JPS63112468A - Manufacture of silicon nitride base sintered body - Google Patents

Manufacture of silicon nitride base sintered body

Info

Publication number
JPS63112468A
JPS63112468A JP61257450A JP25745086A JPS63112468A JP S63112468 A JPS63112468 A JP S63112468A JP 61257450 A JP61257450 A JP 61257450A JP 25745086 A JP25745086 A JP 25745086A JP S63112468 A JPS63112468 A JP S63112468A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
temperature
sintering
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61257450A
Other languages
Japanese (ja)
Inventor
尚登 広崎
明 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61257450A priority Critical patent/JPS63112468A/en
Publication of JPS63112468A publication Critical patent/JPS63112468A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、自動車9機械装置、化学装置、宇宙航空機
器等々の広い分野において使用される各種構造部品の素
材として利用され、とくにすぐ九九高温強度を有するフ
ァインセラミンクス材料を得るのに好適な窒化珪素質焼
結体の製造方法に関するものでるる。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention can be used as a material for various structural parts used in a wide range of fields such as automobile machinery, chemical equipment, aerospace equipment, etc. In particular, the present invention relates to a method of manufacturing a silicon nitride sintered body suitable for obtaining a fine ceramic material having a high temperature strength of 90%.

(従来の技術お;びその問題点) 窒化珪素を主成分とする焼結体は常温および高温で化学
的に安定でメク、高い機械的強度を有する念め、軸受な
どの摺動部材、ターボチャージャロータなどのエンジン
部材等として好適な材料でろる0 しかし、窒化珪素はこれ単独では焼結が困難なため、通
常の場合、M go 、 Alt Os −Y! Os
等の焼結助剤を添加して焼結を行う方法が用いられてい
る。
(Conventional technology and its problems) Sintered bodies mainly composed of silicon nitride are chemically stable at room and high temperatures, have high mechanical strength, and are useful for sliding parts such as bearings, turbochargers, etc. However, since silicon nitride is difficult to sinter by itself, it is usually used as Mgo, AltOs-Y! Os
A method is used in which sintering is performed by adding a sintering aid such as.

これらの焼結は、焼結時に生ずる液相を媒介とした液相
焼結によると考えられており、焼結後に液相はガラス相
として焼結体中に残留する。一方、焼結体の耐クリープ
特性、高温強度、耐酸化性等の特性については、焼結体
中に残留する第2相すなわちガラス相に犬きく影響を受
ける。そして、上述した工うな焼結助剤から生じるガラ
ス相は軟化温度が低いため窒化珪素質焼結体の高温機械
特性を低下させるので好ましくないという問題点がろつ
几。
These sinterings are thought to be due to liquid phase sintering mediated by a liquid phase generated during sintering, and after sintering, the liquid phase remains in the sintered body as a glass phase. On the other hand, the properties of the sintered body, such as creep resistance, high temperature strength, and oxidation resistance, are greatly influenced by the second phase, that is, the glass phase, remaining in the sintered body. Furthermore, the glass phase produced from the above-mentioned sintering aids has a low softening temperature, and therefore deteriorates the high-temperature mechanical properties of the silicon nitride sintered body, making it undesirable.

一方、高温機械特性に優れる窒化珪素質焼結体として、
窒化珪素粉末にY!01を添加して窒素雰囲気中でホッ
トプレスする方法が知られている。しかしながら、ホン
トプレス法は焼結性KWlれち密な焼結体が得られるも
のの単純形状の製品しか與造できないという欠点かめる
On the other hand, as a silicon nitride sintered body with excellent high-temperature mechanical properties,
Y to silicon nitride powder! A method is known in which 01 is added and hot-pressed in a nitrogen atmosphere. However, although the Hontopress method produces a dense sintered body with good sinterability, it suffers from the disadvantage that it can only produce products with simple shapes.

この発明は、上述した従来の問題点に着目してなされた
もので、特に高温における強度にすぐれた。複雑形状の
製品も製造可能な窒化珪素質焼結体の製造方法を提供す
ることを目的としている。
This invention was made by paying attention to the above-mentioned conventional problems, and has particularly excellent strength at high temperatures. It is an object of the present invention to provide a method for manufacturing a silicon nitride sintered body that can manufacture products with complex shapes.

〔発明の構成〕[Structure of the invention]

(問題を解決するための手段) この発明による窒化珪素質焼結体の製造方法は、窒化珪
素:61〜95重i%、Ceを除く周期律表第U[a族
元素から選ばれる1種類の酸化物:5〜35重量シ、S
iO,:窒化珪素の4m!%以下、七の他の酸化物:C
eを除く周期律表第1[[a族元素の酸化物の5X量%
以下からなる原料粉末を混合・成形して得た成形体を、
2気圧以上の窒素雰囲気下で1850℃以上2200℃
以下の温度で焼成することで理論密度93%以上の焼結
体を得ることを特徴としている。
(Means for solving the problem) The method for producing a silicon nitride sintered body according to the present invention includes silicon nitride: 61 to 95 weight i%, one type selected from group U [a group elements of the periodic table excluding Ce] Oxide: 5 to 35 weight S, S
iO,: 4m of silicon nitride! % or less, 7 other oxides: C
5X amount% of oxides of group 1 elements of the periodic table excluding e
A molded body obtained by mixing and molding raw material powders consisting of the following,
1850℃ or more 2200℃ under nitrogen atmosphere of 2 atmospheres or more
It is characterized in that a sintered body with a theoretical density of 93% or more is obtained by firing at the following temperature.

すなわち、この発明では窒化珪素粉末に焼結助剤として
Ceを除く周期律表第IIIa族の元素の酸化物を1種
類だけ用いることにより、焼結体に残留する第2相の軟
化温度を高くし得ることに着目して前記問題点を解決し
たものである。
That is, in this invention, the softening temperature of the second phase remaining in the sintered body is raised by using only one type of oxide of an element in group IIIa of the periodic table excluding Ce as a sintering aid in the silicon nitride powder. This problem was solved by focusing on what was possible.

セリウム(Ce )を除い九のは、Ce Ot は焼成
中にSi、N4と反応して5iotを生成するため、焼
結体の高温強度が低くなってしまうためである。
The reason for excluding cerium (Ce) is that Ce Ot reacts with Si and N4 during firing to generate 5iot, which lowers the high temperature strength of the sintered body.

また、Sin、は窒化珪素の4重量%エリ多いと焼結体
の高温強度が極端に低下し、また、その他の酸化物がセ
リウムを除く周期律表第[Ia族元素の酸化物の5重i
1%より多いとやはり焼結体の高温強度が極端に低下す
るため、Sin、及び他の酸化物の配合比率の上限を上
記値以下とした。
Furthermore, if Sin is 4% by weight more than silicon nitride, the high-temperature strength of the sintered body will be extremely reduced. i
If it is more than 1%, the high temperature strength of the sintered body will be extremely reduced, so the upper limit of the blending ratio of Sin and other oxides is set to be below the above value.

セラミックスの焼結助剤としての周期律表第■a族元素
の酸化物は1種類の添加では、従来の焼成温度(160
0〜1800℃)の範囲では十分な量の低粘度の液相が
生成しない几め焼結性が悪〈従来はホットプレスの:う
に外から圧力を加えて焼結する場合にのみ用いられてき
念。
Addition of one type of oxide of Group A element of the periodic table as a sintering aid for ceramics is effective at the conventional firing temperature (160°C).
In the range of 0 to 1800℃), a sufficient amount of low-viscosity liquid phase is not produced and the sintering properties are poor. Just in case.

この発明によれば、Ceを除く周期律表第IIIa族元
素から選ばれる1種類の酸化物を焼結助剤として使用し
、2気圧以上の窒素ガス圧下で1850℃以上2200
℃以下の温度でガス圧焼結することにより、十分な量の
低粘度の液相が生成し、外から圧力を加えることなくち
密化が促進てれ、理論密度の93%以上の密度の焼結体
が得られる様になった。しかもこの焼結体の第2相は融
点が高い念め、焼結後に焼結体中に残留しても高温にお
いて強度が低下することが少ない。
According to this invention, one type of oxide selected from Group IIIa elements of the periodic table excluding Ce is used as a sintering aid, and temperature
By performing gas pressure sintering at a temperature below °C, a sufficient amount of low-viscosity liquid phase is generated and densification is promoted without applying external pressure, resulting in sintering with a density of 93% or more of the theoretical density. I was able to obtain a body. Moreover, since the second phase of this sintered body has a high melting point, even if it remains in the sintered body after sintering, the strength is unlikely to decrease at high temperatures.

この発明において用いる原料粉末中の窒化珪素としては
、アルファ型を主とする粉末が好ましいが、ベータ型ま
たはアモルファスの粉末であってもさしつかえない。
The silicon nitride in the raw material powder used in this invention is preferably an alpha-type powder, but a beta-type or amorphous powder may also be used.

また、Ceを除く周期律表第1na族の元素の酸化物と
しては、Sc、Y、La、Pr、Nd、Pm、Sm、E
u。
In addition, oxides of elements in group 1na of the periodic table excluding Ce include Sc, Y, La, Pr, Nd, Pm, Sm, E
u.

Gd、Tb 、Dy 、Ho 、Er 、Tm、Yb 
、Luの酸化物を挙げることができる。これらの酸化物
の蛍は、種類および組成に=り最適範囲は異るが、含有
量5〜35′iL量%とすることによって、よリー層密
度および強度は向上する。しかし、ち密化に必要な量以
上に助剤を添加すると、高温での強度低下を引き起こす
Gd, Tb, Dy, Ho, Er, Tm, Yb
, and oxides of Lu. Although the optimum range of these oxides varies depending on the type and composition, the density and strength of the layer can be improved by controlling the content to 5 to 35'iL. However, adding the auxiliary agent in an amount greater than that required for densification causes a decrease in strength at high temperatures.

これらの混合粉末の成形方法については特に限定しない
が、例えば、金型プレス成形、ラバープレス、射出成形
など通常のセラミックスの成形方法を、目的とする品物
の形状に合わせて選択できる0 次に、焼成については2気圧以上の窒素雰囲気下で行わ
れる。この場合、窒素雰囲気は窒化珪素の酸化を防ぎ、
分解を抑制することを目的とし、2気圧未満ではこの効
果は少ない。なお、雰囲気ガスは窒素ガス100%が望
ましいが、他の不活性ガスとの混合ガスでもさしつかえ
ない。また、焼結時にSiOガスによる蒸散を抑制する
ために、Si8N4 + S I O!等の混合粉末で
試料を穆うことは必ずしも必要でないが、高い温度で焼
結を行うときには有効な方法でるる。さらに、焼結温度
については、最適な温度は原料粉末の種類および量によ
って異るが、1850℃以上2200℃以下で行う。
The method for molding these mixed powders is not particularly limited, but for example, any conventional ceramic molding method such as mold press molding, rubber press molding, or injection molding can be selected according to the shape of the desired product.Next, Firing is performed in a nitrogen atmosphere of 2 atmospheres or more. In this case, the nitrogen atmosphere prevents oxidation of silicon nitride and
The purpose is to suppress decomposition, and this effect is small below 2 atmospheres. Note that the atmospheric gas is preferably 100% nitrogen gas, but a mixed gas with other inert gases may also be used. In addition, in order to suppress transpiration due to SiO gas during sintering, Si8N4 + S I O! Although it is not necessarily necessary to sinter the sample with a mixed powder such as, it is an effective method when sintering is performed at high temperatures. Furthermore, regarding the sintering temperature, although the optimum temperature varies depending on the type and amount of raw material powder, it is performed at 1850° C. or higher and 2200° C. or lower.

1850℃以下では液相が生成しないためち密化しない
。2200℃以上では窒化珪素の粒成長が著しくなり強
度が低下する。
At temperatures below 1850°C, no liquid phase is generated and densification does not occur. At 2200° C. or higher, silicon nitride grains grow significantly and the strength decreases.

この発明の一実施態様において、成形体を焼成するにあ
たり、■2気圧以上500気圧以下の圧力で1850℃
以上2200℃以下の温度で1次焼成を行つ九のち、■
500気圧以上の圧力で1850℃以上2200℃以下
の温度で2次焼成を行うことを特徴としている。これは
、■の工程で理論密度の90%以上までち密化し成形体
の気孔は閉気孔となる。■の工程で窒素ガス圧力が高く
なることにニジガス圧力で成形体内部の気孔を消滅きせ
る効果がめり、少量の助剤の添加で高密度の焼結体が得
られる効果がろる。■で500気圧以下の圧力で焼成す
るのは、500気圧以上のガス圧下では終期焼結がさま
たげられ完全にはち密化しなくなるためである。
In one embodiment of the present invention, when firing the molded body, ■ 1850° C. at a pressure of 2 atm or more and 500 atm or less;
After performing the primary firing at a temperature of 2200℃ or less, ■
It is characterized in that the secondary firing is performed at a pressure of 500 atm or more and a temperature of 1850°C or more and 2200°C or less. This is densified to 90% or more of the theoretical density in step (2), and the pores of the molded product become closed pores. The increased nitrogen gas pressure in step (2) has the effect of eliminating the pores inside the molded body, and the addition of a small amount of auxiliary agent has the effect of producing a high-density sintered body. The reason for firing at a pressure of 500 atm or less in (2) is that under a gas pressure of 500 atm or more, final sintering will be hindered and complete densification will not occur.

(実施ψリ l−12) Sin、を不純物として窒化珪素粉末の2.5 wt%
含む、平均粒径1μmの窒化珪素粉末に希土類酸化物(
純度99.9%以上)を第1表の組成で混合し窒化珪素
ボールとプラスチックポットを使用しエタノール添加湿
式ボールミルを24時(W行つ文。
(Implementation ψli l-12) 2.5 wt% of silicon nitride powder with Sin as an impurity
Rare earth oxide (
(purity of 99.9% or more) was mixed with the composition shown in Table 1, and then milled in a wet ball mill with ethanol added using a silicon nitride ball and a plastic pot for 24 hours.

この間ボールの磨耗量は少なくボールからの不純物混入
は0.1%以下でめった。得られた混合粉末を2001
G9 f /crlの圧力で金型成形し、続いて200
0#f/dの圧力でラバープレスして5+o+X6mg
X50朋の板状に成形し友。これを第1表に示す窒素ガ
ス圧お二び温度てて所定時間保持することによυ焼成し
た。次に、この焼結体の表面を研削し、3間×4門×4
0關の形状に加工した後、25℃および1350℃の温
度でスパン30工扉で3点1flllケによる抗折試験
を行った(実施例1〜9)a第1表に示す様に理論密度
の93%以上のち密な焼結体が得られ、室温で高強度で
ろりかつ高温で強度低下が少なかった。ただし25℃の
強度は15本の平均、1350℃の強度は3本の平均で
ある。
During this period, the amount of wear on the balls was small and impurity contamination from the balls was rarely less than 0.1%. The obtained mixed powder was
Mold molding at a pressure of G9 f/crl followed by 200
Rubber press with 0#f/d pressure to 5+o+X6mg
A friend molded into a plate shape of X50. This was fired by holding it for a predetermined time at the nitrogen gas pressure and temperature shown in Table 1. Next, the surface of this sintered body is ground and
After processing into the shape of 0 mm, a bending test was conducted at 3 points and 1 flll with a span of 30 mm at temperatures of 25°C and 1350°C (Examples 1 to 9) a Theoretical density as shown in Table 1 A dense sintered body with a density of 93% or more was obtained, and had high strength and smoothness at room temperature and little decrease in strength at high temperature. However, the strength at 25°C is the average of 15 specimens, and the strength at 1350°C is the average of 3 specimens.

第2表に示す組成の粉末を第1図の条件(他は上記実施
例と同じ)で焼成した。結果を第2表に示す。(実施例
10〜12) (比較例1〜7) 第3表に示す組成の粉末を開成に示す条件で焼成した。
Powder having the composition shown in Table 2 was fired under the conditions shown in FIG. 1 (other conditions being the same as in the above example). The results are shown in Table 2. (Examples 10 to 12) (Comparative Examples 1 to 7) Powders having the compositions shown in Table 3 were fired under the conditions shown in Table 3.

結果を第3表に示す。The results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

この発明によれば特に高温における強度に優れt窒化珪
素質焼結体を、複雑な形状の製品でも製造することので
きるガス圧焼結により製造することができる。
According to the present invention, a t-silicon nitride sintered body having particularly excellent strength at high temperatures can be manufactured by gas pressure sintering, which enables the manufacture of products with complex shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例to−12の焼成条件を示
す温度、圧力−時間線図である。
FIG. 1 is a temperature and pressure-time diagram showing the firing conditions of Example to-12 of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  窒化珪素:61〜95重量%、Ceを除く周期律表第
IIIa族元素から選ばれる1種類の酸化物:5〜35重
量%、SiO_2:窒化珪素の4重量%以下、その他の
酸化物:Ceを除く周期律表第IIIa族元素の酸化物の
5重量%以下からなる原料粉末を混合・成形して得た成
形体を、2気圧以上の窒素雰囲気下で1850℃以上2
200℃以下の温度で焼成して焼結体を得る窒化珪素質
焼結体の製造方法。
Silicon nitride: 61-95% by weight, No. 1 of the periodic table excluding Ce
One type of oxide selected from group IIIa elements: 5 to 35% by weight, SiO_2: 4% by weight or less of silicon nitride, other oxides: 5% by weight of oxides of group IIIa elements of the periodic table excluding Ce A molded body obtained by mixing and molding the raw material powders consisting of the following is
A method for producing a silicon nitride sintered body, which obtains a sintered body by firing at a temperature of 200° C. or lower.
JP61257450A 1986-10-29 1986-10-29 Manufacture of silicon nitride base sintered body Pending JPS63112468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257450A JPS63112468A (en) 1986-10-29 1986-10-29 Manufacture of silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257450A JPS63112468A (en) 1986-10-29 1986-10-29 Manufacture of silicon nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS63112468A true JPS63112468A (en) 1988-05-17

Family

ID=17306511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257450A Pending JPS63112468A (en) 1986-10-29 1986-10-29 Manufacture of silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS63112468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209763A (en) * 1990-12-07 1992-07-31 Kyocera Corp Silicon nitride sintered material for cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209763A (en) * 1990-12-07 1992-07-31 Kyocera Corp Silicon nitride sintered material for cutting tool

Similar Documents

Publication Publication Date Title
JPS63123868A (en) Manufacture of silicon nitride base sintered body
JPS63112468A (en) Manufacture of silicon nitride base sintered body
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JP2742619B2 (en) Silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2642429B2 (en) Silicon nitride sintered body and method for producing the same
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JPS63252967A (en) Manufacture of silicon nitride base sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP2687634B2 (en) Method for producing silicon nitride sintered body
JP2811493B2 (en) Silicon nitride sintered body
JPH03252365A (en) Production of high-strength sintered silicon nitride compact
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2746759B2 (en) Silicon nitride sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPS63147867A (en) Manufacture of silicon nitride sintered body
JPS62241876A (en) Silicon nitride sintered body and manufacture
JPH0535107B2 (en)
JPH0585823A (en) Sintered silicon carbide-silicon nitride-mixed oxide and its production
JPH0524926A (en) Production of silicon nitride-silicon carbide combined sintered compact
JPS62207769A (en) Manufacture of silicon nitride sintered body
JPS62113767A (en) Silicon nitride base sintered body and manufacture
JPH02157162A (en) Silicon nitride-based sintered body and production thereof
JPH04243972A (en) Sintered substance of silicon nitride