JPS60263565A - Long-sized one-dimensional sensor - Google Patents

Long-sized one-dimensional sensor

Info

Publication number
JPS60263565A
JPS60263565A JP59118830A JP11883084A JPS60263565A JP S60263565 A JPS60263565 A JP S60263565A JP 59118830 A JP59118830 A JP 59118830A JP 11883084 A JP11883084 A JP 11883084A JP S60263565 A JPS60263565 A JP S60263565A
Authority
JP
Japan
Prior art keywords
electrode
sensor
lower individual
individual electrode
common electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59118830A
Other languages
Japanese (ja)
Inventor
Keiji Tarui
垂井 敬次
Shoshichi Kato
加藤 昭七
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59118830A priority Critical patent/JPS60263565A/en
Publication of JPS60263565A publication Critical patent/JPS60263565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To make dispersion in sensor area for each picture element small and to prevent destruction of a photoelectric conversion film by constituting a title sensor so that a beltlike common electrode is not opposed to corner parts of plural individual electrodes and not using the corner parts of individual electrode as sensors. CONSTITUTION:An Al film is formed on a glss substrate 1 by electron beam vapor deposition to a thickness of 3,000Angstrom . A sensor section and its electrode pattern are formed by photolithography to obtain a lower individual electrode 2. The longitudinal width W of the electrode 2 is made to 1.5 times lateral width D. A film of hydrogenated amorphous silicon is formed by a glow discharge process to form a photoconductive conversion film 3. Further, a beltlike common electrode 4, narrower than the width W of a lower individual electrode, is provided in beltlike form not to oppose to right above the corner part of the lower individual electrode 2. By such constitution, the part that does not oppose to the common electrode 4 of the lower individual electrode 2 does not work as a sensor.

Description

【発明の詳細な説明】 1技術分野] 本発明は充電変換膜を上下両電極で挟んだサンドイッチ
型の長尺−次元イメージセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Technical Field The present invention relates to a sandwich-type long-dimensional image sensor in which a charge conversion membrane is sandwiched between upper and lower electrodes.

1従未扶術1 一次元イメージセンサはファクシミリ、インテリジェン
ト複写機等の原稿読取用素子として知られている。従来
、この種の受光センサとしては一次元の固体イメージ素
子(CODあるいはMOS型)を用い原稿像をスリット
露光かつ縮小結像することにより、対応した画像情報信
号を得ている。
1 Conventional Techniques 1 One-dimensional image sensors are known as document reading elements for facsimile machines, intelligent copying machines, and the like. Conventionally, this type of light receiving sensor uses a one-dimensional solid-state image device (COD or MOS type) to obtain a corresponding image information signal by subjecting an original image to slit exposure and reducing the image.

この−次元固体イメージ素子はIC技術を使って作製さ
れ、30mm程度の大きさの素子であるため、原稿から
の反射光を受光部に導くには光路長の長い光学系を用い
ざるを得す、装置の小型化が困難となる。さらに、この
様な装置では光学系の複雑な調整が必要であり、また、
画面周辺部の光量低下、分解能の劣化といった問題も生
してくる。
This -dimensional solid-state image device is manufactured using IC technology and is approximately 30 mm in size, so an optical system with a long optical path must be used to guide the reflected light from the original to the light receiving section. , it becomes difficult to downsize the device. Furthermore, such devices require complex adjustments of the optical system, and
Problems such as a decrease in the amount of light at the periphery of the screen and deterioration in resolution also arise.

これらの問題点の改善のため、原稿幅と同一寸法の長さ
の素子釦用い、ファイバーレンズアレイにより密着結像
する、いわゆる長尺−次元イメージ゛センサが考案され
ている。第3図は従来のサンドイッチ型長尺−次元セン
サの平面図を、第4図に第3図のA−A’線断面図を示
す。
In order to improve these problems, a so-called long-dimensional image sensor has been devised, which uses an element button with the same length as the width of the document and closely focuses an image using a fiber lens array. FIG. 3 is a plan view of a conventional sandwich type long-dimensional sensor, and FIG. 4 is a cross-sectional view taken along the line AA' in FIG. 3.

従来のこの様なセンサ構造では、下記の様な2つの問題
点があった。
This conventional sensor structure has the following two problems.

(1)ガラス基板1上の下部個別電極2のパターン形成
に於て、電極エツチング時のアンダーカットの問題があ
り、特に各下部個別電極2の四つの角部aにおいてアン
ダーカットが著しくなる。したがって、下部個別電極2
のパターン寸法にバラツキが生じ、各画素毎のセンサ面
積がばらつト、センサ出力に大トな変化を与える。なお
各図において、3は充電変換膜、4は帯状の共通電極で
あ、る。
(1) In patterning the lower individual electrodes 2 on the glass substrate 1, there is a problem of undercuts during electrode etching, and the undercuts are particularly severe at the four corners a of each lower individual electrode 2. Therefore, the lower individual electrode 2
This causes variations in the pattern dimensions, which causes variations in the sensor area for each pixel, which causes a large change in the sensor output. In each figure, 3 is a charge conversion membrane, and 4 is a strip-shaped common electrode.

(2)電圧印加の際、下部個別電極2の四つの角部aで
は電界が集中し、充電変換膜3が破壊されやすい。
(2) When voltage is applied, the electric field concentrates at the four corners a of the lower individual electrode 2, and the charge conversion film 3 is likely to be destroyed.

[発明の目的1 本発明は従来の長く一次元イメージセンサのもつ種々の
問題点を除くためになされたもので、各画素の電極端部
に電界が集中することによる光電変換膜の絶縁破壊を防
ぎ、また各センサの出力バラツキを低減で鰺る長尺−次
元イメージセンサを提供することを目的とする。
[Objective of the Invention 1] The present invention was made in order to eliminate various problems of conventional long one-dimensional image sensors, and to prevent dielectric breakdown of the photoelectric conversion film due to concentration of electric field at the electrode end of each pixel. It is an object of the present invention to provide a long-dimensional image sensor that prevents the above problems and reduces output variations of each sensor.

[発明の構成] 本発明においては長尺−次元イメージセンサにおいて、
複数個の個別電極の角部に帯状共通電極が対向しないよ
うに構成され、該個別電極の角部をセンサとして用し・
ないことにより各画素毎のセンサ面積のバラツキを小さ
くし、また、前記個別電極の電界集中による光電変換膜
の破壊を避けることができる。
[Configuration of the Invention] In the present invention, in a long-dimensional image sensor,
The strip-shaped common electrode is configured so that it does not face the corners of the plurality of individual electrodes, and the corners of the individual electrodes are used as sensors.
This makes it possible to reduce variations in sensor area for each pixel, and to avoid destruction of the photoelectric conversion film due to electric field concentration of the individual electrodes.

[実施例] 本発明の一実施例のセンサ構造の平−図を第1図にその
A−A’線断面図を第2図に示す、ガラス基板1の上に
、各画素に対応する透明な下部個別電極2が縦長の長方
形となる様に、かつ横方向に適宜間隔を隔てて並べて形
成されている。下部個別電極2上には、非晶質或いは多
結晶半導体からなる光電変換膜3が形成されている。さ
らにその上に帯状共通電極4が下部個別電極の幅Wより
も狭く、下部個別電極の角部の直上と対向しないように
帯状に設けられている。
[Embodiment] A plan view of a sensor structure according to an embodiment of the present invention is shown in FIG. 1, and a sectional view taken along the line A-A' is shown in FIG. The lower individual electrodes 2 are formed in a vertically long rectangular shape and are arranged at appropriate intervals in the horizontal direction. A photoelectric conversion film 3 made of an amorphous or polycrystalline semiconductor is formed on the lower individual electrode 2 . Furthermore, a band-shaped common electrode 4 is provided above the common electrode 4, which is narrower than the width W of the lower individual electrode and is provided in a band-like manner so as not to face directly above the corner of the lower individual electrode.

次に上記した本実施例の具体例を述べる。ガラス基板1
の上に、AIを電子ビーム蒸着により約3000人の厚
さに着膜する。続いて、7オトリングラフイによりセン
サ部とそのリードの電極パターンを形成し、下部個別電
極2とする。その際、下部個別電極2は横幅りに対し縦
幅Wを約1.5倍にとり、縦長の長方形にする。解線度
8本/齢のセンサを作製する場合には、センサ部の縦幅
を150μm、横幅を10 (’1μ庇とする。
Next, a specific example of the above embodiment will be described. Glass substrate 1
On top of this, AI is deposited to a thickness of approximately 3000 nm by electron beam evaporation. Subsequently, an electrode pattern for the sensor section and its leads is formed using 7-otolithography to form the lower individual electrodes 2. At this time, the lower individual electrode 2 has a vertical width W approximately 1.5 times the horizontal width, and is made into a vertically long rectangle. When producing a sensor with a linearity of 8 pieces/age, the vertical width of the sensor part is 150 μm and the horizontal width is 10 μm (1 μm eave).

次に、光導電変換膜3を形成するため、水素化した非晶
質シリコンをグロー放電法により約1μmの厚さに着膜
する。
Next, in order to form the photoconductive conversion film 3, hydrogenated amorphous silicon is deposited to a thickness of about 1 μm by a glow discharge method.

続いて、帯状共通電極4としてITO(In2O2−3
nO2(5%))をRFスパッタリングにより、約10
00人の厚さに薄膜を形成し、7オトリソグラフイにて
下部個別電極2の中心部の直上に幅100μmの帯状共
通電極パターンを形成した。
Subsequently, ITO (In2O2-3
nO2 (5%)) by RF sputtering, approximately 10
A thin film was formed to a thickness of 0.00 mm, and a strip-shaped common electrode pattern with a width of 100 μm was formed directly above the center of the lower individual electrode 2 using 7 otolithography.

以上の方法により、本発明の長尺−次元イメージセンサ
を形成することかで・きる。
By the above method, the long-dimensional image sensor of the present invention can be formed.

上記の構成によって、下部個別電極2の共通電極4と対
向する部分だけがセンサとして作用し、対向しない部分
はセンサとして作用しない。
With the above configuration, only the part of the lower individual electrode 2 that faces the common electrode 4 acts as a sensor, and the part that does not face does not act as a sensor.

尚、個別電極を透明電極、上部共通電極を金属電極(A
l)とし、光像なガラス基板側から入射させる構造にし
た場合においても同様の効果を得た。
In addition, the individual electrodes are transparent electrodes, and the upper common electrode is a metal electrode (A
A similar effect was obtained even in the case of the structure in which the light is incident from the glass substrate side.

[効果1 本発明は以上述べた構成をとることにより、下記の効果
を奏することができる。
[Effect 1] By employing the configuration described above, the present invention can achieve the following effects.

個別電極の角部をセンサとして用いないことにより、角
部にアンダーカットがあってもセンサ面積は影響されず
、センサの出力ばらつきを従来の20%から50%以下
に下げることができた。
By not using the corners of individual electrodes as sensors, even if there is an undercut at the corner, the sensor area is not affected, and the variation in sensor output can be reduced from 20% to 50% or less.

下部個別電極において、角部をセンサとして用いないこ
とにより角部での電界集中が緩和され、充電変換膜の絶
縁破壊が解消された。
By not using the corners of the lower individual electrodes as sensors, electric field concentration at the corners is alleviated, and dielectric breakdown of the charge conversion film is eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の長尺−次元センサの一実施例を示す
平面図、第2図は第1図のA−A’線断面図、第3図は
従来の長尺−次元センサの平面図、第4図は第3図のA
−A’線断面図である。 1・・・ガラス基板、2・・・下部個別電極、3・・・
充電変換膜、4・・・帯状共通電極。 特許出願人 シャープ株式会社 代 理 人 弁理士 青白 葆 外2名第1図 第2図 第3図 Δ 第4図
FIG. 1 is a plan view showing an embodiment of the long-dimensional sensor of the present invention, FIG. 2 is a sectional view taken along the line A-A' in FIG. 1, and FIG. 3 is a plan view of a conventional long-dimensional sensor. Figure 4 is A of Figure 3.
-A' line sectional view. 1... Glass substrate, 2... Lower individual electrode, 3...
Charging conversion membrane, 4... strip-shaped common electrode. Patent Applicant: Sharp Co., Ltd. Agent Patent Attorneys: Ao-Haku and 2 others Figure 1 Figure 2 Figure 3 Δ Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)光導電層の上部及び下部の両端に形成されたサン
ドイッチ型電極構造をもち、片側の電極は複数個の画素
の帯状共通電極であり、他の側の電極は各画素ごとに形
成された個別電極から成り、該個別電極と該帯状共通電
極の少なくとも一方が透明電極である長尺−次元センサ
に於て、該個別電極の端部である角部に該帯状共通電極
が対向しないことを特徴とする長尺−次元センサ。
(1) It has a sandwich-type electrode structure formed at both ends of the upper and lower parts of the photoconductive layer, with the electrode on one side being a strip-shaped common electrode for multiple pixels, and the electrode on the other side being formed for each pixel. In a long-dimensional sensor consisting of individual electrodes in which at least one of the individual electrodes and the strip-shaped common electrode is a transparent electrode, the strip-shaped common electrode does not face a corner that is an end of the individual electrode. A long-dimensional sensor characterized by:
JP59118830A 1984-06-09 1984-06-09 Long-sized one-dimensional sensor Pending JPS60263565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118830A JPS60263565A (en) 1984-06-09 1984-06-09 Long-sized one-dimensional sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118830A JPS60263565A (en) 1984-06-09 1984-06-09 Long-sized one-dimensional sensor

Publications (1)

Publication Number Publication Date
JPS60263565A true JPS60263565A (en) 1985-12-27

Family

ID=14746206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118830A Pending JPS60263565A (en) 1984-06-09 1984-06-09 Long-sized one-dimensional sensor

Country Status (1)

Country Link
JP (1) JPS60263565A (en)

Similar Documents

Publication Publication Date Title
US4644406A (en) Large scale contact type image reading unit using two-dimensional sensor array
US4354104A (en) Solid-state image pickup device
JP2943437B2 (en) Fingerprint sensor
JPS60113587A (en) Two dimensional picture reader
US4567374A (en) Photoelectric converting device with a plurality of divided electrodes
US4943839A (en) Contact type image sensor
JP3082277B2 (en) Liquid crystal display
US5159422A (en) Photoelectric conversion device
JPS60263565A (en) Long-sized one-dimensional sensor
JPS628951B2 (en)
JPS60170255A (en) Solid-state image pickup device
JPH022165A (en) Image sensor
JPS6327871B2 (en)
JP3146509B2 (en) 2D contact image sensor
JPS6317554A (en) Photoconductive device
JPS61280659A (en) Contact type image sensor
JPS60147172A (en) Photosensor array
JP2573342B2 (en) Light receiving element
JPS63110771A (en) Contact-type image sensor
JPS59119759A (en) Image sensor
JPH02153667A (en) Thin film type line sensor
JPS61231754A (en) Hybrid integrated single-dimensional optical sensor
JPS63314863A (en) Photodetector array
JPH0621425A (en) Manuscript reader
JPS58199561A (en) Thin film photodetector