JPS6233480A - Photosensor array - Google Patents

Photosensor array

Info

Publication number
JPS6233480A
JPS6233480A JP60173571A JP17357185A JPS6233480A JP S6233480 A JPS6233480 A JP S6233480A JP 60173571 A JP60173571 A JP 60173571A JP 17357185 A JP17357185 A JP 17357185A JP S6233480 A JPS6233480 A JP S6233480A
Authority
JP
Japan
Prior art keywords
layer
resistivity
concentration
common electrode
increases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60173571A
Other languages
Japanese (ja)
Inventor
Masakazu Ueno
正和 上野
Toshiaki Kato
利明 加藤
Shinji Nishiura
西浦 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60173571A priority Critical patent/JPS6233480A/en
Publication of JPS6233480A publication Critical patent/JPS6233480A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To restrain the leakage current between the adjacent individual electrodes or between the individual electrode and a common electrode by determining the resistivities of both P-layer and N-layer of the semiconductor thin film composing a photoelectric conversion layer of P-I-N structure 10<5>OMEGA.cm or more. CONSTITUTION:When a concentration of boron increases, a resistivity of a P-layer 31 declines and a leakage current increases to lower the resolution, so that a concentration of B2H6 is needed to be 0.1% or under. The resistivity of the P-layer at the time of B2H6 concentration 0.1% is about 1X10<5>OMEGA.cm and in case of 1%, it is about 1X10<4>OMEGA.cm. When a concentration of phosphorus increases, a resistivity of an N-layer 33 declines and a leakage current between an individual electrode and a common electrode increases. Accordingly, in the a-Si photosensor array of P-I-N structure, the resistivities of both P-layer and N-layer are needed to be 10<5>OMEGA.cm or more. The leakage between the individual electrodes and that between the individual electrode and the common electrode depend only on the resistivity of the P-layer or N-layer, respectively and does not depend on the composition of layers, e.g., the kind of a semiconductor or a dopant.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

p+’+n3層の半導体薄膜で構成され、−偏に共通電
極を有する光電変換層の他側にそれぞれ独立の個別電極
を設けてなる光電変換要素を一線上に配列した光センサ
アレイに関する。そのようなセンサアレイは、ファクシ
ミリ等のための密着形イメージセンサに用いられる。
The present invention relates to a photosensor array in which photoelectric conversion elements are arranged in a line, each consisting of a p+'+n three-layer semiconductor thin film and having independent individual electrodes on the other side of a photoelectric conversion layer having a common electrode on the negative side. Such a sensor array is used in a contact type image sensor for facsimile and the like.

【従来技術とその問題点】[Prior art and its problems]

ファクシミリの小型化、低価格化、さらには光学収差な
どによる信号読取りの誤差を小さくするために、ファク
シミリ用密着型イメージセンサの開発が進められている
。従来、このセンサにはCCD等の素子を用いて作られ
ていたが、大面積化が可能なIII半導体を用いるもの
に開発が向かいつつある。 第2図は密着型イメージセンサユニットの実装概略図で
ある。ユニットは発光ダイオードアレイ11、 ifl
折率分布形レンズアレイ12および光センサアにイ13
から構成されている。原稿14の上の文字あるいは画像
を、屈折率分布形レンズ2を通してセンサアレイの光電
変換要素15に等寸法で結像させ、駆動IC16により
時系列信号に変換する。第1図は光電変換部を示し、第
1図ta+は平面透視図、第1図(blおよび(C)は
それぞれ第1図(alのA−A’面。 B−8層面における断面図である。ガラス板l上に透明
導電膜からなる個別電極21.22・・・を形成し、そ
の上に非晶質シリコン(a−5i)層3、さらにその上
に共通電極4を形成する。共通電極4は、その端が取り
出し電極部分41とつながっている。 また個別電極21〜25は一方の側が細かいリード線と
して形成されており、図示しないアナログスイッチ、増
幅器からなる駆動用ICと接続されている。このように
して単一光電変換要素は各個別電極21〜25と共通電
極3の間に形成される。 a−3t層3は9層31,1層32,0層33のl!で
出来ている。従来、a  Siは単結晶Siに比較して
抵抗が高いために、画素毎に分離する必要がないといわ
れてきた。しかし実際に試作してみると、画素間の分解
能が悪く解像度を落としているばかりか、暗電流が大き
いために、所望のS/N比が得られないという結果にな
った。 まず画素間の分解能の低下は、主に個別電極例えば21
の上で発生した電流が9層3工を通して隣接する個別電
極22にリークする結果であり、また暗電流が大きい原
因は、主に共通電極3と個別電極、例えば21のリード
線部分間をnN33を通してリークする結果であること
が判った。 上記の問題を避けるために、a−3t層をフォトリソグ
ラフィ法等により分割する方法があるが、所望の分解能
、S/Nは得られるものの、工程数が増すばかりでなく
、エツチング面での短絡により歩留りが低く抑えられて
しまう。
BACKGROUND ART Contact type image sensors for facsimiles are being developed in order to make facsimiles smaller and cheaper, and to reduce errors in signal reading due to optical aberrations. Conventionally, this sensor has been made using elements such as a CCD, but development is moving toward a sensor using a III-semiconductor that can be made larger in area. FIG. 2 is a schematic diagram of the implementation of the contact type image sensor unit. The unit is light emitting diode array 11, ifl
A gradient index lens array 12 and a light sensor 13
It consists of Characters or images on the original 14 are imaged with equal dimensions on the photoelectric conversion element 15 of the sensor array through the gradient index lens 2, and converted into a time-series signal by the driving IC 16. Fig. 1 shows the photoelectric conversion section, Fig. 1 ta+ is a plane perspective view, Fig. 1 (bl and (C) are respectively AA' plane of Fig. 1 (al), and a cross-sectional view at the B-8 layer plane. Individual electrodes 21, 22, . . . made of a transparent conductive film are formed on a glass plate l, an amorphous silicon (a-5i) layer 3 is formed thereon, and a common electrode 4 is further formed thereon. The end of the common electrode 4 is connected to the extraction electrode portion 41. Also, one side of each of the individual electrodes 21 to 25 is formed as a fine lead wire, and is connected to a driving IC consisting of an analog switch and an amplifier (not shown). In this way, a single photoelectric conversion element is formed between each of the individual electrodes 21 to 25 and the common electrode 3. The a-3t layer 3 has the l! Conventionally, it has been said that because a-Si has a higher resistance than single-crystal Si, there is no need to separate each pixel. However, when we actually prototyped it, we found that the resolution between pixels was Not only did the resolution degrade badly, but the dark current was large, making it impossible to obtain the desired S/N ratio.First of all, the decrease in resolution between pixels is mainly caused by individual electrodes, such as 21
This is the result of the current generated above leaking to the adjacent individual electrode 22 through the 9-layer 3 structure, and the reason for the large dark current is mainly due to the nN33 It turned out that this was the result of a leak through. In order to avoid the above problems, there is a method of dividing the A-3T layer by photolithography, etc., but although the desired resolution and S/N can be obtained, it not only increases the number of steps but also causes short circuits on the etched surface. As a result, the yield is kept low.

【発明の目的】[Purpose of the invention]

本発明は、各光電変換要素に共通に形成したp−1−n
構造の半導体薄膜を通してのリークを、半導体薄膜を要
素毎に分割することなく■止した光センサアレイを提供
することを目的とする。
The present invention provides p-1-n formed commonly in each photoelectric conversion element.
It is an object of the present invention to provide a photosensor array that prevents leakage through a semiconductor thin film of a structure without dividing the semiconductor thin film into elements.

【発明の要点】[Key points of the invention]

本発明は、pin構造の光電変換層を構成する半導体薄
膜のp層およびn層の抵抗率が共に10’Ω・1以上で
あることにより、隣接個別電極間あるいは個別電極、共
通電極間のリーク電流を抑制して上記の目的を達成する
The present invention prevents leakage between adjacent individual electrodes or between individual electrodes and a common electrode by having resistivities of both the p layer and n layer of the semiconductor thin film constituting the photoelectric conversion layer of the pin structure being 10'Ω·1 or more. Achieve the above objectives by suppressing the current.

【発明の実施例】[Embodiments of the invention]

a−5tは通常SiH*ガス中の高周波グロー放電によ
り形成される。すなわち、公知の技術によりp層生成時
にはBtHb (ジボラン)ガスとさらに光学ギャップ
を広げ、感度を向上させるためにC,H。 (アセチレン)等の炭化水素ガスを添加する。また、n
層生成時にはPH5(ホスフィン)ガスを添加する。p
層またはn層の抵抗率を変化させるためには、これらド
ーピングガス、B、H,またはPH,の濃度を変えれば
よい。 第3図は、イメージセンサの分解能を表わすパラメータ
であるMTF  (モジュレーシヨン・トランスファ・
ファンクション)とそのp層生成時のガス中のBtHh
濃度との関係を示したものである。 はう素濃度が上がると9層31の抵抗率が下がり、前記
のようにリーク電流が多くなって分解能が低下する。と
ころでMTFとは、第4図(alに示すようなストライ
ブパターンを光電変換したときの信号電流が第4図中)
のようになったとした場合、信号電流の最大値1 wa
xと最小値!■inから次式で求められる。 (I sax  +  I 5in) 一般にファクシミリ用のイメージセンサはM ”l” 
F〉50%が要求されている。従って、第3図から8.
H6濃度は0.1%以下であることが必要となる。ちな
みにB*Hi濃度が0.1%の時のp層の抵抗率は約1
×10SΩ・備であり、1%の時は約lXl0’ Ω・
国である。 一方、第5図はn層生成時のPH,濃度と印加電圧5v
における出力電流の関係を示す、りん濃度が上がると0
層33の抵抗率が下がり、前記の理由により個別電極・
共通電極間のリーク電流が増す。 その結果、図に示す様に暗中のii流が大幅に増大し、
S/N比、すなわち照射時と暗中での電流の比が減少す
る。 一般にイメージセンサのS/N比は1桁以上、望むべく
は2桁以上必要とされ、従って、PHs s度は0.0
5%以下が望ましい、ちなみにPHs濃度が0.05%
の時のp層の抵抗率は約lXl0’Ω・備であり、1%
の時は約5X10”Ω・国である。 以上の実験事実から、p−1−n構造のa −3i光セ
ンサアレイでは、p層、n層ともその抵抗率は10’Ω
・(2)以上であることが必要である。また前記の理由
により個別電極間のリーク、個別電極・共通電極間のリ
ークは各々p層1  nNの抵抗率にのみ依存し、各層
の組成、例えば半導体あるいはドーパントのfl類等に
は依らない。
a-5t is usually formed by high frequency glow discharge in SiH* gas. That is, when forming the p-layer using a known technique, BtHb (diborane) gas is used, and C and H are used to further widen the optical gap and improve sensitivity. Add a hydrocarbon gas such as (acetylene). Also, n
PH5 (phosphine) gas is added during layer formation. p
To change the resistivity of the layer or n-layer, the concentration of these doping gases, B, H, or PH, can be changed. Figure 3 shows MTF (Modulation Transfer), a parameter that represents the resolution of the image sensor.
function) and BtHh in the gas during the formation of the p layer.
This shows the relationship with concentration. As the boronic concentration increases, the resistivity of the nine layers 31 decreases, and as described above, leakage current increases and resolution decreases. By the way, MTF is the signal current when photoelectrically converting the stripe pattern shown in Figure 4 (al).
If it becomes as follows, the maximum value of the signal current is 1 wa
x and minimum value! ■It is obtained from in using the following formula. (I sax + I 5in) Generally, the image sensor for facsimile is M “l”
F>50% is required. Therefore, from Fig. 3, 8.
The H6 concentration needs to be 0.1% or less. By the way, when the B*Hi concentration is 0.1%, the resistivity of the p layer is approximately 1.
×10SΩ・At 1%, it is approximately lXl0' Ω・
It is a country. On the other hand, Figure 5 shows the PH, concentration, and applied voltage of 5V during n-layer formation.
0 as the phosphorus concentration increases.
The resistivity of the layer 33 decreases, and for the reasons mentioned above, the individual electrodes
Leakage current between common electrodes increases. As a result, as shown in the figure, the II current in the dark increases significantly,
The S/N ratio, ie the ratio of the current during illumination to the current in the dark, decreases. Generally, the S/N ratio of an image sensor is required to be 1 digit or more, preferably 2 digits or more, and therefore the PHs s degree is 0.0
5% or less is desirable; by the way, the PHs concentration is 0.05%.
The resistivity of the p-layer when
When , the resistivity is approximately 5 x 10''Ω.From the above experimental facts, in the a-3i optical sensor array with p-1-n structure, the resistivity of both the p layer and the n layer is 10'Ω.
- (2) or more is required. Further, for the above-mentioned reasons, leakage between individual electrodes and leakage between individual electrodes and common electrode each depends only on the resistivity of the p layer 1 nN, and does not depend on the composition of each layer, such as the semiconductor or dopant fl.

【発明の効果】【Effect of the invention】

本発明によれば、p−1−n構造の半導体薄膜を用いた
光センサアレイにおいて、i層を挟むp層、n層の双方
の抵抗率を10’Ω・1以上としたため、隣接個別電極
間1個別電極・共通電極間のリークを低減させ、密着型
イメージセンサの分解能、S/N比を向上させることが
できた。
According to the present invention, in an optical sensor array using a semiconductor thin film with a p-1-n structure, the resistivity of both the p layer and the n layer sandwiching the i layer is set to 10'Ω·1 or more, so that adjacent individual electrodes By reducing the leakage between the individual electrodes and the common electrode, we were able to improve the resolution and S/N ratio of the contact-type image sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施の対象となる光センサアレイの一
例の光電変換部を示し、falは平面図、山)。 fclはそれぞれ(5)のA−A’面、B−B’面断面
図、第2図は光センサアレイを備えた密着型イメージセ
ンサの実装概略側面図、第3図はイメージセンサのMT
Fとp層生成時のB、H&濃度の関係線図、第4図はM
TFの定義の説明図、第5図はイメージセンサの出力電
流とn層生成時のPH,濃度の関係線図である。 1ニガラス板、21.21.23.24.25:個別電
極、3:a−st層、31: phi、 32: を層
、33:n層、4:共通電極。 第2区 $3511
FIG. 1 shows a photoelectric conversion unit of an example of a photosensor array to which the present invention is implemented, and fal is a plan view (mountain). fcl is a cross-sectional view of plane A-A' and plane B-B' of (5), Fig. 2 is a schematic side view of the implementation of a contact type image sensor equipped with a photosensor array, and Fig. 3 is a MT of the image sensor.
Relationship diagram between F and B, H & concentration during p layer formation, Figure 4 is M
FIG. 5, which is an explanatory diagram of the definition of TF, is a relationship diagram between the output current of the image sensor and the PH and concentration at the time of n-layer formation. 1 glass plate, 21.21.23.24.25: individual electrode, 3: a-st layer, 31: phi, 32: layer, 33: n layer, 4: common electrode. Ward 2 $3511

Claims (1)

【特許請求の範囲】 1)p、i、n3層の半導体薄膜で構成され、一側に共
通電極を有する光電変換層の他側にそれぞれ独立の個別
電極を設けてなる光電変換要素を一線上に配列したもの
において、半導体薄膜のp層およびn層の抵抗率がいず
れも10^5Ω・cm以上であることを特徴とする光セ
ンサアレイ。 2)特許請求の範囲第1項記載のアレイにおいて、半導
体薄膜が非晶質シリコンからなることを特徴とする光セ
ンサアレイ。
[Scope of Claims] 1) A photoelectric conversion element consisting of three semiconductor thin films of p, i, and n layers and having a common electrode on one side and independent individual electrodes on the other side of the photoelectric conversion element. 1. An optical sensor array characterized in that the p-layer and n-layer of the semiconductor thin film each have a resistivity of 10^5 Ω·cm or more. 2) The optical sensor array according to claim 1, wherein the semiconductor thin film is made of amorphous silicon.
JP60173571A 1985-08-07 1985-08-07 Photosensor array Pending JPS6233480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60173571A JPS6233480A (en) 1985-08-07 1985-08-07 Photosensor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173571A JPS6233480A (en) 1985-08-07 1985-08-07 Photosensor array

Publications (1)

Publication Number Publication Date
JPS6233480A true JPS6233480A (en) 1987-02-13

Family

ID=15963026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60173571A Pending JPS6233480A (en) 1985-08-07 1985-08-07 Photosensor array

Country Status (1)

Country Link
JP (1) JPS6233480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107580A (en) * 1987-10-20 1989-04-25 Oki Electric Ind Co Ltd Photodetector and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187926A (en) * 1981-05-13 1982-11-18 Matsushita Electric Ind Co Ltd Laminated metallized film capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187926A (en) * 1981-05-13 1982-11-18 Matsushita Electric Ind Co Ltd Laminated metallized film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107580A (en) * 1987-10-20 1989-04-25 Oki Electric Ind Co Ltd Photodetector and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS60161664A (en) Tightly adhered two-dimensional image readout device
JPH05243547A (en) Thin film photosensor
US4714836A (en) Photosensitive pixel with exposed blocking element
US4736234A (en) Method of fabrication of a light image detector and a two-dimensional matrix detector obtained by means of said method
US4943839A (en) Contact type image sensor
JPS6233480A (en) Photosensor array
US4746804A (en) Photosensitive pixel with exposed blocking element
JP3135309B2 (en) Photoelectric conversion device and information processing device
JPS6149569A (en) Solid-state image pickup device
US5243177A (en) Image sensor with noise reduction and diminishment of residual images
JPS61189065A (en) Image sensor
US4385307A (en) Solid state image sensing device for enhanced charge carrier accumulation
JPS6089967A (en) Photoelectric conversion element
JPH0369186B2 (en)
JP2707540B2 (en) Optical sensor array
US5083171A (en) Image sensor
JPH09275202A (en) Photodetector
JPS60147158A (en) Image sensor of adherent type
JPS6317554A (en) Photoconductive device
JPS63136578A (en) Photodetector and one-dimensional image sensor using said photodetector
JPS60192361A (en) Color image senser
JPS62269358A (en) Image sensor
JPS61280659A (en) Contact type image sensor
JPS63226061A (en) Color image sensor
JPS58115853A (en) Manufacture of image sensor