JPS63109360A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPS63109360A
JPS63109360A JP25608586A JP25608586A JPS63109360A JP S63109360 A JPS63109360 A JP S63109360A JP 25608586 A JP25608586 A JP 25608586A JP 25608586 A JP25608586 A JP 25608586A JP S63109360 A JPS63109360 A JP S63109360A
Authority
JP
Japan
Prior art keywords
electrode lead
atmosphere
lead
material layer
sensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25608586A
Other languages
Japanese (ja)
Inventor
Hiroshi Koda
弘史 香田
Muneharu Shimabukuro
宗春 島袋
Yasunori Ono
靖典 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP25608586A priority Critical patent/JPS63109360A/en
Publication of JPS63109360A publication Critical patent/JPS63109360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To prevent the disconnection of an electrode lead, by connecting an atmosphere-sensitive substance layer and a stem by at least one electrode lead and providing looseness sufficient to absorb the thermal deformation of a metal heat generator to the electrode lead. CONSTITUTION:The atmosphere-sensitive substance layer 14 of a gas sensor 2 is composed of a metal oxide semiconductor such as SnO2 and an electrode lead 16 is connected to the responsive substance layer 14 by a fritless gold paste 18 and fixed to a stem 8 by welding. Herein, looseness 22 sufficient to absorb the thermal deformation of a heat generator 10 is formed to the lead 16. When the sensor 2 is heated, the heat generator 10 thermally expands and stress acts on the lead 16. Since the looseness 22 is formed to the lead 16, the thermal deformation of the lead 16 is absorbed by the looseness 22 and the disconnection of the lead 16 can be prevented.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、可燃性ガスや毒性ガス、酸素、水蒸気等の
ガスを検出するためのガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas sensor for detecting gases such as flammable gases, toxic gases, oxygen, and water vapor.

[従来技術] 発明者は、金属発熱体表面に耐熱絶縁性被覆を介して雰
囲気感応物質層を担持させたガスセンサを提案した(本
日付けの特許願(1))。このセンサの特徴は、雰囲気
感応物質を担持する絶縁基体、あるいは雰囲気感応物質
の焼結体が不要な点に有る。そしてこの結果、センサの
熱容量や放熱面積は減少し、センサの消費電力や熱時定
数も減少する。また基体や焼結体等の重環がなくなり、
それを支えるリード線も細いもので良くなる。更にセン
サの主要部分は金属発熱体上に形成され、自動化に適す
るため、センサの生産性も増大する。
[Prior Art] The inventor proposed a gas sensor in which an atmosphere-sensitive material layer is supported on the surface of a metal heating element via a heat-resistant insulating coating (patent application (1) dated today). A feature of this sensor is that it does not require an insulating substrate supporting an atmosphere-sensitive substance or a sintered body of an atmosphere-sensitive substance. As a result, the heat capacity and heat radiation area of the sensor are reduced, and the power consumption and thermal time constant of the sensor are also reduced. In addition, heavy rings such as the base body and sintered body are eliminated,
The lead wire that supports it will also be better if it is thinner. Furthermore, the main part of the sensor is formed on a metal heating element, making it suitable for automation, which also increases the productivity of the sensor.

発明者はここで、電極リードの断線という問題に直面し
た。断線の原因は、金属発熱体が熱変形することにあっ
た。通常の、雰囲気感応物質の焼結体にコイル状の電極
やヒータを埋設したものでは、電極やヒータの断線は生
じない。これは電極やヒータの変形が焼結体に吸収され
、変形が抑制されるからである。またコイルは元々変形
への許容度を有している。アルミナ等の耐熱絶縁性基板
に雰囲気感応物質層を印刷したセンサでも、リード線の
断線はほとんど生じない。これは発熱部を内蔵した基板
はセラミック製で、変形しないからである。
Here, the inventor faced the problem of disconnection of the electrode lead. The cause of the disconnection was thermal deformation of the metal heating element. If a coil-shaped electrode or heater is embedded in a normal sintered body of an atmosphere-sensitive material, disconnection of the electrode or heater will not occur. This is because deformation of the electrodes and heaters is absorbed by the sintered body and deformation is suppressed. Additionally, coils inherently have tolerance for deformation. Even in sensors in which an atmosphere-sensitive material layer is printed on a heat-resistant insulating substrate such as alumina, lead wire breakage rarely occurs. This is because the substrate containing the heat generating part is made of ceramic and does not deform.

[発明の課題] この発明は、金属発熱体上に耐熱絶縁性被膜を介して雰
囲気感応物質層を担持したセンサにおいて、電極リード
の断線を防止することを課題とする。
[Problem of the Invention] An object of the present invention is to prevent disconnection of electrode leads in a sensor in which an atmosphere sensitive material layer is supported on a metal heating element via a heat-resistant insulating film.

[発明の構成] この発明は、金属発熱体表面に耐熱絶縁性被覆を介して
雰囲気感応物質層を担持させたガスセンサにおいて、雰
囲気感応物質層とステムとを少なくとも1本の電極リー
ドにより接続すると共に、電極リードには、金属発熱体
の熱変形を吸収するに充分な遊びを持たせたことを特徴
とする。この遊びは例えば、雰囲気感応物質層への電極
リードの接続方向と、ステムへの接続方向とを逆にする
こと等で設ける。
[Structure of the Invention] The present invention provides a gas sensor in which an atmosphere sensitive material layer is supported on the surface of a metal heating element via a heat-resistant insulating coating, in which the atmosphere sensitive material layer and a stem are connected by at least one electrode lead, and , the electrode lead is characterized by having sufficient play to absorb thermal deformation of the metal heating element. This play is provided, for example, by reversing the connection direction of the electrode lead to the atmosphere sensitive material layer and the connection direction to the stem.

そして電極リードの遊びにより、金属発熱体の熱変形を
吸収し、断線を防止する。
The play in the electrode leads absorbs thermal deformation of the metal heating element and prevents disconnection.

[実施例] 第1図、第2図において、(2)はガスセンサ、(4)
はハウジングであり、その上部から図示しないカバーで
覆ってセンサの防爆と保護とを行う。
[Example] In Figures 1 and 2, (2) is a gas sensor, (4)
is a housing, which is covered with a cover (not shown) from above to provide explosion protection and protection for the sensor.

(6)はハウジングに固着したヒータステム、(8)は
同じくハウジングに固着した電極ステムである。
(6) is a heater stem fixed to the housing, and (8) is an electrode stem also fixed to the housing.

(10)は金属発熱体でステム(6)へ溶接され、Pd
−Ir合金やPt、Ir等の貴金属、あるいはFe−C
r−Al合金やNi−Cr合金等の卑金属の線径10μ
〜80μ程度の線材を用いる。金属発熱体(10)は、
例えば板状のものとしても良い。
(10) is a metal heating element welded to the stem (6), Pd
-Ir alloy, noble metals such as Pt and Ir, or Fe-C
Base metal wire diameter 10μ such as r-Al alloy or Ni-Cr alloy
A wire rod of about 80 μm is used. The metal heating element (10) is
For example, it may be plate-shaped.

(12)は、ステム(6)への溶接部を除いて金属発熱
体(10)の表面を被覆した、耐熱絶縁性被覆で、アル
ミナやシリカ、ムライト、等の、プラズマCVDやスパ
ッタリング、イオンブレーティング等による被膜である
。被覆(12)の厚さは、例えば5OA−10μ、より
好ましくは100A〜5μとする。実験によると、10
0Aのアルミナ被覆をプラズマCVDによりptやPd
−Ir合金、Fe−Cr−A1合金上に設けると、IM
Ω以上の絶縁抵抗が得られた。
(12) is a heat-resistant insulating coating that covers the surface of the metal heating element (10) except for the welded part to the stem (6), and is made of alumina, silica, mullite, etc. It is a coating due to rating etc. The thickness of the coating (12) is, for example, 5OA-10μ, more preferably 100A-5μ. According to experiments, 10
0A alumina coating is coated with PT or Pd by plasma CVD.
- When provided on Ir alloy, Fe-Cr-A1 alloy, IM
An insulation resistance of Ω or more was obtained.

被1(12)は、アルミナゾルやシリカゾルの塗布と焼
成や、アルミニウムのイソプロポキシド等のアルミニウ
ムやケイ素の有機化合物の熱分解等により設けても良い
。しかしこの場合は、被覆(12)の付着強度や絶縁強
度は低く、塗布と焼成、あるいは熱分解を繰り返して、
強固な膜を得るようにする。適当な処理回数は、ゾルの
塗布と焼成の場合で3〜5回以上、アルミニウムのイソ
プロポキシドの熱分解で8〜10回以上である。なおこ
こで言う絶縁性とは、雰囲気感応物質層の内部抵抗に対
して充分大きな絶縁抵抗を有するとの意味であり、例え
ば低抵抗の5nOtを雰囲気感応物質層として用いる場
合、高抵抗のTi(Lを絶縁性被覆(12)として用い
ることも可能である。また被覆(12)は、発熱体(1
0)を雰囲気から遮断し保護すると共に、発熱体(10
)と雰囲気感応物質層(14)とを遮断する。
The coating 1 (12) may be provided by applying and baking alumina sol or silica sol, or by thermally decomposing an organic compound of aluminum or silicon such as aluminum isopropoxide. However, in this case, the adhesive strength and insulation strength of the coating (12) are low, and coating and baking or thermal decomposition are repeated.
Try to get a strong film. The appropriate number of treatments is 3 to 5 times or more for sol application and baking, and 8 to 10 times or more for thermal decomposition of aluminum isopropoxide. Note that the term "insulation" here means that the insulation resistance is sufficiently large compared to the internal resistance of the atmosphere-sensitive material layer. For example, when using low-resistance 5nOt as the atmosphere-sensitive material layer, high-resistance Ti ( It is also possible to use L as an insulating coating (12).The coating (12) can also be used as a heating element (1
0) from the atmosphere and protect it from the atmosphere, as well as the heating element (10
) and the atmosphere sensitive material layer (14).

(14)は雰囲気感応物質層で、例えばSnO2やFe
tO3、In2O5、B aS no 3、I、 a 
N i O3等の金属酸化物半導体、あるいはM g 
Cr 204等の水蒸気の吸着により電気伝導度が変化
するセラミック、またアンチモン酸(Ht S bz 
Oe)やリン酸アンチモン(I4 S bP v Os
)等のプロトン導電体を用いる。
(14) is an atmosphere sensitive material layer, such as SnO2 or Fe.
tO3, In2O5, B aS no 3, I, a
Metal oxide semiconductors such as N i O3, or M g
Ceramics such as Cr 204 whose electrical conductivity changes by adsorption of water vapor, and antimonic acid (HtS bz
Oe) and antimony phosphate (I4S bP v Os
) and other proton conductors are used.

MgCr、O,等のセラミックの場合は、水の吸着によ
る表面伝導から水蒸気を検出できる。またプロトン導電
体の場合は、H2a度の比により起電力を生じ、これか
らH7を検出できる。この場合は例えば、後述する電極
の一方をセラミックのコーティング等により雰囲気から
遮断し、電極間に水素濃度の差を形成し、検出を行う。
In the case of ceramics such as MgCr, O, etc., water vapor can be detected from surface conduction due to water adsorption. In the case of a proton conductor, an electromotive force is generated depending on the ratio of H2a degrees, and H7 can be detected from this. In this case, for example, one of the electrodes (described later) is isolated from the atmosphere with a ceramic coating or the like to create a difference in hydrogen concentration between the electrodes, and detection is performed.

これらのものは、スパッタリングや真空蒸着、あるいは
粉体のディッピングやCVD等により、被覆(12)上
に膜状に形成させる。
These materials are formed into a film on the coating (12) by sputtering, vacuum deposition, powder dipping, CVD, or the like.

(16)は一対の電極リードであり、10〜60μ程度
の線径の、Au、Pt、Ir、Ir−Pd等の貴金属線
を用いる。電極リード(16)は例えばフリットレスの
金ペースト(18)により感応物質層(14)に接続し
、溶接や銀ロー付けによりステム(8)に固着する。な
お絶縁被覆(12)を部分的に除去し、発熱体(10)
を電極と兼用しても良く、この場合は電極リード(16
)は1本で良くなる。
(16) is a pair of electrode leads, which are made of noble metal wires such as Au, Pt, Ir, Ir-Pd, etc., with a wire diameter of about 10 to 60 μm. The electrode leads (16) are connected to the sensitive material layer (14), for example by fritless gold paste (18), and fixed to the stem (8) by welding or silver brazing. Note that the insulation coating (12) is partially removed and the heating element (10)
may also be used as an electrode; in this case, the electrode lead (16
) is better with just one.

ここで電極リード(16)には、発熱体(lO)の熱変
形を吸収し得るだけの遊び(22)を持たせる。
Here, the electrode lead (16) is provided with play (22) sufficient to absorb thermal deformation of the heating element (lO).

遊び(22)は例えば、第1図のようにステム(8)へ
の溶接部(20)と雰囲気感応物質層(14)との接続
部との間に、折り返し部を設けることにより形成する。
The play (22) is formed, for example, by providing a folded portion between the weld (20) to the stem (8) and the connection to the atmosphere sensitive material layer (14) as shown in FIG.

この場合、雰囲気感応物質層(14)への接続方向と、
ステム(8)への溶接方向とを逆にし、折り返し部を設
ける。2つの接続方向は180゜逆とするものに限らず
、発熱体(10)の熱変形を吸収し得る程度に、異なっ
ているものであれば良い。特に限定するものではないが
、好ましい接続方向の差の範囲は、90°以上である。
In this case, the connection direction to the atmosphere sensitive material layer (14);
The welding direction to the stem (8) is reversed, and a folded portion is provided. The two connection directions are not limited to being 180° opposite, but may be different as long as they can absorb thermal deformation of the heating element (10). Although not particularly limited, a preferable range of difference in connection direction is 90° or more.

また折り返し部に代え、ステム(8)への溶接部(20
)と、雰囲気感応物質層(14)への接続部との間で、
電極リード(16)にループを形成させても良い。しか
し電極リード(16)にループを設ける作業はやや複雑
で、接続方向を異ならしめるものに比べ、作業性を低下
させる。また折り返し部に代え、単に電極リード(16
)の長さに15〜30%程度の遊びを持たせるだけのら
のでも良い。
Also, instead of the folded part, welded part (20
) and the connection to the atmosphere sensitive material layer (14),
A loop may be formed in the electrode lead (16). However, the work of providing loops on the electrode leads (16) is somewhat complicated, and the workability is lower than that of making the connection directions different. Also, instead of the folded part, simply the electrode lead (16
) may have a play of around 15 to 30%.

しかしこの場合は、電極リード(16)の曲がりのため
、雰囲気感応物質層(14)との接続部に応力が作用す
る。また電極リード(16)の長さに余裕を設けて接続
するのは、作業性を低下させる。従って最も好ましいも
のは、電極リード(16)の雰囲気感応物質層(14)
とステム(8)とへの接続方向を異ならしめるものであ
る。
However, in this case, stress acts on the connection portion with the atmosphere sensitive material layer (14) due to the bending of the electrode lead (16). Furthermore, connecting the electrode leads (16) with a margin in length reduces work efficiency. Therefore, the most preferable one is the atmosphere sensitive material layer (14) of the electrode lead (16).
and the stem (8) in different directions.

ガスセンサ(2)の動作を説明する。発熱体(I O)
に通電し、センサを加熱する。この加熱は例えば、Sn
O,やLntO3等の可燃性ガスのセンサではセンサを
動作温度に保持するために、湿度センサやプロトン導電
体水素センサ等のセンサではヒートクリーニングのため
に行う。センサが加熱されると、発熱体(10)は熱膨
張し、電極リード(I6)に応力が働く。電極リード(
I6)に遊び(22)を持たせであると、熱変形は遊び
で吸収され、断線は生じない。これに対して遊びがない
と、応力のため金ペースト部(18)等で電極リードが
雰囲気感応物質層(14)から剥離することが有る。
The operation of the gas sensor (2) will be explained. Heating element (IO)
energizes and heats the sensor. This heating is performed by, for example, Sn
For sensors of combustible gases such as O, LntO3, etc., this is done to maintain the sensor at an operating temperature, and for sensors such as humidity sensors and proton conductor hydrogen sensors, this is done for heat cleaning. When the sensor is heated, the heating element (10) thermally expands and stress is applied to the electrode lead (I6). Electrode lead (
If I6) is provided with play (22), thermal deformation will be absorbed by the play and no wire breakage will occur. On the other hand, if there is no play, the electrode lead may peel off from the atmosphere sensitive material layer (14) at the gold paste portion (18) or the like due to stress.

例えば発熱体(10)に、2分通電2分休止の1周4分
のサイクルで、室温と500℃との間の熱サイクルを3
00回加えた。遊びを設けず、ステム(8)と雰囲気感
応物質層(14)との間でリード(16)を直線状に張
り渡したものでは、lO個中3個が断線した。これに対
して、第1図の実施例のものでは断線は生じなかった。
For example, the heating element (10) is subjected to 3 thermal cycles between room temperature and 500°C, with a cycle of 4 minutes per cycle, energizing for 2 minutes and stopping for 2 minutes.
Added 00 times. In the case where the leads (16) were stretched linearly between the stem (8) and the atmosphere sensitive material layer (14) without any play, three out of 10 leads were broken. On the other hand, in the example shown in FIG. 1, no wire breakage occurred.

また電極リード(I6)にループを設けたり、電極リー
ド(16)の長さに20%程度の余裕を設けたものでも
、断線は生じなかった。
Further, even when a loop was provided in the electrode lead (I6) or a margin of about 20% was provided in the length of the electrode lead (16), no disconnection occurred.

SnO2を用いたガスセンサを例に、センサ特性を説明
する。線径40μ(直径)のPe−Cr−Al合金(1
0)に、プラズマCVDにより、厚さ1μ程度のアルミ
ナ被膜(12)を施した。これにSn0w膜(SnOt
97vt%、触媒のPd03wt%)をスパッタリング
し、5000A程度の厚さの雰囲気感応物質層(14)
とした。金ペースト(18)を用いて、線径20μの電
極リード(16)を第1図のように取り付はセンサを完
成した。常温での発熱体(10)の抵抗値は3.3Ω、
300℃への加熱電力は100mW、熱時定数はI O
Om5ec程度であった。またPe合金に代え、線径2
0μのPd−Ir合金(Pd80.Ir20)を用いる
と、常温での抵抗値は3Ω、300℃への加熱電力は8
0mWであった。
Sensor characteristics will be explained using a gas sensor using SnO2 as an example. Pe-Cr-Al alloy (1
0) was coated with an alumina coating (12) having a thickness of approximately 1 μm by plasma CVD. This is coated with a Sn0w film (SnOt
97vt%, catalyst Pd03wt%) was sputtered to form an atmosphere sensitive material layer (14) with a thickness of about 5000A.
And so. Using gold paste (18), electrode leads (16) with a wire diameter of 20 μm were attached as shown in FIG. 1 to complete the sensor. The resistance value of the heating element (10) at room temperature is 3.3Ω,
Heating power to 300℃ is 100mW, thermal time constant is I O
It was about Om5ec. Also, instead of Pe alloy, wire diameter 2
When using a 0μ Pd-Ir alloy (Pd80.Ir20), the resistance value at room temperature is 3Ω, and the heating power to 300℃ is 8
It was 0mW.

20℃相対湿度65%の雰囲気を用い、空気中、各10
00 ppmのエタノール中、CO中、H。
10% each in air using an atmosphere of 20°C and 65% relative humidity.
00 ppm H in ethanol, CO.

中、イソブタン中での抵抗値を測定した。イソブタンは
可燃性ガスを代表するものである。300℃でのエタノ
ールやco等への応答特性を、第3図に示す。また表1
に300℃での各雰囲気中での抵抗値を、表2に400
°Cでの抵抗値を示す。
The resistance value was measured in isobutane. Isobutane is a representative flammable gas. The response characteristics to ethanol, co, etc. at 300°C are shown in Figure 3. Also Table 1
Table 2 shows the resistance values in each atmosphere at 300°C.
The resistance value is shown in °C.

表 l センサ特性 300℃ 空気中       2.4M エタノール      40K Co          200K Hz          350に 空気中       1.2M エタノール       50に イソブタン     400K H,300K [発明の効果] この発明では、小形で消費電力の小さなガスセンサが得
られると共に、その電極リードの断線を防止することが
できる。
Table l Sensor characteristics 300℃ in air 2.4M ethanol 40K Co 200K Hz 350℃ in air 1.2M ethanol 50℃ in isobutane 400K H, 300K [Effects of the invention] This invention provides a small gas sensor with low power consumption. At the same time, disconnection of the electrode lead can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のガスセンサの正面図、第2図はその■
−■方向断面図である。また第3図は、実施例ガスセン
サの特性図である。 (8)  ステム、    (10)金属発熱体(I2
)耐熱絶縁性被覆、 (14)雰囲気感応物質層、 (16)電極リード、  (22)遊び部。
Figure 1 is a front view of the gas sensor of the example, and Figure 2 is its
It is a sectional view in the −■ direction. Moreover, FIG. 3 is a characteristic diagram of the example gas sensor. (8) Stem, (10) Metal heating element (I2
) heat-resistant insulating coating, (14) atmosphere sensitive material layer, (16) electrode lead, (22) play area.

Claims (2)

【特許請求の範囲】[Claims] (1)金属発熱体表面に耐熱絶縁性被覆を介して雰囲気
感応物質層を担持させたガスセンサにおいて、 雰囲気感応物質層とステムとを少なくとも1本の電極リ
ードにより接続すると共に、 電極リードには、金属発熱体の熱変形を吸収するに充分
な遊びを持たせたことを特徴とする、ガスセンサ。
(1) In a gas sensor in which an atmosphere sensitive material layer is supported on the surface of a metal heating element via a heat-resistant insulating coating, the atmosphere sensitive material layer and the stem are connected by at least one electrode lead, and the electrode lead includes: A gas sensor characterized by having sufficient play to absorb thermal deformation of a metal heating element.
(2)特許請求の範囲第1項記載のガスセンサにおいて
、 前記遊びは、雰囲気感応物質層への電極リードの接続方
向と、ステムへの電極リードの接続方向とを異ならせる
ことにより形成したことを特徴とする、ガスセンサ。
(2) In the gas sensor according to claim 1, the play is formed by making the connection direction of the electrode lead to the atmosphere sensitive material layer and the connection direction of the electrode lead to the stem different. Features: Gas sensor.
JP25608586A 1986-10-28 1986-10-28 Gas sensor Pending JPS63109360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25608586A JPS63109360A (en) 1986-10-28 1986-10-28 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25608586A JPS63109360A (en) 1986-10-28 1986-10-28 Gas sensor

Publications (1)

Publication Number Publication Date
JPS63109360A true JPS63109360A (en) 1988-05-14

Family

ID=17287683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25608586A Pending JPS63109360A (en) 1986-10-28 1986-10-28 Gas sensor

Country Status (1)

Country Link
JP (1) JPS63109360A (en)

Similar Documents

Publication Publication Date Title
EP0265834B1 (en) Sensor and method of producing same
US4596975A (en) Thermally insulative mounting with solid state device
JPS63109360A (en) Gas sensor
JPH01206252A (en) Method of detecting gas and apparatus therefor
JPS6137577B2 (en)
JPH0687021B2 (en) Manufacturing method of detection element
JP2955583B2 (en) Detection element for gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JP2020165892A (en) Mems-type semiconductor gas sensing element
JPS63109361A (en) Gas sensor
JPH0220681Y2 (en)
JPH11326072A (en) Temperature sensor element and temperature sensor with it
JPS63109362A (en) Gas detector
WO2020203100A1 (en) Mems-type semiconductor gas detection element
JPS63109359A (en) Sensor
JP6679788B1 (en) MEMS type semiconductor gas detector
JPS59188549A (en) Two-terminal type semiconductor gas detecting element
JPH01270302A (en) Thin film thermistor
JP2858352B2 (en) Thin film thermistor
JPH08189912A (en) Combastible gas detecting device
JPH07104308B2 (en) Sensor and manufacturing method thereof
JPS63184049A (en) Preparation of gas sensor
JPH0545322A (en) Gas detecting apparatus
TWI247099B (en) Stable high temperature sensor/heater system and method with tungsten on AlN
JPS60114757A (en) Gas detecting bridge