JPS63110771A - Contact-type image sensor - Google Patents

Contact-type image sensor

Info

Publication number
JPS63110771A
JPS63110771A JP61257519A JP25751986A JPS63110771A JP S63110771 A JPS63110771 A JP S63110771A JP 61257519 A JP61257519 A JP 61257519A JP 25751986 A JP25751986 A JP 25751986A JP S63110771 A JPS63110771 A JP S63110771A
Authority
JP
Japan
Prior art keywords
film
semiconductor layer
insulating film
opening
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61257519A
Other languages
Japanese (ja)
Inventor
Toshiaki Kato
利明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61257519A priority Critical patent/JPS63110771A/en
Priority to US07/111,520 priority patent/US4855802A/en
Publication of JPS63110771A publication Critical patent/JPS63110771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To execute the manufacture in a simple process without deteriorating the yield rate of a product and to reduce the irregularity of a photoelectric output at each photoelectric transducer in such a way that an individual electrode is formed by a conductive film which comes into contact with the area which is equal to a semiconductor layer at an opening of an insulating film. CONSTITUTION:A group of 1728 conductive films 7 which concurrently function as 100mum wide stripe-like individual electrodes arranged at an interval of 25 mum starting from an ITO film and as a wiring part are formed on a glass substrate 1 by photoetching; photosensitive polyimide is coated to form an insulating film 8; a 100mum wide opening 9 is formed by means of a mask which is aligned by an end-pin mating method. In addition, a high-resistance P-type a-SiC film, an I-quality a-Si film and an N-type a-Si film are piled up in succession by means of a mask and by a plasma glow discharge method; a semiconductor layer 4 is formed; a 1mm wide common electrode 5 is formed on the layer by a carbon paste using a screen-printing process.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、ファクシミリの原稿読衣装ff、 OA機器
の画像人力装置1紙幣鑑別機、ハンドスキャナ等に用い
られる、多数の光電変換素子を一列に配置した密着型イ
メージセンサに関する。
The present invention relates to a close-contact image sensor in which a large number of photoelectric conversion elements are arranged in a line, and is used in a facsimile document reading outfit ff, an OA equipment image-powered device 1 banknote validator, a hand scanner, and the like.

【従来技術とその問題点】[Prior art and its problems]

密着型イメージセンサの実用例として、8ドツト/am
のファクシミリ用原稿読取装置が知られている。第2図
(a)、〜)はその実用例を示す、これは絶縁性基板I
上に配wA3と、クロムからなる個別11!I!li!
2.その接続部21および共通電極の接続部51をそれ
ぞれフォトエツチングにより加工したのち、1Mのアモ
ルファスシリコン膜(以下a −3iと記す)からなる
光電変換半導体層4をマスク成長させ、さらにa−3i
膜4とへテロ接合を形成するITo共1111を極5を
マスク成膜したものである。このイメージセンサにおい
ては、共通a極をマスク成膜するため、第2図のXの距
離にばらつきを生ずる。クロム膜21とITO膜5に挟
まれた部分も受光素子の役割を果たすため、Xのばらつ
きが光電変換面積のばらつきとなり、光電出力のばらつ
きを生じ、画像読取品質の低下や歩留りの低下を招くと
いう欠点があった。このXのばらつきを小さくするため
には、位置合わせのための高価な装置が必要になったり
、余分な時間を費やすため製作工程に費用がかかるとい
う問題があった。 他の実用例として、第3図に示す密着型イメージセンサ
がある。これは絶縁性基板1上に、クロムにより個別電
極2およびその接続部21と、クロム−金により配線3
とをそれぞれフォトエツチングにより形成した後、P湿
水素化アモルファスシリコンカーバイド (以下a−5
iCと記す)、Ifa−3l、 N形a−3tを順次堆
積してなるpin接合光電変換層4.ITO共通電極5
をマスク成膜したのち、クロム遮光1!16をフォトエ
ツチングで加工したものである。ところがこのようにし
て形成したものは、クロム遮光膜6を画素面積を規定す
るために、フォトエツチングにより加工する際、導光窓
の位置精度が高いことが要求される。たとえば8ドツト
/flのセンサであれば、個別電極2が100 n角、
導光窓が60〜100 n角程度のため、位置精度が±
20−以下が必要である。密着型センサのように数十値
の原稿と等しい幅の大型1&仮においては、±20n以
下の位置精度は非常に難しく遮光膜のフォトエツチング
の際、少なくとも顕微鏡でマーカ合わせを行う必要があ
り、その他の工程によっても基板の収縮等、寸法のばら
つきを生じるため、高度な生産技術を必要とし、工程に
費用がかかるという欠点があった。
As a practical example of a contact type image sensor, 8 dots/am
A document reading device for facsimile is known. Figure 2 (a), ~) shows a practical example of this, which is an insulating substrate I
Individual 11 consisting of wA3 and chrome on top! I! li!
2. After processing the connection portion 21 and the connection portion 51 of the common electrode by photoetching, a photoelectric conversion semiconductor layer 4 made of a 1M amorphous silicon film (hereinafter referred to as a-3i) is grown using a mask, and further a-3i is formed.
The ITo film 1111 forming a heterojunction with the film 4 is formed by masking the pole 5. In this image sensor, since the common a-pole is formed using a mask, the distance X in FIG. 2 varies. Since the portion sandwiched between the chromium film 21 and the ITO film 5 also plays the role of a light receiving element, variations in X result in variations in the photoelectric conversion area, resulting in variations in photoelectric output, leading to deterioration in image reading quality and yield. There was a drawback. In order to reduce this variation in X, there are problems in that an expensive device for positioning is required and that the manufacturing process is expensive because it takes extra time. Another practical example is a contact type image sensor shown in FIG. On an insulating substrate 1, individual electrodes 2 and their connection parts 21 are made of chromium, and wiring 3 is made of chromium-gold.
and P wet hydrogenated amorphous silicon carbide (hereinafter a-5
iC), Ifa-3l, and N-type a-3t are sequentially deposited to form a pin junction photoelectric conversion layer 4. ITO common electrode 5
After forming a film using a mask, a chromium light shielding layer 1!16 was processed by photoetching. However, when the chromium light-shielding film 6 formed in this manner is processed by photoetching in order to define the pixel area, the light guide window is required to have high positional accuracy. For example, for an 8 dot/fl sensor, the individual electrodes 2 are 100 n square,
Since the light guiding window is approximately 60 to 100 n square, the position accuracy is ±
20- or less is required. For large 1&temporary sensors with a width equal to tens of values of originals, such as contact type sensors, it is extremely difficult to achieve a position accuracy of ±20n or less, and when photo-etching a light-shielding film, it is necessary to align the markers using at least a microscope. Other processes also cause dimensional variations such as shrinkage of the substrate, so advanced production technology is required and the process is expensive.

【発明の目的】[Purpose of the invention]

本発明は、上述の欠点を除き、製品の歩留りを低下する
ことなく簡単な工程で製造可能で、各光電変換素子の光
電出力のばらつきが小さい密着型イメージセンサを提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a contact-type image sensor that can be manufactured in a simple process without reducing the yield of the product, and has small variations in the photoelectric output of each photoelectric conversion element, while eliminating the above-mentioned drawbacks.

【発明の要点】[Key points of the invention]

本発明は、光電変換半導体層の一方の側に一方向に延び
る共通電極と、他方の側に前記方向に延びる条状開口部
をはさんで設けられる絶縁膜と、その上に設けられその
開口部で半導体層に接触し、前記方向に直交する方向に
等間隔で延びる複数の等しい幅の条状導電膜とを備える
もので、絶縁膜の開口部で半導体層と等しい面積で接触
する導電膜が個別電極を形成し、その個別電極と共通電
極の間、すべて等面積の光電変換素子の画素となる。 その際絶縁膜の開口部および導電膜群の位置精度は高い
必要がなく、フォトリソグラフィ工程でも端面合わせ等
の簡単な工程で加工できる。なお、画素の出力が隣接す
る画素の影響を受けないようにするため、半導体層の少
なくとも導電膜群と接触する側の層部分が高抵抗半導体
膜からなることが望ましい。
The present invention includes a common electrode extending in one direction on one side of a photoelectric conversion semiconductor layer, an insulating film provided on the other side with a strip-shaped opening extending in the direction, and an insulating film provided on the common electrode extending in the same direction. A conductive film that is in contact with the semiconductor layer at the opening of the insulating film and has a plurality of strip-shaped conductive films of equal width extending at equal intervals in a direction perpendicular to the said direction, and that is in contact with the semiconductor layer in an equal area at the opening of the insulating film. form individual electrodes, and between the individual electrodes and the common electrode, all pixels of the photoelectric conversion element have the same area. In this case, the positional accuracy of the opening of the insulating film and the conductive film group does not need to be high, and processing can be performed by a simple process such as end face alignment even in a photolithography process. Note that in order to prevent the output of a pixel from being influenced by adjacent pixels, it is desirable that at least the layer portion of the semiconductor layer on the side that contacts the conductive film group is made of a high-resistance semiconductor film.

【発明の実施例】[Embodiments of the invention]

以下第2.第3図と共通な部分に同一の符号を付した図
面を引用して本発明の実施例について説明する。 第1図fat、e+は本発明の一実施例を示し、ta+
は断面図、中)は両を極と絶縁膜の位置関係を示す平面
図である0図において絶縁基板1上に設けられた透明I
TO膜7は第1図へ)に示すように、例えば幅−1が1
00 tnaで間隔dが25faの平行条状である。 この上に条状ITO膜7に直角方向の条状で幅りが、例
えば100nの開口部9を存する絶縁膜8が形成されて
おり、その上に光電変換半導体層4が積フされ、開口部
9の第1図世)に斜線で示した領域10においてITO
膜7に接触している。第1図世)に点線で示すように、
開口部9の上方を覆う共i[極5が形成されている。こ
のようなイメージセンサは、次の工程で製造された。ま
ず、ガラス基板1の上にITO膜から100 n幅1間
隔25−の条状の個別電極と配線を兼ねた1728本の
導電膜7の群をフォトエツチングで加工した。さらに感
光性ポリイミド、例えば日立化成IPL−1200を被
着して絶縁膜8とし、端面ビン合わせ法によって位置合
わせしたマスクを用いて幅100 tnaの開口部9を
形成した。さらに5iHn+ CtHt+ BgHaの
l:0.06 : 7.5 x 10−’の割合の混合
ガスを用いてプラズマグロー放電法により200人の厚
さの高抵抗のP形a−SIC膜、5it(*、’Axの
1:10の比の混合ガスを用いてプラズマグロー放電法
により5000人の厚さのI質a−5t膜、さらに5i
Hn、 PH3のに〇、O1の比の混合ガスを用いてプ
ラズマグロー放電法により500人の厚さのN形a −
5iJIを順次マスクを用いて堆積して半導体層今を形
成し、その上に共通1!権5をカーボンペースト、例え
ば藤倉化成製ドータイトPC−40LPのスクリーン印
刷によって幅1fiに形成した。第1図(blに示すX
+7はそれぞれ300μに設計しである。 このようにして密着型イメージセンサを500個試作し
た結果、Xの寸法ばらつきは300−±40μ、yの寸
法ばらつきは30Opa±43μであった。また、この
ときの素子の代表的なV−1特性を第4図に示す、これ
は、251x、 2.5 lx、暗時の逆バイアスを印
加したときの出力電流を示したものである。 また、一つのセンサについて印加電圧3vに対し、25
1χの光を照射したときの出力電流を素子1728個に
ついて測定したところ、平均値−6,4%に収まった。 さらに、試作した500個のセンサについて同様に素子
出力のばらつきについて調査した結果を第5図に示す、
500個のセンサはすべて素子出力が±20%以内に収
まり、うち±10%以内のものが483個(96,6%
)あった。 第6図(a)、(blは本発明の別の実施例を示し、(
a)。 fblが第1図の場合と同様の断面図、平面図である。 この実施例ではガラス基板l上に第6図(1))では点
線で示すようにクロムからなる共通電8i5を備え、そ
の上を覆う光電変換半導体層4の上に間口部9を有する
絶縁膜8が形成され、条状のITOTlO2が開口部9
の長さ方向と直角にその上に形成され、開口部9におい
て半導体層4と接触しヘテロ接合を形成している。この
ようなイメージセンサは、まずガラス基板1上にクロム
をマスク成膜して共通電極5を形成し、その上に!質の
a −5l膜4を1−の厚さに5IHaとH2の混合ガ
スを用いてのプラズマグロー放電法によりマスク成膜し
た後、シリコン窒化膜で絶縁膜8を形成し、フォトエツ
チングによって Hz ” 100−の開口部9を得た
。 さらに、スパッタ法により成膜したITO膜を端面ピン
合わせによるマスクを用いてのフォトエツチングによっ
て加工し、1728個の条状の個別電極および交互に異
なる方向へ引き出されるL −100g、d−25−の
配線群7を形成した。この場合、第6図(blにおける
Xl+Xlは100 tm、  )’は20〇−で設計
した。 このようにして第1図に示した実施例と同様500個の
密着型イメージセンサを試作した結果、xI+x2の寸
法ばらつき100 tna±42n、yの寸法ばらつき
200 tna±48−であった、また、500個のセ
ンサについて印加電圧5vに対して251x  の照射
強度でそれぞれ1728素子の出力を測定してばらつき
を求めたところ、第7図のような分布が得られ、すべて
±30%以内のばらつきに収まった。
Part 2 below. Embodiments of the present invention will be described with reference to drawings in which parts common to those in FIG. 3 are given the same reference numerals. FIG. 1 fat, e+ shows an embodiment of the present invention, and ta+
1 is a cross-sectional view, and middle) is a plan view showing the positional relationship between the two poles and the insulating film.
As shown in FIG. 1), the TO film 7 has a width of 1
00 tna with a spacing d of 25 fa. On this is formed an insulating film 8 having an opening 9 in a strip shape perpendicular to the strip ITO film 7 and having a width of 100 nm, for example. ITO in the shaded area 10 in Figure 1 of Part 9)
It is in contact with the membrane 7. As shown by the dotted line in Figure 1),
A common pole 5 covering the opening 9 is formed. Such an image sensor was manufactured through the following steps. First, on a glass substrate 1, a group of 1,728 conductive films 7, which served as individual electrodes and wiring, were processed from an ITO film by photoetching, each having a width of 100 nm and an interval of 25 cm. Further, a photosensitive polyimide such as Hitachi Chemical IPL-1200 was deposited to form an insulating film 8, and an opening 9 having a width of 100 tna was formed using a mask aligned by the end face alignment method. Furthermore, a high-resistance P-type a-SIC film with a thickness of 200 mm, 5 it (* , 'I quality A-5T film with a thickness of 5000, and further 5i
A 500mm thick N-type a-
A semiconductor layer is formed by sequentially depositing 5iJI using a mask, and a common 1! The plate 5 was formed to have a width of 1 fi by screen printing with carbon paste, for example, Dotite PC-40LP manufactured by Fujikura Kasei. Figure 1 (X shown in bl)
+7 are each designed to be 300μ. As a result of manufacturing 500 contact type image sensors in this way, the dimensional variation in X was 300-±40μ, and the dimensional variation in y was 30Opa±43μ. Further, a typical V-1 characteristic of the element at this time is shown in FIG. 4, which shows the output current when a reverse bias of 251x, 2.5 lx, and dark time is applied. In addition, for one sensor, for an applied voltage of 3 V, 25
When the output current when irradiated with 1.chi. light was measured for 1728 elements, the average value was within -6.4%. Furthermore, Figure 5 shows the results of a similar investigation of variations in element output for 500 prototype sensors.
All 500 sensors had element outputs within ±20%, of which 483 had outputs within ±10% (96.6%).
)there were. FIGS. 6(a) and 6(bl) show another embodiment of the present invention, and (
a). fbl is a sectional view and a plan view similar to those in FIG. 1. In this embodiment, a common electrode 8i5 made of chromium is provided on a glass substrate l as shown by the dotted line in FIG. 8 is formed, and the strip-shaped ITOTlO2 is formed in the opening 9.
It is formed on the semiconductor layer 4 at right angles to the length direction thereof, and contacts the semiconductor layer 4 at the opening 9 to form a heterojunction. Such an image sensor first forms a common electrode 5 by depositing a chromium film on a glass substrate 1 using a mask, and then! After forming a high quality a-5L film 4 to a thickness of 1-Hz using a plasma glow discharge method using a mixed gas of 5IHa and H2 using a mask, an insulating film 8 was formed from a silicon nitride film, and photoetching was performed to achieve a high "100" openings 9 were obtained.Furthermore, the ITO film formed by sputtering was processed by photoetching using a mask with end face pinning to form 1,728 strip-shaped individual electrodes and alternatingly different directions. A wiring group 7 of L-100g and d-25- was formed to be drawn out to. In this case, the wiring group 7 of FIG. As a result of prototyping 500 contact image sensors similar to the example shown in , the dimensional variation in xI+x2 was 100 tna±42n, the dimensional variation in y was 200 tna±48-, and the applied voltage for the 500 sensors was When the output of each of the 1728 elements was measured at an irradiation intensity of 251x with respect to 5V to determine the variation, a distribution as shown in FIG. 7 was obtained, and all variations were within ±30%.

【発明の効果】【Effect of the invention】

本発明によれば、光電変換半4体層の一側に寸法精度9
位置精度の粗い共通電極が接し、他側に絶縁膜を介して
積層される一定幅の平行条状の導電膜群がそれらと直角
に交差する絶縁膜の一定幅の条状開口部においてすべて
等しい面積で接触して個別1!極となり、導電膜の他の
部分が引き出し配線を兼ねるようにすることにより、光
電出力のばらつきが非常に小さく、それぞれの膜の加工
にマーカ合わせなど高価な装置や長時間を要して高い費
用の工程を要しないで製造できる密着型イメージセンサ
が得られる。
According to the present invention, one side of the photoelectric conversion half-layer has a dimensional accuracy of 9
A group of parallel conductive films with a constant width that are in contact with a common electrode with poor positional accuracy and laminated on the other side with an insulating film interposed therebetween are all equal in the strip-shaped opening of a constant width in the insulating film that intersects them at right angles. Contact by area and individual 1! By making the other part of the conductive film also serve as the lead-out wiring, the variation in photoelectric output is extremely small, and the processing of each film requires expensive equipment and long time to align markers, resulting in high costs. A contact image sensor that can be manufactured without requiring the steps described above can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示し、fa)が断面図。 巾)が両電極および絶縁膜の位置関係を示す平面図、第
2図は従来の実用例の断面図、第3図は別の従来の実用
例の断面図、第4図は明時および暗時における第1図に
示した実施例の光電変換素子のダイオード特性線図、第
5図は第1図に示した実施例のセンサ中の素子出力の度
数分布図、第6図は本発明の別の実施例を示し、(al
が断面図、 (blが両電極と絶縁膜の位置関係を示す
平面図、第7図が第6図に示した実施例のセンサ中の素
子出力の度数分布図である。 1:絶縁基板、4:光電変換半導体層、5:共通電極、
7:[TO膜、8:絶縁膜、9:開口部、10:接触領
域。 一杓ヂに弁理±11JOし・ 第2図 /        〜1 第4図 1パ乙万叫−つ業)は−刀のノでラッ代第5図 第6図
FIG. 1 shows an embodiment of the present invention, and fa) is a sectional view. Fig. 2 is a cross-sectional view of a conventional practical example, Fig. 3 is a cross-sectional view of another conventional practical example, and Fig. 4 is a plan view showing the positional relationship between both electrodes and the insulating film. FIG. 5 is a frequency distribution diagram of the element output in the sensor of the embodiment shown in FIG. 1, and FIG. Another example is shown, (al
is a cross-sectional view, (bl is a plan view showing the positional relationship between both electrodes and the insulating film, and FIG. 7 is a frequency distribution diagram of the element output in the sensor of the embodiment shown in FIG. 6. 1: Insulating substrate, 4: Photoelectric conversion semiconductor layer, 5: Common electrode,
7: [TO film, 8: Insulating film, 9: Opening, 10: Contact region. The patent attorney +/- 11JO is done in one go. Figure 2/~1 Figure 4 1.

Claims (1)

【特許請求の範囲】 1)光電変換半導体層の一方の側に一方向に延びる共通
電極と、他方の側に前記方向に延びる条状開口部をはさ
んで設けられる絶縁膜と、該絶縁膜の上に設けられて前
記開口部で前記半導体層に接触し、前記方向に直交する
方向に等間隔で延びる複数の等しい幅の条状の導電膜と
を備えたことを特徴とする密着型イメージセンサ。 2)特許請求の範囲第1項記載のセンサにおいて、光電
変換半導体層の少なくとも導電膜と接触する側の層部分
が高抵抗半導体膜からなることを特徴とする密着型イメ
ージセンサ。
[Scope of Claims] 1) A common electrode extending in one direction on one side of a photoelectric conversion semiconductor layer, an insulating film provided on the other side with a striped opening extending in the direction, and the insulating film. A close-contact image, comprising: a plurality of strip-shaped conductive films having equal widths, provided on top of the semiconductor layer, contacting the semiconductor layer at the opening, and extending at equal intervals in a direction perpendicular to the direction. sensor. 2) A contact image sensor according to claim 1, wherein at least the layer portion of the photoelectric conversion semiconductor layer on the side that contacts the conductive film is made of a high-resistance semiconductor film.
JP61257519A 1986-10-20 1986-10-29 Contact-type image sensor Pending JPS63110771A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61257519A JPS63110771A (en) 1986-10-29 1986-10-29 Contact-type image sensor
US07/111,520 US4855802A (en) 1986-10-20 1987-10-20 Contact type image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257519A JPS63110771A (en) 1986-10-29 1986-10-29 Contact-type image sensor

Publications (1)

Publication Number Publication Date
JPS63110771A true JPS63110771A (en) 1988-05-16

Family

ID=17307424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257519A Pending JPS63110771A (en) 1986-10-20 1986-10-29 Contact-type image sensor

Country Status (1)

Country Link
JP (1) JPS63110771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515849A2 (en) * 1991-04-27 1992-12-02 Kanegafuchi Chemical Industry Co., Ltd. Image sensor
JP2009085359A (en) * 2007-10-01 2009-04-23 Canon Inc Non-contact seal apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515849A2 (en) * 1991-04-27 1992-12-02 Kanegafuchi Chemical Industry Co., Ltd. Image sensor
JP2009085359A (en) * 2007-10-01 2009-04-23 Canon Inc Non-contact seal apparatus

Similar Documents

Publication Publication Date Title
US5200634A (en) Thin film phototransistor and photosensor array using the same
US4644406A (en) Large scale contact type image reading unit using two-dimensional sensor array
KR100752547B1 (en) Identity Mark and method for the same in Array Panel for Liquid Crystal Display Device
EP0361515A2 (en) Thin film phototransistor and photosensor array using the same
US4855802A (en) Contact type image sensor
JPS63110771A (en) Contact-type image sensor
US4943710A (en) Image sensor and manufacturing method for the same
US5159422A (en) Photoelectric conversion device
EP0228280B1 (en) Image sensors and methods of manufacturing same
JPS61189065A (en) Image sensor
US4691242A (en) Contact type image sensor having multiple common electrodes to provide increased pixel density
JPS63314863A (en) Photodetector array
JPS63153857A (en) Line-like photodetector
JPS61156766A (en) Image senser
JP2920691B2 (en) Contact image sensor
JPS61201461A (en) Manufacture of photosensor element
JPS62193172A (en) Manufacture of photodetector array
JPS60263565A (en) Long-sized one-dimensional sensor
JP2745616B2 (en) Manufacturing method of light receiving element
JPS6233452A (en) Image sensor
JPS62261170A (en) Image sensor
JPS6134969A (en) Photosensor
JPH02161774A (en) Linear image sensor
JPS6233480A (en) Photosensor array
JPS60147173A (en) Photosensor array