JPS63109362A - Gas detector - Google Patents

Gas detector

Info

Publication number
JPS63109362A
JPS63109362A JP25608486A JP25608486A JPS63109362A JP S63109362 A JPS63109362 A JP S63109362A JP 25608486 A JP25608486 A JP 25608486A JP 25608486 A JP25608486 A JP 25608486A JP S63109362 A JPS63109362 A JP S63109362A
Authority
JP
Japan
Prior art keywords
sensor
heating element
atmosphere
capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25608486A
Other languages
Japanese (ja)
Inventor
Hiroshi Koda
弘史 香田
Muneharu Shimabukuro
宗春 島袋
Yasunori Ono
靖典 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP25608486A priority Critical patent/JPS63109362A/en
Publication of JPS63109362A publication Critical patent/JPS63109362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a detection circuit suitable for a low resistance heat generator, by connecting the heat generator of a gas sensor to a power source through a switch and turning the switch ON and OFF to heat the gas sensor. CONSTITUTION:The output of a power source Eb charges a condenser C1 through a protective resistor R1 and a transistor Tr1 and the voltage of the condenser C1 is taken out by a condenser C2 to be compared with reference voltage and the transistor Tr1 is controlled and the voltage of the condenser C1 is always kept constant. When a transistor Tr2 is turned ON, a heater 14 receives the supply of a current in a pulse like manner to perform the heating of a sensor 2. The sensor 2 is heated in a pulse like manner but a pulse is about 1kHz and heating is performed at an interval sufficiently shorter than the heat time constant (about 100msec) of the sensor 2. Therefore, the load current of the power source is small and power loss accompanied by voltage drop is reduced and the temp. of the sensor is kept constant. By this method, a detection circuit suitable for a low resistance heat generator is obtained.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、可燃性ガスや毒性ガス、酸素、水蒸気等の
ガスを検出するためのガス検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas detection device for detecting gases such as flammable gases, toxic gases, oxygen, and water vapor.

[従来技術] 発明者は、金嘱発熱体を雰囲気感応物質の担体とし、こ
の発熱体上に耐熱絶縁性被覆を介して雰囲気感応物質層
を担持させたセンサを提案した(本日付けの特許願(1
))。このセンサの特徴は、雰囲気感応物質を担持する
絶縁基体、あるいは雰囲気感応物質の焼結体が不要な点
に有る。そしてこの結果、センサの熱容量や放熱面積は
減少し、センサの消費電力や熱時定数も減少する。また
基体や焼結体等の重量がなくなり、それを支えるリード
線も細いもので良くなる。更にセンサの主要部分は金属
発熱体上に形成され、自動化に適するため、センサの生
産性も増大する。
[Prior Art] The inventor has proposed a sensor in which a metal heating element is used as a carrier for an atmosphere-sensitive material, and an atmosphere-sensitive material layer is supported on the heating element via a heat-resistant insulating coating (see the patent application filed today). (1
)). A feature of this sensor is that it does not require an insulating substrate supporting an atmosphere-sensitive substance or a sintered body of an atmosphere-sensitive substance. As a result, the heat capacity and heat radiation area of the sensor are reduced, and the power consumption and thermal time constant of the sensor are also reduced. In addition, the weight of the base body, sintered body, etc. is eliminated, and the lead wires supporting it can be made thinner. Furthermore, the main part of the sensor is formed on a metal heating element, making it suitable for automation, which also increases the productivity of the sensor.

発明者は、このセンサの付帯回路に付いて検討した。問
題点は、発熱体が低抵抗で、ヒータ電源を得るのが難し
い点にある。
The inventor studied the ancillary circuit of this sensor. The problem is that the heating element has low resistance and it is difficult to obtain power for the heater.

[発明の課題] この発明は、金属発熱体を雰囲気感応物質層の担体とし
たセンサに対して、低抵抗のヒータに適した検出回路を
提供することを課題とする。この発明は特に、ヒータ電
源の出力の降圧に伴う電力損失が少なく、電流容量の小
さな電源を用い得るようにした、検出回路の提供を課題
とする。
[Problem of the Invention] An object of the present invention is to provide a detection circuit suitable for a low-resistance heater for a sensor in which a metal heating element is used as a carrier for an atmosphere-sensitive material layer. In particular, it is an object of the present invention to provide a detection circuit that has less power loss due to voltage reduction of the output of a heater power source and can use a power source with a small current capacity.

[発明の構成コ この発明では、金属発熱体の表面に耐熱絶縁性被覆を設
け、雰囲気感応物質層を被覆上に担持させ、センサとす
る。発熱体にはPtやPd−Ir合金等の貴金属、ある
いはFe−Cr−A1合金、Ni−Cr合金等の卑金属
を用い、耐熱絶縁性被覆は、プラズマCVD、スパッタ
リング、イオンブレーティング、蒸着、あるいはCVD
等により設ける。
[Structure of the Invention] In this invention, a heat-resistant insulating coating is provided on the surface of a metal heating element, and an atmosphere-sensitive material layer is supported on the coating to form a sensor. The heating element is made of noble metal such as Pt or Pd-Ir alloy, or base metal such as Fe-Cr-A1 alloy or Ni-Cr alloy. CVD
Established by etc.

被覆の製造条件を選べば、容易に緻密で金属に強固に結
合した被覆が得られる。
By selecting the manufacturing conditions for the coating, it is easy to obtain a dense coating that is firmly bonded to the metal.

雰囲気感応物質と金属発熱体とは絶縁被覆により隔離さ
れ、両者を分離することができる。また雰囲気感応物質
の多くは金属酸化物であり、金属への結合強度は低い。
The atmosphere-sensitive substance and the metal heating element are separated by an insulating coating, and can be separated from each other. Furthermore, many atmosphere-sensitive substances are metal oxides, and their bond strength to metals is low.

しかしセラミック等を材質とした絶縁被覆への付着強度
は高く、雰囲気感応物質の脱落や剥離の恐れは少ない。
However, the adhesion strength to the insulating coating made of ceramic or the like is high, and there is little risk of the atmosphere-sensitive substance falling off or peeling off.

セラミックの形状は発熱体自体により定まり、極く小さ
なものとすることができる。その結果、発熱体は自重程
度の重量を支えるに足るもので良く、センサは小形化し
、熱容量も減少する。
The shape of the ceramic is determined by the heating element itself and can be made extremely small. As a result, the heating element only needs to be strong enough to support its own weight, and the sensor becomes smaller and its heat capacity decreases.

問題は、ヒータが低抵抗で必要なヒータ電圧が低いこと
にある。ここで電源の出力をコンデンサに蓄積し、スイ
ッチを介して適当な周期で発熱体をコンデンサに接続す
る。このようにすれば電源の降圧に伴う電力ロスを軽減
し、また小さな電流容量の電源を用いることができる。
The problem is that the heater has a low resistance and requires a low heater voltage. Here, the output of the power supply is stored in a capacitor, and a heating element is connected to the capacitor at appropriate intervals via a switch. In this way, power loss due to step-down of the power supply can be reduced, and a power supply with a small current capacity can be used.

なおセンサの間欠的加熱に伴う温度変動は、加熱周期を
センサの熱時定数より充分小さく、好ましくは115以
下に、さらに好ましくは1/20以下にすれば、解消で
きる。また用いるコンデンサの容量が変動すると、ヒー
タ電力が変動するtこれはコンデンサと発熱体との放電
時定数をスイッチのオン時間以上、より好ましくは5倍
以上、さらに好ましくは10倍以上とすれば、解決する
ことができる。
Note that temperature fluctuations caused by intermittent heating of the sensor can be eliminated by making the heating period sufficiently smaller than the thermal time constant of the sensor, preferably 115 or less, more preferably 1/20 or less. Also, if the capacitance of the capacitor used changes, the heater power changes.This is possible if the discharge time constant between the capacitor and the heating element is set to be longer than the switch on time, more preferably 5 times or more, and even more preferably 10 times or more. It can be solved.

[実施例] 竺Z力 第3図、第4図に、ガスセンサ(2)を示す。図におい
て、(4)はハウジングであり、その上部から図示しな
いカバーで覆ってセンサの防爆と保護とを行う。(6)
はハウジングに固着したヒータステム、(8)は同じく
ハウジングに固着した電極ステムである。(10)はセ
ンサ本体で、耐熱絶縁性被覆を施した金属発熱体(14
)の表面に、雰囲気に一対の電極(24)、(26)を
接続しである。センサ本体(lO)は、ハウジング(4
)の中空部に収容される。
[Example] Figures 3 and 4 show a gas sensor (2). In the figure, (4) is a housing, which is covered from above with a cover (not shown) to provide explosion protection and protection for the sensor. (6)
(8) is a heater stem fixed to the housing, and (8) is an electrode stem also fixed to the housing. (10) is the sensor body, and the metal heating element (14) is coated with heat-resistant insulation.
), a pair of electrodes (24) and (26) are connected to the atmosphere. The sensor body (lO) consists of a housing (4
) is accommodated in the hollow part.

センサの製造工程を第4図(a)〜(c)に示す。The manufacturing process of the sensor is shown in FIGS. 4(a) to 4(c).

Pt、Ir、Pd8O−Ir20、Pt−ZGS(Pt
の結晶粒界にZrO,粒子を析出させたもの)等の貴金
属や、Fe−Cr−AL Ni−Cr、等の卑金属の金
属発熱体(14)を用意し、耐熱絶縁性被覆(18)を
施す。発熱体(14)の線径は、例えばlO〜80μ程
度とする。
Pt, Ir, Pd8O-Ir20, Pt-ZGS (Pt
A metal heating element (14) made of a noble metal such as ZrO particles precipitated at the grain boundaries of a base metal such as Fe-Cr-AL Ni-Cr is prepared, and a heat-resistant insulating coating (18) is prepared. give The wire diameter of the heating element (14) is, for example, about lO to 80μ.

被覆(I8)はステム(6)への溶接部をマスキングに
より残して、発熱体(14)の表面に設ける。
The coating (I8) is provided on the surface of the heating element (14), leaving the weld to the stem (6) by masking.

被覆(18)の材質としては、アルミナ、シリカ等の金
属酸化物や、SiC,SLN+、BN、等ノセラミック
等を用い、プラズマCVDや、スパッタリング等により
設けるのが好ましい。特に好ましいものは、アルミナ、
シリカ等の金属酸化物である。なおここで言う絶縁性と
は、雰囲気感応物質層の内部抵抗に対して充分大きな絶
縁抵抗を有す気感応物質層として用いる場合、高抵抗の
T’ i 0 tを絶縁性被覆(18)として用いるこ
とも可能である。また被覆(18)は、発熱体(14)
を雰囲気から遮断し保護すると共に、発熱体(14)と
雰囲気感応物質層(20)とを遮断する。被覆(18)
の好ましい厚さは50A〜10μで、より好ましくは1
00A〜5μとする。例えば50Aのアルミナ膜をプラ
ズマCVDにより設けると、IMΩ以上の絶縁抵抗の被
覆が得られた。
The material for the coating (18) is preferably a metal oxide such as alumina or silica, or a ceramic such as SiC, SLN+, BN, etc., and is preferably provided by plasma CVD, sputtering, or the like. Particularly preferred are alumina,
Metal oxides such as silica. Note that the insulating property referred to here means that when used as a gas-sensitive material layer that has a sufficiently large insulation resistance with respect to the internal resistance of the atmosphere-sensitive material layer, a high-resistance T' i 0 t is used as the insulating coating (18). It is also possible to use The coating (18) also covers the heating element (14).
The heating element (14) and the atmosphere sensitive material layer (20) are shielded from each other to be protected from the atmosphere. Coating (18)
The preferred thickness is 50A to 10μ, more preferably 1
00A to 5μ. For example, when a 50A alumina film was provided by plasma CVD, a coating with an insulation resistance of IMΩ or more was obtained.

(20)は雰囲気感応物質層である。その材質は被検出
成分に応じて定めれば良く、例えば可燃性ガスや毒性ガ
スを検出する場合、Snowや In。
(20) is an atmosphere sensitive material layer. The material may be determined depending on the component to be detected; for example, when detecting flammable gas or toxic gas, Snow or Ind.

03、あるいはpe103等の金属酸化物半導体を用い
る。またO、を検出する場合、B aS no sやL
aN i Oa、あるいはNiO等の金属酸化物半導体
を用いる。また雰囲気中の湿度を検出する場合、M g
 Cr x OaやT i O*等のセラミックを用い
る。これらのものは水蒸気を物理吸着し、吸着水の電気
伝導度から湿度を検出できる。湿度の検出の場合、周知
のように感応物質層(20)は雰囲気中のダストや油分
により汚染され、感応物質層(20)をヒートクリーニ
ングし汚染を除く必要がある。また他の材質としては、
アンチモン酸(Ht S bt O8)やリン酸アンチ
モン(HS bP t Oa)等のプロトン導電体を用
いる。これらのプロトン導電体は電極間のH1濃度の比
により起電力を生じ、H7の検出に用いることができる
。なおこの場合は例えば、電極の一方を雰囲気から遮断
し、2つの電極間に水素濃度の差を形成させ、起電力を
発生させるようにする。 雰囲気感応物質層(20)の
厚さは、発熱体  (14)が支持しえる範囲であれば
良く、例えば感応物質層(20)を真空蒸着やスパッタ
リング等により形成する場合、好ましい厚さは100A
〜5μであり、粉体の塗布やディッピングによる場合、
1μ〜50μが好ましい。
A metal oxide semiconductor such as 03 or pe103 is used. Also, when detecting O, B aS no s and L
A metal oxide semiconductor such as aN i Oa or NiO is used. Also, when detecting the humidity in the atmosphere, M g
A ceramic such as Cr x Oa or T i O* is used. These devices physically adsorb water vapor and can detect humidity from the electrical conductivity of the adsorbed water. In the case of humidity detection, as is well known, the sensitive material layer (20) is contaminated by dust and oil in the atmosphere, and it is necessary to heat-clean the sensitive material layer (20) to remove the contamination. In addition, other materials include
A proton conductor such as antimonic acid (Ht S bt O8) or antimony phosphate (HS bP t Oa) is used. These proton conductors generate an electromotive force depending on the ratio of H1 concentrations between the electrodes, and can be used to detect H7. In this case, for example, one of the electrodes is isolated from the atmosphere, and a difference in hydrogen concentration is created between the two electrodes to generate an electromotive force. The thickness of the atmosphere sensitive material layer (20) may be within a range that can be supported by the heating element (14). For example, when the sensitive material layer (20) is formed by vacuum evaporation or sputtering, the preferred thickness is 100A.
~5μ, and when applied by powder application or dipping,
1μ to 50μ is preferable.

(24)、(26)は電極であり、ここでは20μ程度
の線径の金線を用いる。電極(24)、(26)はフリ
ットレスの金ペースト(28)により感応物質層(20
)に接続し、溶接によりステム(8)に固着する。なお
絶縁被覆(18)を部分的に除去し、発熱体(14)を
電極と兼用しても良く、また第5図に示すように、板状
の発熱体(15)を用い、耐熱絶縁性被覆(19)を施
し、その上から雰囲気感応物質層(21)を印刷等によ
り設けてもよい。
(24) and (26) are electrodes, and here gold wires with a wire diameter of about 20 μm are used. The electrodes (24), (26) are covered with a layer of sensitive material (20) by fritless gold paste (28).
) and fixed to the stem (8) by welding. Note that the insulation coating (18) may be partially removed and the heating element (14) may also be used as an electrode, or as shown in FIG. A coating (19) may be applied, and an atmosphere sensitive material layer (21) may be provided thereon by printing or the like.

検出回路 これらのセンサでの問題は、発熱体(14)の抵抗値が
低い点にある。即ち、雰囲気感応物質層(20)の形成
や、その特性は薄膜型や厚膜型のセンサとして周知であ
り、問題は発熱体の抵抗値に集中する。モしてセンサの
使用温度は、ガスセンサの場合で300〜400℃程度
が多く、湿度センサのヒートクリーニングの場合でも3
00℃程度が多い。プロトン導電体の場合、使用温度は
室温〜200℃程度が多く、室温で用いる場合には30
0℃程度でのヒートクリーニングを行うのが普通である
。ステム(6)、(6)間の間隔を2mmとし、ワイヤ
状の発熱体を用いた場合に付いて、ヒータ特性を表1に
示す。
Detection Circuit The problem with these sensors is the low resistance of the heating element (14). That is, the formation of the atmosphere sensitive material layer (20) and its characteristics are well known for thin-film and thick-film sensors, and the problem centers on the resistance value of the heating element. The operating temperature of the sensor is usually around 300 to 400℃ for gas sensors, and 300℃ for heat cleaning of humidity sensors.
Temperatures around 00°C are common. In the case of proton conductors, the operating temperature is often between room temperature and 200°C, and when used at room temperature, the temperature is 30°C.
It is common to perform heat cleaning at about 0°C. Table 1 shows the heater characteristics when the distance between the stems (6) was 2 mm and a wire-shaped heating element was used.

表 1 ヒータ特性* 材  質と 線径(μ)抵抗値(Ω)電力(mW)Pd
−Ir  20μ     3    80(金被覆な
し) Pd−1r  20u      2    50(金
被覆有り) Pt     10μ     3    60Fe−
Cr−A1 40μ  3.3  100* 抵抗値は
室温での抵抗値を、電力は300℃への加熱に必要な電
力を示す、Pd−IrはP d80− I r20合金
で、Fe合金は、ガブリウス社のカンタル、また電[5
(24)、(26)はいずれも線径20μの金線。
Table 1 Heater characteristics* Material and wire diameter (μ) resistance (Ω) power (mW) Pd
-Ir 20μ 3 80 (without gold coating) Pd-1r 20u 2 50 (with gold coating) Pt 10μ 3 60Fe-
Cr-A1 40μ 3.3 100* The resistance value indicates the resistance value at room temperature, and the power indicates the power required for heating to 300℃. Pd-Ir is a Pd80-I r20 alloy, and Fe alloy is a Gabrius alloy. Kanthal of company, also electric [5
(24) and (26) are both gold wires with a wire diameter of 20μ.

発熱体(14)の長さを不必要に長くすれば、ヒータの
抵抗値を増すことができる。しカルこれはセンサの構造
を複雑にする。次ぎに3Ωの抵抗で80mWの電力を得
る条件は、500mV、170mA程度である。このこ
とは、電圧が低いため電源の安定化を難しくする。また
通常用いられる5V程度の電源から0.5Vまで電圧を
低下させると、安定化電源での電圧降下が大きく、電力
ロスと電源の大形化を導く。更に必要な電流は100〜
200mAと大きく、電源の容量はますます増大する。
If the length of the heating element (14) is increased unnecessarily, the resistance value of the heater can be increased. However, this complicates the structure of the sensor. Next, the conditions for obtaining 80 mW of power with a 3Ω resistor are approximately 500 mV and 170 mA. This makes it difficult to stabilize the power supply due to the low voltage. Furthermore, if the voltage is lowered from a commonly used power supply of about 5V to 0.5V, the voltage drop in the stabilized power supply will be large, leading to power loss and an increase in the size of the power supply. Furthermore, the required current is 100~
The power supply capacity is as large as 200mA, and the capacity of the power supply will continue to increase.

2つの電極(24)、(26)を設けたセンサに対する
、ガス検出回路を第1図に示す。図において、(Eb)
は5V程度の安定化電源で、その出力(Vcc)を回路
各部の電源とする。(Rl)は100程度の保護抵抗、
(T r、)はトランジスタ、(C+)は100μF程
度のコンデンサ、(Try)はトランジスタ等のスイッ
チ、(80)は1KHz程度の周波数でデユーティ比1
/100程度のパルスを発生させる発振回路、(RI)
は100にΩ程度の負荷抵抗である。(C2)はコンデ
ンサ(Cυの出力平滑用のコンデンサ、(Dυは基準電
位発生用のツェナーダイオード、(A、)は誤差増幅器
である。また(A、)はガスの検出用比較回路である。
A gas detection circuit for a sensor provided with two electrodes (24), (26) is shown in FIG. In the figure, (Eb)
is a stabilized power supply of approximately 5V, and its output (Vcc) is used as the power supply for each part of the circuit. (Rl) is a protective resistance of about 100,
(Tr,) is a transistor, (C+) is a capacitor of about 100μF, (Try) is a switch such as a transistor, (80) is a duty ratio of 1 at a frequency of about 1KHz.
An oscillation circuit that generates pulses of about /100 (RI)
is a load resistance of about 100Ω. (C2) is a capacitor (Cυ) output smoothing capacitor, (Dυ is a Zener diode for generating a reference potential, (A,) is an error amplifier. (A,) is a comparison circuit for gas detection.

この回路の動作を第6図に示す。電源(Eb)の出力は
、保護抵抗とトランジスタ(Tr+)を介してコンデン
サ(C+)に充電される。コンデンサ(C1)の電圧は
コンデンサ(C2)で取り出され、基準電位と比較して
、トランジスタ(T r、)が制御され、常にコンデン
サ(C、)の電圧が一定に保たれる。トランジスタ(T
rJがオンすると、ヒータ(14)はパルス的に通電さ
れ、センサの加熱が行なわれる。この場合コンデンサ(
C1)を利用するので、電源(Eb)の負荷はほぼ一定
であり、その負荷電流は5V、80mWから、20mA
程度となる。即ち負荷電流は小さく、電源(Eb)への
負担が小さい。センサ(2)はパルス的に加熱されるが
、パルスはIKHz程度であり、センサの熱時定数(l
 Q 0m5ec程度)よりも、充分短い間隔で加熱が
行なわれる。従って電源の負荷電流は小さく、電圧の降
下に伴う電力ロスは少なく、しかもセンサ温度は一定に
保たれる。なおここに熱時定数は、センサへの加熱電力
を61分だけ急激に変化させた場合に、センサ温度がΔ
T / e変化するまでの時間とする。加熱パルスの間
隔を熱時定数の1720とした時の、温度変動の幅は加
熱温度の5%であり、間隔を1/100とすると1%と
なる。
The operation of this circuit is shown in FIG. The output of the power supply (Eb) is charged to a capacitor (C+) via a protection resistor and a transistor (Tr+). The voltage of the capacitor (C1) is taken out by the capacitor (C2), and compared with a reference potential, the transistor (Tr,) is controlled and the voltage of the capacitor (C,) is always kept constant. Transistor (T
When rJ is turned on, the heater (14) is energized in pulses to heat the sensor. In this case the capacitor (
C1), the load on the power supply (Eb) is almost constant, and the load current varies from 5V and 80mW to 20mA.
It will be about. That is, the load current is small and the load on the power source (Eb) is small. The sensor (2) is heated in a pulsed manner, but the pulse is about IKHz, and the thermal time constant (l) of the sensor is
Heating is performed at sufficiently shorter intervals than Q (approximately 0m5ec). Therefore, the load current of the power supply is small, power loss due to voltage drop is small, and sensor temperature is kept constant. Note that the thermal time constant here means that when the heating power to the sensor is suddenly changed by 61 minutes, the sensor temperature is Δ
T/e is the time it takes to change. When the interval between heating pulses is a thermal time constant of 1720, the width of temperature fluctuation is 5% of the heating temperature, and when the interval is 1/100, it is 1%.

コンデンサ(C3)の容量が経時変化することに備え、
コンデンサと抵抗(14)との時定数を1回のパルスの
オン時間よりも充分長くする。この例では、コンデンサ
の容量が100μF1抵抗が3Ωで、時定数は300μ
sec程度となる。一方パルスの幅は10μsec程度
で、パルスの持続時間ではコンデンサ(Cυの出力は、
その容量によらず一定である。放電時定数をτとすると
、Tだけ放電させた場合の電圧の変化は、 Vf/Vo=Exp(−T/r) で現される。放電時間を時定数の115とするとこの値
は82%となり、1/lOでは91%、l/30では9
7%となる。
In preparation for the capacitance of capacitor (C3) changing over time,
The time constant of the capacitor and resistor (14) is made sufficiently longer than the on time of one pulse. In this example, the capacitor capacity is 100μF, the resistor is 3Ω, and the time constant is 300μF.
It will be about sec. On the other hand, the width of the pulse is about 10 μsec, and the output of the capacitor (Cυ) is
It is constant regardless of its capacity. When the discharge time constant is τ, the change in voltage when discharging by T is expressed as Vf/Vo=Exp(-T/r). If the discharge time is a time constant of 115, this value becomes 82%, 91% at 1/lO, and 9 at l/30.
It becomes 7%.

好ましい回路条件は、トランジスタ(TrJのオン−オ
フ周波数がセンサの熱時定数の5倍以上、コンデンサ(
C+)の容量がヒータ(14)との時定数でパルス幅の
5倍以上である。トランジスタ(Trt)のパルス幅は
、オン−オフ周波数と加熱に必要なデユーティ比から自
動的に定まる。ここで誤差増幅器(A +)は設けなく
とも良く、その入力は発熱体(14)への電圧を平滑し
たものでも良い。
Preferred circuit conditions include a transistor (TrJ whose on-off frequency is at least 5 times the thermal time constant of the sensor) and a capacitor (
C+) has a time constant with the heater (14) that is five times or more the pulse width. The pulse width of the transistor (Trt) is automatically determined from the on-off frequency and the duty ratio required for heating. Here, the error amplifier (A +) may not be provided, and its input may be a smoothed voltage applied to the heating element (14).

また2つのトランジスタ(Tr、)、(T r*)は適
宜のスイッチに置き換えることが出来、トランジスタ(
Tr+)は設けなくとも良い。
In addition, the two transistors (Tr, ) and (Tr*) can be replaced with appropriate switches, and the transistor (
Tr+) may not be provided.

次ぎに雰囲気感応物質層(20)に負荷抵抗(Rl)を
接続し、その出力(Vout)から検出を行う。またス
イッチ(Trt)のデユーティ比は一定とする必要はな
く、周期的にセンサ温度を変化させる場合等は、デユー
ティ比を周期的に変化させれば良い。
Next, a load resistor (Rl) is connected to the atmosphere sensitive material layer (20), and detection is performed from its output (Vout). Further, the duty ratio of the switch (Trt) does not need to be constant, and when the sensor temperature is changed periodically, the duty ratio may be changed periodically.

湿度センサの場合、常時はヒータを使用せず、ヒートク
リーニングを行う時にヒータに通電すれば良い。この場
合のヒートクリーニングの制御回路自体は周知である。
In the case of a humidity sensor, the heater is not normally used, but the heater only needs to be energized when heat cleaning is performed. The heat cleaning control circuit itself in this case is well known.

またプロトン導電体等の起電力を用いるセンサでは、比
較回路(A、)等に代えて電圧計をセンサ(2)に接続
し、起電力を測定すれば良い。
Furthermore, in the case of a sensor using electromotive force such as a proton conductor, a voltmeter may be connected to the sensor (2) instead of the comparison circuit (A, ), etc., and the electromotive force may be measured.

第2図に、発熱体(14)を電極に兼用したセンサへの
回路を示す。このセンサでは、雰囲気感応物質層(20
)への印加電圧をヒータ電圧から取り出す。そこでトラ
ンジスタ(T rt)のオンに同期したパルスでサンプ
リング回路(82)を動作させて、電源のオン−オフに
伴うノイズを除く。このようなサンプリング回路は周知
であり、また単なるコンデンサと抵抗とを用いた積分回
路としても良く、センサ出力に対するピークホールド回
路としても良い。
FIG. 2 shows a circuit to a sensor in which the heating element (14) also serves as an electrode. In this sensor, the atmosphere sensitive material layer (20
) is extracted from the heater voltage. Therefore, the sampling circuit (82) is operated with a pulse synchronized with the on-off of the transistor (Trt) to remove noise caused by turning on and off the power supply. Such a sampling circuit is well known, and may be simply an integrating circuit using a capacitor and a resistor, or may be a peak hold circuit for sensor output.

なお検出回路の説明は特定の回路定数に基づいて行った
が、これは1例であり、必要に応じ自由に変更し得るこ
とは言うまでもない。
Note that although the detection circuit has been described based on specific circuit constants, this is just one example, and it goes without saying that the detection circuit can be freely changed as necessary.

センサ特性 5nOtを用いたガスセンサを例に、センサ特性を説明
する。線径40μ(直径)のFe−Cr−A1合金(1
4)に、プラズマCVDにより、厚さ1M程度のアルミ
ナ被膜(18)を施した。これにSnO,膜(SnOt
97wt%、触媒のPd03wt%)をスパッタリング
し、5000A程度の厚さの雰囲気感応物質層(20)
とした。金ペースト(28)を用いて、線径20μの電
極(24)、(26)を取り付はセンサを完成した。常
温での発熱体(I4)の抵抗値は3.3Ω、300°C
への加熱電力は100mW、熱時定数は100 m5e
c程度であった。検出回路は、第1図に示したものを用
いた。
Sensor characteristics will be explained using a gas sensor using a sensor characteristic of 5nOt as an example. Fe-Cr-A1 alloy (1
4), an alumina coating (18) with a thickness of about 1M was applied by plasma CVD. This is coated with SnO, a film (SnOt
97wt% of catalyst Pd03wt%) was sputtered to form an atmosphere sensitive material layer (20) with a thickness of about 5000A.
And so. Electrodes (24) and (26) with a wire diameter of 20 μm were attached using gold paste (28) to complete the sensor. The resistance value of the heating element (I4) at room temperature is 3.3Ω, 300°C
Heating power is 100 mW, thermal time constant is 100 m5e
It was about c. The detection circuit shown in FIG. 1 was used.

20°C相対湿度65%の雰囲気を用い、空気中、各1
1000ppのエタノール中、CO中、H2中、イソブ
タン中での抵抗値を測定した。イソブタンは可燃性ガス
を代表するものである。3000CでのエタノールやC
O等への応答特性を、第7図に示す。また表2に300
℃での各雰囲気中での抵抗値を、表3に400℃での抵
抗値を示す。
1 each in air using an atmosphere of 20°C and 65% relative humidity.
Resistance values were measured in 1000 pp of ethanol, CO, H2, and isobutane. Isobutane is a representative flammable gas. Ethanol and C at 3000C
The response characteristics to O, etc. are shown in FIG. Also, Table 2 shows 300
Table 3 shows the resistance values at 400° C. in each atmosphere.

空気中       2.4M エタノール       40K Co          200K H,350に 表 3 センサ特性 400°C 空気中       1.2M エタノール       50に イソブタン     400K H,300K [発明の効果コ この発明では、消費電力や、熱容量、熱時定数が小さな
ガスセンサを用いると共に、低抵抗の発熱体に適した検
出回路を用い、電圧降下に伴う電力ロスを軽減すること
ができろ。更に高電圧の電源を用いることができ、電源
の電流容量への負担が小さい。
In air 2.4M ethanol 40K Co 200K H, 350 Table 3 Sensor characteristics 400°C In air 1.2M ethanol 50 Isobutane 400K H, 300K It is possible to reduce power loss due to voltage drop by using a gas sensor with a small constant and a detection circuit suitable for a low-resistance heating element. Furthermore, a high voltage power supply can be used, and the load on the current capacity of the power supply is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のガス検出装置の回路図、第2図は変形
例のガス検出装置の回路図、第3図は実施例に用いるガ
スセンサの正面図、第4図(a)〜(c)はそれぞれそ
の製造工程を示す斜視図である。 第5図は、変形例のガスセンサの正面図、第6図、第7
図はそれぞれ実施例の特性図である。
Fig. 1 is a circuit diagram of a gas detection device of an embodiment, Fig. 2 is a circuit diagram of a gas detection device of a modification, Fig. 3 is a front view of a gas sensor used in the embodiment, and Figs. 4(a) to (c). ) are perspective views showing the manufacturing process. Figure 5 is a front view of a modified gas sensor, Figures 6 and 7.
Each figure is a characteristic diagram of an example.

Claims (4)

【特許請求の範囲】[Claims] (1)発熱体を有するガスセンサを用いたガス検出装置
において、 金属発熱体表面に耐熱絶縁性被覆を介して雰囲気感応物
質層を担持させ、かつ雰囲気感応物質層に1対の電極を
接続すると共に、この発熱体により雰囲気感応物質層を
支持したガスセンサと、電源出力を蓄積するコンデンサ
と、 コンデンサと前記発熱体とを接続し、所定の周期でオン
−オフするスイッチ、とを設けたことを特徴とするガス
検出装置。
(1) In a gas detection device using a gas sensor having a heating element, an atmosphere sensitive material layer is supported on the surface of the metal heating element via a heat-resistant insulating coating, and a pair of electrodes is connected to the atmosphere sensitive material layer. , a gas sensor in which an atmosphere-sensitive material layer is supported by the heating element, a capacitor that stores power output, and a switch that connects the capacitor and the heating element and turns on and off at a predetermined cycle. gas detection device.
(2)特許請求の範囲第1項記載のガス検出装置におい
て、 前記周期をガスセンサの熱時定数の1/5以下としたこ
とを特徴とするガス検出装置。
(2) The gas detection device according to claim 1, wherein the period is set to 1/5 or less of a thermal time constant of the gas sensor.
(3)特許請求の範囲第2項記載のガス検出装置におい
て、 各周期でのスイッチのオン時間は一定であり、かつオン
時間をコンデンサの放電時定数以下としたことを特徴と
するガス検出装置。
(3) The gas detection device according to claim 2, wherein the on time of the switch is constant in each cycle, and the on time is set to be equal to or less than the discharge time constant of the capacitor. .
(4)特許請求の範囲第3項記載のガス検出装置におい
て、 前記オン時間をコンデンサの放電時定数の 1/5以下としたことを特徴とするガス検出装置。
(4) The gas detection device according to claim 3, wherein the on-time is set to 1/5 or less of the discharge time constant of the capacitor.
JP25608486A 1986-10-28 1986-10-28 Gas detector Pending JPS63109362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25608486A JPS63109362A (en) 1986-10-28 1986-10-28 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25608486A JPS63109362A (en) 1986-10-28 1986-10-28 Gas detector

Publications (1)

Publication Number Publication Date
JPS63109362A true JPS63109362A (en) 1988-05-14

Family

ID=17287668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25608486A Pending JPS63109362A (en) 1986-10-28 1986-10-28 Gas detector

Country Status (1)

Country Link
JP (1) JPS63109362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007438A1 (en) * 2006-07-14 2008-01-17 Fis Inc. Gas detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863736A (en) * 1971-12-07 1973-09-04
JPS5396895A (en) * 1977-02-03 1978-08-24 Nitto Electric Ind Co Gas sensor element
JPS55160842A (en) * 1979-05-31 1980-12-15 Sumitomo Electric Ind Ltd Gas sensing element
JPS58102144A (en) * 1981-12-14 1983-06-17 Matsushita Electric Ind Co Ltd Gas sensor
JPS61128149A (en) * 1984-11-27 1986-06-16 Mitsubishi Electric Corp Smoke/gas detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863736A (en) * 1971-12-07 1973-09-04
JPS5396895A (en) * 1977-02-03 1978-08-24 Nitto Electric Ind Co Gas sensor element
JPS55160842A (en) * 1979-05-31 1980-12-15 Sumitomo Electric Ind Ltd Gas sensing element
JPS58102144A (en) * 1981-12-14 1983-06-17 Matsushita Electric Ind Co Ltd Gas sensor
JPS61128149A (en) * 1984-11-27 1986-06-16 Mitsubishi Electric Corp Smoke/gas detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007438A1 (en) * 2006-07-14 2008-01-17 Fis Inc. Gas detector
JP5016599B2 (en) * 2006-07-14 2012-09-05 エフアイエス株式会社 Gas detector
US8293179B2 (en) 2006-07-14 2012-10-23 Fis Inc. Gas detection apparatus

Similar Documents

Publication Publication Date Title
US4938928A (en) Gas sensor
US8293179B2 (en) Gas detection apparatus
US11408843B2 (en) Gas sensor
JP2702279B2 (en) Gas detection element
EP3786627B1 (en) Mems type semiconductor gas detection element
JPH0517650Y2 (en)
US3778229A (en) Ozone gas detector
US5382341A (en) Method of making smoke detector
JPS63109362A (en) Gas detector
JP6729197B2 (en) Gas sensor
JP2791473B2 (en) Gas detection method and device
JPH0249466B2 (en)
JP2004020377A (en) Catalytic combustion type gas sensor
JP2955583B2 (en) Detection element for gas sensor
JPH0220681Y2 (en)
JP2020165892A (en) Mems-type semiconductor gas sensing element
JPH07104308B2 (en) Sensor and manufacturing method thereof
KR100186999B1 (en) Gas sensor with thermopile
JPH08189912A (en) Combastible gas detecting device
JP2000019139A (en) Ceramic chlorine gas sensor
JPS63109361A (en) Gas sensor
JPS63109360A (en) Gas sensor
JPH0862169A (en) Carbon monoxide gas detector
JPH053973Y2 (en)
JPH01316651A (en) Method and device for detecting gas