonyl groups is bonded to an adjacent carbon atom in the Ar' group, and Ar'' is a trivalent aromatic organic group represented by the formula, and each of the three carbonyl groups is bonded to a different carbon atom. is directly bonded to the atom, and the pair of carbonyl groups is bonded to adjacent carbon atoms in the Ar″ group, and n and m are 0 or a positive integer, and 5≧m+n>0
It is. ) and an aromatic amine epoxy resin containing a β-alkylglycidyl group.
JP13195983A 1983-07-21 1983-07-21 Curable resin composition Granted JPS6026023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13195983A JPS6026023A (en) 1983-07-21 1983-07-21 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13195983A JPS6026023A (en) 1983-07-21 1983-07-21 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS6026023A JPS6026023A (en) 1985-02-08
JPS6311363B2 true JPS6311363B2 (en) 1988-03-14

Family

ID=15070213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13195983A Granted JPS6026023A (en) 1983-07-21 1983-07-21 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS6026023A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083030B2 (en) * 1985-01-17 1996-01-17 住友化学工業株式会社 Heat-curable heat-resistant resin composition
JPS61218627A (en) * 1985-03-23 1986-09-29 Sumitomo Chem Co Ltd Thermally curable heat-resistant resin composition

Also Published As

Publication number Publication date
JPS6026023A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
Cotter Ring-Forming Polymerizations Pt B 2: Heterocyclic Rings
JPH03128386A (en) Novel epoxide containing highly reactive silicon
JPS6220206B2 (en)
US4244857A (en) Curing agent for polyepoxides and epoxy resins and composites cured therewith
JPH0212225B2 (en)
JPH0321014B2 (en)
JPS607650B2 (en) Curable composition consisting of epoxy resin and phenylindane diamine mixture
JPS6311363B2 (en)
US4861810A (en) Resin materials based on amines
JPS60142973A (en) Triglycidyl compound of aminophenol
JPH05156003A (en) Imino-functional polyethers and their use
JPS6311350B2 (en)
US4552935A (en) Heat-curable epoxy resin mixtures containing imide compounds and condensation products of phenols, amines and aldehydes or ketones
JPS6311364B2 (en)
JPH01289834A (en) Thermosetting resin composition
JPS6317852B2 (en)
JPH0730021B2 (en) Polymaleimide compound
JPS6222988B2 (en)
JPS6395220A (en) Epoxyimide and production thereof
JPS5850657B2 (en) Method for producing terminal hydroxyphenyl ladder polysiloxane
WO2013033955A1 (en) Benzoxazine monomer comprising benzocyclobutenyl functional group, synthetic method therefor and use thereof
JPH0125510B2 (en)
JP2792209B2 (en) Flexible bisimide compound
JPS645056B2 (en)
JPS6023424A (en) Heat-resistant resin composition