JPS58115853A - Manufacture of image sensor - Google Patents

Manufacture of image sensor

Info

Publication number
JPS58115853A
JPS58115853A JP56212538A JP21253881A JPS58115853A JP S58115853 A JPS58115853 A JP S58115853A JP 56212538 A JP56212538 A JP 56212538A JP 21253881 A JP21253881 A JP 21253881A JP S58115853 A JPS58115853 A JP S58115853A
Authority
JP
Japan
Prior art keywords
type layer
image sensor
amorphous silicon
leakage current
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56212538A
Other languages
Japanese (ja)
Inventor
Hajime Kurihara
一 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP56212538A priority Critical patent/JPS58115853A/en
Publication of JPS58115853A publication Critical patent/JPS58115853A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Abstract

PURPOSE:To obtain the image sensor to be operated by a small applied voltage, and having an extremely small storage effect of minority carriers of a leakage current preventing diode by a method wherein a positive electrode is manufactured of a metal to form a Schottky junction. CONSTITUTION:The image sensor is constituted of an insulating substrate 21 of glass, etc., a common electrode 22, amorphous silicon layers (the P type layers) 23, 27 to be formed according to the plasma CVD method mixed with boron, etc., amorphous silicon layers (the I type layers) 24, 26 having no mixture, an amorphous silicon layer (the N type layer) 25 mixed with phosphorus, etc., and an individual electrode 28. Light is injected from the individual electrode side, and the image sensor is formed according to lamination structure of the leakage current preventing diode consisting of the P type layer 23, the I type layer 24 and the N type layer 25, and a photo diode consisting of the P type layer 27, the I type layer 26 and the N type layer 25. Moreover the common electrode is formed by evaporating a chrome metal on the substrate in a vacuum, and evaporating gold, platinum, vanadium, rhodium, or indium, etc., thereon according to vacuum heating evaporation, electron beam evaporation, or sputtering evaporation, and performing photo etching in the necessary shape.

Description

【発明の詳細な説明】 本発明は可視光又は赤外光等の光信号を電気変換するセ
ンサがホトダイオードから成るイメージセンサの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an image sensor in which a sensor that electrically converts an optical signal such as visible light or infrared light is a photodiode.

本発明はホトダイオードと積層して成るもれ電流防止ダ
イオードに優れた特性をもつダイオードの製造方法を提
供するものである。
The present invention provides a method for manufacturing a leakage current prevention diode that is laminated with a photodiode and has excellent characteristics.

従来ファクシミリ送信機の光電変換素には、CODある
いはMOSなどのICセンサが使用されている。
Conventionally, an IC sensor such as COD or MOS is used as a photoelectric conversion element in a facsimile transmitter.

しかしセンサが小型・高密度であるためレンズ光学系に
よシ原稿を縮少させる必要があシ、装置の小型化が困難
でしかも高価格である欠点を有している。
However, since the sensor is small and has a high density, it is necessary to reduce the size of the document using a lens optical system, which makes it difficult to miniaturize the device and is expensive.

そこで硫化ガドミウム(cds)や非晶質シリコンの光
導電素子又は非晶質シリコンのホトダイオードを用い、
導光用に集束性光ファイバー素子等を用いるイメージセ
ンサの研究が進められている0cdsは感度が高く、大
面積化が容易である反面、膜の均一性が悪い、緑色から
赤色の光に対する感度が低い、光のオン・オフに対する
応答速度が遅い、毒性を有する等積さの欠点を有してい
る。
Therefore, using a photoconductive element made of gadmium sulfide (CDS) or amorphous silicon, or a photodiode made of amorphous silicon,
0CDS, which is currently being researched into image sensors that use focusing optical fiber elements for light guiding, has high sensitivity and can be easily made into large areas, but has poor film uniformity and sensitivity to light from green to red. It has the drawbacks of low response speed to light on/off, and toxic isovolume.

非晶質シリコン、微結晶シリコン、多結晶シリコン等よ
シ形成されるホトダイオード並びにもれ電流防止ダイオ
ードを積層して成るイメージセンサは前記欠点を有して
いない特性の優れたイメージセンサであるが、該もれ電
流防止ダイオードにPN接合又はPIN接合を用いると
、順方向電圧このとき(ホトダイオードには逆方向に電
圧が印加される。)を大きくしないと電流が取り出せな
い。又、該PN接合等では少数キャリアーの注入による
蓄積効果があり、イメージセンサの応答時間が遅くなる
等の欠点を有していた。
An image sensor formed by laminating a photodiode formed of amorphous silicon, microcrystalline silicon, polycrystalline silicon, etc. and a leakage current prevention diode is an image sensor with excellent characteristics that does not have the above-mentioned drawbacks. When a PN junction or a PIN junction is used as the leakage current prevention diode, current cannot be extracted unless the forward voltage is increased (a voltage is applied to the photodiode in the reverse direction). In addition, the PN junction and the like have an accumulation effect due to injection of minority carriers, resulting in drawbacks such as slow response time of the image sensor.

本発明はかかる欠点を除去したもので、印加電圧が小さ
く、もれ電流防止ダイオードの少数キャリアーの蓄積効
果の非常に小書なイメージセンサを提供するものである
The present invention eliminates such drawbacks and provides an image sensor that requires a small applied voltage and has a very small accumulation effect of minority carriers in a leakage current prevention diode.

最初に、イメージセンサの動作について簡単に説明する
First, the operation of the image sensor will be briefly explained.

第1図はイメージセンサの等価回路を示す図で、R,、
R,・・・・・・Rnは共通電極、 Ct、 Cm・・
・・・・IOmは個別電極e Dt 、 D嘗””Dm
、 Dmt、@ Dmt”Dmm・・・Dmnはもれ電
流防止ダイオードrll、 rll・・・r□。
Figure 1 is a diagram showing the equivalent circuit of an image sensor, R,...
R,...Rn is a common electrode, Ct, Cm...
・・・・IOm is an individual electrode e Dt , D嘗””Dm
, Dmt, @Dmt"Dmm...Dmn are leakage current prevention diodes rll, rll...r□.

rst・・・rllll・・・rl・・・ramはホト
ダイオード、RLは負荷抵抗、Eは電源であるo rs
・・・ram上に集束光ファイバー等により導光された
画家がrI・・・r□により電気信号に変換される。こ
のとき共通電極R1をオンし、個別電極C=、 CI・
・・・・・Cmを順次オンすることにより、rl・・・
ramの出力信号が検知される。
rst...rllll...rl...ram is a photodiode, RL is a load resistance, E is a power supply or rs
...The painter's light guided by a focusing optical fiber or the like onto the RAM is converted into an electrical signal by rI...r□. At this time, the common electrode R1 is turned on, and the individual electrodes C=, CI・
...By turning on Cm sequentially, rl...
The output signal of the ram is detected.

以下これを繰り返し、1走査分の信号を得ていく。Thereafter, this process is repeated to obtain signals for one scan.

このとき必要に応じて電源Eによりrl・・・rmm 
K電圧が印加される。このとき、もれ電流防止ダイオー
ドはたとえばR1,CtをオンしrIIの出力を取シ出
す時、rmt・・・ran  による種々出力がro 
の出力の上にのるのを防ぎ、正確なrl哀の出力を堆シ
出す働きをする。
At this time, if necessary, use the power supply E to adjust rl...rmm.
K voltage is applied. At this time, when the leakage current prevention diode turns on R1 and Ct and takes out the output of rII, the various outputs due to rmt...ran are ro
It works to prevent the output from being overlaid on the output of the rl file and to output the correct rl output.

第2図に従来の非晶質シリコン、微結晶シリコン、多結
晶シリコンより成るイメージセンサにおいて通常用いら
れる非晶質シリコンイメージセンサの断面構造を示す。
FIG. 2 shows a cross-sectional structure of an amorphous silicon image sensor commonly used in conventional image sensors made of amorphous silicon, microcrystalline silicon, and polycrystalline silicon.

21はガラス等の絶縁性基板、22は共通電極、25.
27はボロン等を混入したプラズマCVD法よ多形成さ
れる非晶質シリコン層(p層)、24.26は混入を行
わない非晶質シリコン層(1層)、25はリン等を混入
した非結晶シリコン層(n層)、28は個別電極である
。光は個別電極側より入射され、#p層25゜#、i層
24及び該n層25より成るもれ電流防止ダイオードと
該p層27.該1層26及び該n層25より成るホトダ
イオードの積層構造よりイメージセンサが形成される。
21 is an insulating substrate such as glass, 22 is a common electrode, 25.
27 is an amorphous silicon layer (p layer) formed by plasma CVD method with boron etc. mixed in, 24.26 is an amorphous silicon layer (1 layer) without any mixing, 25 is a layer mixed with phosphorus etc. The amorphous silicon layer (n layer) 28 is an individual electrode. Light is incident from the individual electrode side, and a leakage current prevention diode consisting of the #p layer 25°#, the i layer 24, and the n layer 25, and the p layer 27. An image sensor is formed from a laminated structure of photodiodes consisting of the one layer 26 and the n layer 25.

このとき、該共通電極22は該もれ電流防止ダイオード
の正電極となるOすなわちもれ電流防止ダイオードが順
方向になる時電気的な正側になる電極を正電極とするO
該共通電極は従来アルミニウム、モリブデン、ニッケル
、クロム、ステンレス等非晶質シリコン、微結晶シリコ
ン、多結晶シリコンとオーシック接合を行う金属によっ
て製造されていた。
At this time, the common electrode 22 becomes the positive electrode of the leakage current prevention diode (O), that is, the electrode that becomes electrically positive when the leakage current prevention diode is in the forward direction is the positive electrode.
The common electrode has conventionally been made of a metal such as aluminum, molybdenum, nickel, chromium, stainless steel, etc., which forms an orthic bond with amorphous silicon, microcrystalline silicon, or polycrystalline silicon.

本発明は該正電極をシ■ットキー接合を形成する金属に
よシ製造し従来の欠点を改善した。
The present invention improves the drawbacks of the prior art by fabricating the positive electrode from a metal that forms a Schottky junction.

以下、本発明により製造したイメージセンナの製造方法
について詳しく説明を行う。
Hereinafter, a method for manufacturing an image sensor manufactured according to the present invention will be explained in detail.

本実施例のイメージセンサの断面構造は第2図に示した
従来のイメージセンナと同様な構造であり、前記正電極
すなわち前記共通電極の製造方法以外はその製造方法も
同様である。具体的には、前記個別電極28は、アルミ
ニウム、クロム、ニッケル、ステンレス等の導電性材料
を蒸着し、必要な形状にホトエツチングプロセスで形成
し、前記p、i、n層の主たる製造方法は、水素、ヘリ
ウム、ネオン、アルゴン、キセノン等をペースガスとし
、モノシラン、四弗化シラン、ジクロルシラン郷をキャ
リアーガスとする所定ガスを排気系を具備する真空槽内
に導入して所定の内圧とし、紋真空檜内に放電を起こさ
しめ、該ガスを分解し、所定温度に加熱された基板上に
非晶質シリコン層を析出するプラズマCVD法を用いた
。このとき、周期律表第厘−b族並び第v−b族を混入
しない非晶質シリコン層(1層)が得られる。又、該非
晶質シリコン中に周期律表第■−b族を混入するp層は
前記ガス導入時にジボラン(B、H,)、 )リエチル
アルミニウム等ドーピング−ガスを前記ベースガスとと
もに導入し得られる。又、咳非晶質シリコン中に周期律
表第v−b族を混入するn層はホスフィン、アルシン等
ドーピングガスを同様に導入し得られる。本実施では前
記もれ電流防止ダイオードを製造する際にp層を設けた
が、p層を設けなくとも同様の効果が得られる事を確認
した。
The cross-sectional structure of the image sensor of this embodiment is similar to that of the conventional image sensor shown in FIG. 2, and the manufacturing method thereof is also the same except for the manufacturing method of the positive electrode, that is, the common electrode. Specifically, the individual electrodes 28 are formed by depositing a conductive material such as aluminum, chromium, nickel, stainless steel, etc. into the required shape by a photoetching process, and the main manufacturing method for the p, i, and n layers is as follows. A predetermined gas containing hydrogen, helium, neon, argon, xenon, etc. as a pace gas and monosilane, tetrafluorosilane, dichlorosilane as a carrier gas is introduced into a vacuum chamber equipped with an exhaust system to achieve a predetermined internal pressure, A plasma CVD method was used in which a discharge is caused in a vacuum cylinder to decompose the gas and deposit an amorphous silicon layer on a substrate heated to a predetermined temperature. At this time, an amorphous silicon layer (one layer) is obtained that does not contain any of Group B-B and Group V-B of the periodic table. In addition, for the p layer in which Group Ⅲ-b of the periodic table is mixed into the amorphous silicon, a doping gas such as diborane (B, H, ), ethylaluminum, etc. may be introduced together with the base gas at the time of introducing the gas. It will be done. Further, an n layer in which a group V-B of the periodic table is mixed into amorphous silicon can be obtained by similarly introducing a doping gas such as phosphine or arsine. In this embodiment, a p-layer was provided when manufacturing the leakage current prevention diode, but it was confirmed that the same effect could be obtained without providing a p-layer.

本発明による前記共通電極は基板上にあらかじめクロム
金属を真空蒸着し、その上に金、白金、バナジウム、ロ
ジウム又はイリジウム等を10λ〜1000λ程度真空
加熱蒸着、電子ビーム蒸着、又はスパクタ蒸着し、その
後必要な形状にホトエツチングし製造した。
The common electrode according to the present invention is made by vacuum-depositing chromium metal on a substrate in advance, and then depositing gold, platinum, vanadium, rhodium, iridium, etc. on the substrate by vacuum heating evaporation, electron beam evaporation, or sputter evaporation for about 10λ to 1000λ, and then It was manufactured by photoetching into the required shape.

第3図に従来のもれ電流防止ダイオード並びに本発明に
よるもれ電流防止ダイオードのダイオード特性を示す。
FIG. 3 shows diode characteristics of a conventional leakage current prevention diode and a leakage current prevention diode according to the present invention.

1aは従来の順方向のダイオード特性、 2&は従来の
逆方向特性、1bは本実施例のダイオード特性、 2b
は本実施例の逆方向特性lnI  は電流の対数値、■
は印加電圧である。
1a is the conventional forward diode characteristic, 2& is the conventional reverse characteristic, 1b is the diode characteristic of this embodiment, 2b
is the reverse characteristic lnI of this example, is the logarithm of the current, ■
is the applied voltage.

ダイオードの順方向特性は通常以下の式であら1   
 わせる。
The forward characteristics of a diode are usually expressed by the following formula:
make it happen

I=IoXAXexp(−iM)  但しV2100m
VKT 両辺対数をとると in I = In Io m A +−1−vKT ■は印加電圧、工は電流+ Ioは電流密度、Aは素子
面積、qは単位電荷、にはボルツアン定数、Tは測定時
の給体温度、nはダイオードクオリイテイ係数と呼ばれ
ダイオード特性の目やすとなり、理想的には1である。
I=IoXAXexp(-iM) However, V2100m
VKT If we take the logarithm on both sides, in I = In Iom A +-1-vKT ■ is the applied voltage, D is the current + Io is the current density, A is the element area, q is the unit charge, is the Boltzian constant, and T is the measurement value The feed temperature at that time, n, is called the diode quality coefficient and serves as a measure of the diode characteristics, and ideally it is 1.

従来のもれ電流防止ダイオードはnが1.7〜2.1程
度であるが、本実施例のもれ電流ダイオードけnが1,
5以下で、通常の印加電圧で1ケタ程度大きな電流の得
られる優れたダイオードである。又、注入キャリアーの
蓄積効果が滅シ従来のイメージセンサよシも応答速度が
5倍以上高速化できる。
Conventional leakage current prevention diodes have n of about 1.7 to 2.1, but the leakage current diode of this embodiment has n of about 1.
5 or less, it is an excellent diode that can obtain about one digit large current with normal applied voltage. Furthermore, the accumulation effect of injected carriers is eliminated, and the response speed can be increased by more than five times compared to conventional image sensors.

本発明によれば高速で印加電圧の小さなイメージセンサ
が得られ、ファクシミリやビデオカメラ等に応用でき有
用である。
According to the present invention, a high-speed image sensor with a small applied voltage can be obtained, which is useful for applications such as facsimiles and video cameras.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイメージセンサの等価回路である。 第2図は従来のイメージセンサの断面図である。 第5図は従来及び本実施例のもれ電流ダイオードの特性
を示す。 以上 第111n 第2図 γ 第3図
FIG. 1 shows an equivalent circuit of an image sensor. FIG. 2 is a cross-sectional view of a conventional image sensor. FIG. 5 shows the characteristics of the leakage current diodes of the conventional and this embodiment. Above 111n Figure 2 γ Figure 3

Claims (1)

【特許請求の範囲】[Claims] ■ 非晶質シリコン、微結晶シリコン又は多結晶シリコ
ンより形成されるホトダイオード並びにもれ電流防止ダ
イオードを積層して成るイメージセンサにおいて、該も
れ電流防止ダイオードの正電極を金、白金、バナジウム
、ロジウム、イリジウム等該非晶質シリコン、微結晶シ
リコン又は多結晶シリコンとショットキー接合を形成す
る金属で製造する事を特徴とするイメージセンサの製造
方法0
■ In an image sensor formed by laminating a photodiode and a leakage current prevention diode made of amorphous silicon, microcrystalline silicon, or polycrystalline silicon, the positive electrode of the leakage current prevention diode is made of gold, platinum, vanadium, or rhodium. , Iridium, or other metal that forms a Schottky junction with the amorphous silicon, microcrystalline silicon, or polycrystalline silicon.
JP56212538A 1981-12-28 1981-12-28 Manufacture of image sensor Pending JPS58115853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56212538A JPS58115853A (en) 1981-12-28 1981-12-28 Manufacture of image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212538A JPS58115853A (en) 1981-12-28 1981-12-28 Manufacture of image sensor

Publications (1)

Publication Number Publication Date
JPS58115853A true JPS58115853A (en) 1983-07-09

Family

ID=16624326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212538A Pending JPS58115853A (en) 1981-12-28 1981-12-28 Manufacture of image sensor

Country Status (1)

Country Link
JP (1) JPS58115853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3526166A1 (en) * 1984-07-23 1986-01-30 Asahi Kasei Kogyo K.K., Osaka PRINTED REEL UNIT FOR A LOW-DIMENSION ACTUATOR
JPS61161752A (en) * 1985-01-11 1986-07-22 Ricoh Co Ltd Photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3526166A1 (en) * 1984-07-23 1986-01-30 Asahi Kasei Kogyo K.K., Osaka PRINTED REEL UNIT FOR A LOW-DIMENSION ACTUATOR
US4658162A (en) * 1984-07-23 1987-04-14 Asahi Kasei Kogyo Kabushiki Kaisha Printed coil unit for small size actuator
JPS61161752A (en) * 1985-01-11 1986-07-22 Ricoh Co Ltd Photoelectric conversion element

Similar Documents

Publication Publication Date Title
US4677289A (en) Color sensor
CA1168739A (en) Method of manufacturing photosensors
US6310382B1 (en) Multicolor sensor
Brown et al. Visible-blind UV digital camera based on a 32× 32 array of GaN/AlGaN pin photodiodes
JPS55108780A (en) Thin film solar cell
JP3236624B2 (en) Photosensitive electronic device, color sensor using the device, and method of manufacturing the device
JPH0652802B2 (en) Light receiving device
JPH0660845B2 (en) Color discrimination method
JPS58115853A (en) Manufacture of image sensor
Zhu et al. A Novel α-Si (C): H Color Sensor Array
US5942788A (en) Solid state image sensing device
JPS6322074B2 (en)
JPH0653537A (en) Semiconductor light receiving element
JP2001284630A (en) Semiconductor photoelectric converter element, its use method and manufacturing method
JPS5879756A (en) Amorphous si image sensor
JPS59143379A (en) Photoconductor and manufacture thereof
JPS58115852A (en) Image sensor
JPS6257261B2 (en)
JPH0323679A (en) Photoelectric transducer
JPH08153888A (en) Photoelectric converter and optical sensor employing it
JPS6199387A (en) Photoelectric conversion element and manufacture thereof
JPH02148773A (en) Optical sensor
JPS6242447A (en) Solid-state image pickup device
JPS6161460A (en) Manufacture of photodetector
JPS60186073A (en) Photodetector