JPH01316651A - Method and device for detecting gas - Google Patents

Method and device for detecting gas

Info

Publication number
JPH01316651A
JPH01316651A JP3155488A JP3155488A JPH01316651A JP H01316651 A JPH01316651 A JP H01316651A JP 3155488 A JP3155488 A JP 3155488A JP 3155488 A JP3155488 A JP 3155488A JP H01316651 A JPH01316651 A JP H01316651A
Authority
JP
Japan
Prior art keywords
heating
gas
semiconductor layer
pulse
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3155488A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
隆司 山口
Hiroshi Koda
弘史 香田
Muneharu Shimabukuro
宗春 島袋
Yasunori Ono
靖典 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP3155488A priority Critical patent/JPH01316651A/en
Publication of JPH01316651A publication Critical patent/JPH01316651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To save the power consumption of a gas sensor by constituting the gas sensor by connecting a detection electrode to a semiconductor layer of a metal oxide and intermittently heating the gas sensor by means of heating pulses, with the sensor being left at about room temperature while it is not heated. CONSTITUTION:A metallic exothermic body 4 is coated with a heat-resisting insulating coating and a semiconductor layer 6 of a metal oxide 6 and at least one electrode are provided on the coating. Gas detection is made from the resistance value of the semiconductor layer 6. The metallic exothermic body 4 is intermittently caused to produce heat by means of heating pulses of <=2 seconds in width and <=1/5 in duty ratio through a transistor Tr by actuating an oscillation circuit Osc 2 with the output pulse of another oscillation circuit Osc 1. While no heating pulse is applied, this gas sensor 2 is left at about room temperature and gas detection is made from the resistance value of the semiconductor layer 6.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、金属酸化物半導体の抵抗値の変化を用いた
ガスの検出に関する。この発明は特に、用いるガスセン
サの消費電力の節減に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to gas detection using a change in the resistance value of a metal oxide semiconductor. This invention particularly relates to reducing the power consumption of the gas sensor used.

[従来技術] 発明者らは、ガスセンサの消費電力の節減のため、Fe
−Cr−Al合金やNi−Cr合金等の発熱体にアルミ
ナ等の耐熱絶縁性被覆を施し、金属酸化物半導体層の担
体としたガスセンサを開発した(例えば特願昭61−2
56,082〜086号、特願昭62−16.844号
、特願昭62−174.219〜220号)。これらの
ガスセンサでは、線径20μm程度の金属発熱体を用い
、これに100A〜5μm程度の厚さのアルミナ等の耐
熱絶縁性被覆を施す。そして絶縁被覆上に金属酸化物半
導体層と電極とを設け、金属酸化物半導体層の抵抗値を
検出できるようにする。ここで絶縁被覆は、金属酸化物
半導体層と発熱体との絶縁にfil用する。勿論、金属
発熱体は板状の乙のでも良い(例えば特願昭62−16
,844号)。これらのガスセンサは、センサの熱容量
と消費電力の軽鎖を意図したしのである。
[Prior Art] In order to reduce the power consumption of gas sensors, the inventors
-Developed a gas sensor in which a heating element such as a Cr-Al alloy or a Ni-Cr alloy is coated with a heat-resistant insulating coating such as alumina and used as a carrier for a metal oxide semiconductor layer (for example, Patent Application No. 61-2
56,082-086, Japanese Patent Application No. 16.844.1988, Japanese Patent Application No. 174.219-220.). These gas sensors use a metal heating element with a wire diameter of about 20 μm, which is covered with a heat-resistant insulating coating of alumina or the like with a thickness of about 100 A to 5 μm. Then, a metal oxide semiconductor layer and an electrode are provided on the insulating coating so that the resistance value of the metal oxide semiconductor layer can be detected. Here, the insulating coating is used for insulation between the metal oxide semiconductor layer and the heating element. Of course, the metal heating element may also be a plate-shaped metal heating element (for example,
, No. 844). These gas sensors are intended for light chain thermal capacity and power consumption of the sensor.

現(Eの処、最良のガスセンサでも消費電力(例えば3
00℃に加熱する際の消費電力)は40mWatL程度
であり、また熱時定数(加熱開始後、定常加熱温度の9
0%まで昇温するのに必要な時間)は100m5ec程
度である。
Currently (E), even the best gas sensor consumes less power (e.g. 3
The power consumption when heating to 00℃) is about 40 mWatL, and the thermal time constant (after heating starts, the steady heating temperature is 9
The time required to raise the temperature to 0%) is about 100 m5ec.

発明者は、ガスセンサの加熱時間と特性との関係を検討
し、極く短時間の間だけ加熱しても、センサは動作する
ことを見出した(第4図参照)。例えば毎秒1回ずつ5
 ll1sec−100m5ec程度の加熱パルスを加
え、センサを加熱する。そして加熱パルスの終了時の抵
抗値を測定する。このような条件でも、センサの抵抗値
はガスにより変化し、ガスを検出することができる。ま
た1回の加熱パルスの幅は、センサの熱時定数より短く
ても良い。
The inventor studied the relationship between heating time and characteristics of a gas sensor and found that the sensor operates even if it is heated for only a very short period of time (see FIG. 4). For example, once every second 5
A heating pulse of approximately 11 sec-100 m5 ec is applied to heat the sensor. The resistance value at the end of the heating pulse is then measured. Even under such conditions, the resistance value of the sensor changes depending on the gas, and the gas can be detected. Further, the width of one heating pulse may be shorter than the thermal time constant of the sensor.

例えば熱時定数100 m5ecのガスセンサを511
ISeCのパルス幅で加熱しても、センサは動作する。
For example, a gas sensor with a thermal time constant of 100 m5ec is
The sensor operates even when heated with the pulse width of ISeC.

従って、センサに間欠的に加熱パルスを加え、パルスの
幅を十分に短くすれば、消費電力はその分だけ低下する
。例えば加熱パルスを5111Sec/secとすれば
、連続加熱の場合に比べ消費電力は1/100程度に減
少する。
Therefore, by applying heating pulses to the sensor intermittently and making the pulse width sufficiently short, power consumption will be reduced accordingly. For example, if the heating pulse is set to 5111 Sec/sec, the power consumption will be reduced to about 1/100 compared to the case of continuous heating.

なおここで関連する先行技術を示す。発明者らの先の出
願の内、特願昭61−256,084号は、ガスセンサ
の金属発熱体が低抵抗で、適当な電源を得るのが難しい
ことを指摘している。そしてこの出願では、金属発熱体
にパルス的に通電することを提案している。しかしここ
でのパルスの間隔はセンサの熱時定数よりも短く、セン
ナは一定の加熱温度に保たれる。
In addition, related prior art will be shown here. Among the inventors' earlier applications, Japanese Patent Application No. 61-256,084 points out that the metal heating element of the gas sensor has a low resistance, making it difficult to obtain an adequate power source. This application proposes that the metal heating element be energized in a pulsed manner. However, the pulse interval here is shorter than the thermal time constant of the sensor, and the senna is kept at a constant heating temperature.

次に特公昭53−43,320号は、ガスセンサの温度
を高温域と低温域とに交互に変化させ、低温域での出力
から一酸化炭素を選択的に検出することを開示している
。ここでの高温域への加熱時間はセンサのヒートクリー
ニングに十分な時間であり、現在までの処10秒〜20
秒以上のらのと理解されている。
Next, Japanese Patent Publication No. 53-43,320 discloses that the temperature of a gas sensor is alternately changed between a high temperature range and a low temperature range, and carbon monoxide is selectively detected from the output in the low temperature range. The heating time to the high temperature range here is sufficient time for heat cleaning of the sensor, and the current heating time is 10 seconds to 20 seconds.
It is understood that more than seconds.

[発明の課Ml この発明の課題は、ガスセンサの消費電力を更に節減す
る点に有る。
[Invention Section Ml An object of the present invention is to further reduce the power consumption of a gas sensor.

[発明の構成と作用] この発明では、金属発熱体の表面に耐熱絶縁性被覆を施
し、金属酸化物半導体層の担体とする。
[Structure and operation of the invention] In the present invention, a heat-resistant insulating coating is applied to the surface of a metal heating element to serve as a carrier for a metal oxide semiconductor layer.

そして金属酸化物半導体層に検出電極を接続して、ガス
センサとする。次にこのガスセンサを加熱パルスにより
間欠的に加熱し、池の期間は室温付近に放置する。例え
ば加熱パルスを加えない期間は金属発熱体への印加電力
を0とし、加熱パルスのみによる加熱を行う。勿論加熱
パルスを加えない期間ら、全体としての消費電力に寄与
しない程度の電力を金属発熱体に加え続けてら良い。加
熱パルスの幅を短くするほどセンサの消費電力は減少す
るので、パルス幅は2秒以下、好ましくはl 7z秒〜
2秒、更に好ましくは50μ秒〜200m秒とする。パ
ルスのデユーティ比は、115以下、好ましくは1/2
0以下とする。またパルスとパルスとの間隔は、001
秒〜10分とするのが好ましく、より好ましくは0.5
秒〜2分とする。
A detection electrode is then connected to the metal oxide semiconductor layer to form a gas sensor. Next, this gas sensor is intermittently heated by heating pulses and left at around room temperature during the heating period. For example, during a period when no heating pulse is applied, the power applied to the metal heating element is set to 0, and heating is performed only by the heating pulse. Of course, during the period when no heating pulse is applied, it is sufficient to continue applying power to the metal heating element to an extent that does not contribute to the overall power consumption. The shorter the width of the heating pulse, the lower the power consumption of the sensor, so the pulse width is 2 seconds or less, preferably 17z seconds or more.
2 seconds, more preferably 50 microseconds to 200 mseconds. The duty ratio of the pulse is 115 or less, preferably 1/2
Must be 0 or less. Also, the interval between pulses is 001
The time is preferably from seconds to 10 minutes, more preferably 0.5
2 seconds to 2 minutes.

このような短時間の間欠的加熱を行うと、ガスセンサの
消費電力を減少することができる。
By performing such short-term intermittent heating, the power consumption of the gas sensor can be reduced.

ガスセンサを極く短時間間欠的に加熱しても、センサは
動作する。そこで加熱時(センサ温度の上昇時)の抵抗
値からガスを検出する。また加熱後センサが冷却した際
の抵抗値からも、ガスを検出できる。このような検出は
、例えば−酸化炭素の検出にa用である。即ち極く短時
間の加熱でも、センサのヒートクリーニングを行うこと
ができる。
Even if the gas sensor is heated intermittently for very short periods of time, the sensor will still operate. Therefore, gas is detected from the resistance value during heating (when the sensor temperature rises). Gas can also be detected from the resistance value when the sensor cools down after heating. Such detection is useful, for example, in the detection of carbon oxides. That is, heat cleaning of the sensor can be performed even by heating for a very short time.

[実施例] 第1図に、実施例の回路図を示す。図において、Ebは
適宜の電源で、ここでは1.5Vx2の3V電源とする
。これは装置の電池使用を意図したものである。Osc
 lは毎秒1回、幅10m5ecのパルスを発する発振
回路、0sc2は500μSee毎に幅25μSeeの
パルスを発する発振回路である。そして発振回路0sc
lの出力パルスをストローブ信号として、発振回路0s
c2を発振させる。0scl。
[Example] FIG. 1 shows a circuit diagram of an example. In the figure, Eb is an appropriate power supply, and here it is assumed to be a 3V power supply of 1.5Vx2. This is intended for battery use of the device. Osc
1 is an oscillation circuit that generates a pulse with a width of 10 m5ec once every second, and 0sc2 is an oscillation circuit that generates a pulse with a width of 25 μSee every 500 μSee. and oscillation circuit 0sc
The oscillation circuit 0s uses the output pulse of l as a strobe signal.
oscillate c2. 0scl.

0sc2によりパルス電源を構成する。しかし付帯回路
にマイクロコンピュータ等の論理回路を用いる場合、パ
ルス電源はマイクロコンピュータ等の論理回路に内蔵さ
せても良い。
0sc2 constitutes a pulse power supply. However, when a logic circuit such as a microcomputer is used as the auxiliary circuit, the pulse power source may be built into the logic circuit such as the microcomputer.

2はガスセンサで、金属発熱体4の表面に耐熱絶縁性被
覆を施し、この被覆上に金属酸化物半導体層6と少なく
とも1個の電極とを設けたものである。用いたガスセン
サでは、金属発熱体4に線径20μmのFe−Cr−A
l合金線を用い、金属酸化物半導体層6は単味のSnO
,層とし、耐熱絶縁性被覆は約1μm厚のA l t 
O3膜とした。このセンサ2では、300℃への連続加
熱時の消費電力は70mWalt、印加電圧は約0,6
■、発熱体4の抵抗値は5Ωであった。また熟時定数は
100II+secである。電極を1個とする場合、金
属発熱体4を一方の電極に兼用する。Trは金属発熱体
4に接続したトランジスタで、任意のスイッチに変更で
きる。
2 is a gas sensor in which a heat-resistant insulating coating is applied to the surface of a metal heating element 4, and a metal oxide semiconductor layer 6 and at least one electrode are provided on the coating. In the gas sensor used, the metal heating element 4 was made of Fe-Cr-A with a wire diameter of 20 μm.
l alloy wire is used, and the metal oxide semiconductor layer 6 is made of plain SnO.
, and the heat-resistant insulating coating has a thickness of about 1 μm.
It was made into an O3 film. In this sensor 2, the power consumption during continuous heating to 300°C is 70 mWalt, and the applied voltage is approximately 0.6
(2) The resistance value of the heating element 4 was 5Ω. Further, the ripening time constant is 100II+sec. When using one electrode, the metal heating element 4 is also used as one electrode. Tr is a transistor connected to the metal heating element 4, and can be changed to any switch.

1’tlはセンサ2の負荷抵抗で、その両端間電圧をセ
ンサ出力Voutとする。
1'tl is the load resistance of the sensor 2, and the voltage across it is the sensor output Vout.

A1.A2は演算増幅器、D1〜D3はダイオード、C
Iはコンデンサ、R2−R4は抵抗で、これらによりピ
ークホールド回路を構成する。即ち、出力Voutのピ
ークをコンデンサC1に蓄積し、これを演算増幅器A2
から取り出す。R5は演算増幅器A2の出力抵抗、Mは
検出結果を表示するためのメータである。負荷抵抗R1
からメータMをガス検出手段とする。ここでピークホー
ルド回路を用いたのは、以下の理由による。センサ出力
Voutは加熱パルスに応じて変動する。そして通常最
もα味がある信号は、加熱パルス終了時付近のセンサ温
度が最も高い点での信号である。
A1. A2 is an operational amplifier, D1 to D3 are diodes, C
I is a capacitor, R2-R4 are resistors, and these constitute a peak hold circuit. That is, the peak of the output Vout is accumulated in the capacitor C1, and is transferred to the operational amplifier A2.
Take it out. R5 is the output resistance of the operational amplifier A2, and M is a meter for displaying the detection results. Load resistance R1
Therefore, the meter M is used as a gas detection means. The reason for using the peak hold circuit here is as follows. The sensor output Vout varies depending on the heating pulse. The signal with the most alpha flavor is usually the signal at the point near the end of the heating pulse where the sensor temperature is the highest.

そしてこの時、センサの温度依存性のため、出力Vou
tはピークを示す。そこでこのピークをとらえ、これを
ガス検出手段で処理するのである。またVoutのピー
クの持続時間は一般に短く、ピークホールド回路でピー
クをホールドすることにより、信号処理を容易にするの
である。
At this time, due to the temperature dependence of the sensor, the output Vou
t indicates a peak. This peak is then captured and processed by gas detection means. Furthermore, the duration of the peak of Vout is generally short, and signal processing is facilitated by holding the peak with a peak hold circuit.

第2図に、センサ出力V outのサンプリング時期を
特定した回路を示す。この回路では、発振回路Osc 
lのストローブ信号の終了時点で、A/D変換回路A/
Dをエツジトリガーする。なおA/D変換回路A/Dに
は、サンプルホールド回路を内蔵したものが好ましい。
FIG. 2 shows a circuit that specifies the sampling timing of the sensor output V out. In this circuit, the oscillation circuit Osc
At the end of the strobe signal of l, the A/D conversion circuit A/
Edge trigger D. Note that the A/D conversion circuit A/D preferably has a built-in sample and hold circuit.

サンプルホールド回路を内蔵さけないと、Voutのサ
ンプリング時間が短いため、高速A/D変換回路が必要
となる。このような回路は一般に高価である。そしてA
/D変換した出力を表示回路D 1splayに表示し
、A/D変換回路の出力を制御出力Controlとし
て外部に取り出す。この回路では、加熱パルス終了時の
金属酸化物半導体層6の抵抗値を基に、ガスを検出する
。ここで出力のサンプリング信号時期を変えれば、任意
の時点でのセンサ出力V outを取り出すことができ
る。例えば、加熱パルスの終了直前の出力をサンプリン
グしても良く、またセンサ2が室温まで冷却された時点
での出力をサンプリングしても良い。
Unless a sample and hold circuit is included, a high-speed A/D conversion circuit will be required because the sampling time of Vout will be short. Such circuits are generally expensive. And A
The A/D converted output is displayed on the display circuit D1play, and the output of the A/D conversion circuit is taken out as a control output Control. In this circuit, gas is detected based on the resistance value of the metal oxide semiconductor layer 6 at the end of the heating pulse. By changing the timing of the output sampling signal, the sensor output V out at any time can be taken out. For example, the output immediately before the heating pulse ends may be sampled, or the output may be sampled when the sensor 2 has cooled to room temperature.

第3図に、第1図の回路の動作を示す。発振回路0sc
lの出力パルスで発振回路0sc2を動作させ、トラン
ジスタTrを介して金属発熱体4を加熱する。発振回路
Osc 2のデユーティ比はl/20、電源Ebの出力
は3Vなので、これは発振回路0sclの出力パルス(
幅10m5ec)の間、0.7vの電圧で金属発熱体4
を加熱することに等しい。このようにするのは3vや5
V等の電源の方が、0゜7vの電源よりも得やすいため
である。発振回路0sclの出力パルスは毎秒1回幅1
0m5ecであり、センサ2の消費電力は連続加熱の場
合に比べてl/100程度に減少する。
FIG. 3 shows the operation of the circuit of FIG. 1. Oscillation circuit 0sc
The oscillation circuit 0sc2 is operated with an output pulse of 1, and the metal heating element 4 is heated via the transistor Tr. The duty ratio of the oscillation circuit Osc 2 is l/20, and the output of the power supply Eb is 3V, so this is the output pulse of the oscillation circuit 0scl (
Metal heating element 4 at a voltage of 0.7v between
is equivalent to heating. Doing it like this is 3v or 5
This is because it is easier to obtain a power source such as V than a 0°7V power source. The output pulse of the oscillation circuit 0scl is once per second and has a width of 1
0 m5ec, and the power consumption of the sensor 2 is reduced to about 1/100 compared to the case of continuous heating.

センサ2への加熱パルスは熱時定数(100msec)
に比べ短い。このためセンサ2の加熱温度は定常値(こ
は達しない。しかし電源Ebや発振回路Osc l 5
Osc2のパルス幅が安定であれば、加熱のパターンは
一定で、センサ2の温度は同じパターンで変化する。即
ち加熱パルスを熱時定数より短くしても、センサ2の加
熱パターンは安定である。次に熱時定数よりも短い、あ
るいは2 sec以下の加熱によっても、金属酸化物半
導体層6の抵抗値はガスの影響を受け、ガスを検出でき
る。そこでセンサ2の出力Voutを適当な時点でサン
プリングし、ガスを検出する。第1図の場合、センサ2
の出力のピークをサンプリングする。
The heating pulse to sensor 2 has a thermal time constant (100 msec)
It is shorter than . For this reason, the heating temperature of sensor 2 does not reach the steady value (this does not reach, however, the power supply Eb and the oscillation circuit Oscl 5
If the pulse width of Osc2 is stable, the heating pattern is constant and the temperature of sensor 2 changes in the same pattern. That is, even if the heating pulse is made shorter than the thermal time constant, the heating pattern of the sensor 2 is stable. Next, the resistance value of the metal oxide semiconductor layer 6 is influenced by the gas even by heating for a time shorter than the thermal time constant or 2 seconds or less, so that the gas can be detected. Therefore, the output Vout of the sensor 2 is sampled at an appropriate time to detect the gas. In the case of Figure 1, sensor 2
Sample the peak of the output.

第4図に、センサ2の加熱パルスの幅と抵抗値との関係
を示す。横軸は金属発熱体4への印加電圧を、縦軸は加
熱パルス終了直前の金属酸化物半導体層6の抵抗値を示
す。なお雰囲気は20℃、湿度65%、連続加熱時の温
度は印加電圧0.6Vで約300℃である。図から、(
1)加熱パルスの幅を短くしてもガスを検出できること
、(2)パルスの幅は熱時定数よりも短くても良いこと
、(3)パルスの幅を短くする場合、連続加熱時よりも
高い印加電圧が好ましいことが判る。
FIG. 4 shows the relationship between the width of the heating pulse of the sensor 2 and the resistance value. The horizontal axis represents the voltage applied to the metal heating element 4, and the vertical axis represents the resistance value of the metal oxide semiconductor layer 6 immediately before the end of the heating pulse. Note that the atmosphere is 20° C., humidity is 65%, and the temperature during continuous heating is approximately 300° C. at an applied voltage of 0.6 V. From the figure, (
1) gas can be detected even if the heating pulse width is shortened; (2) the pulse width can be shorter than the thermal time constant; It can be seen that higher applied voltages are preferred.

第5図に、1100ppのエタノールへの応答特性を示
す。なお加熱条件は、毎秒1回幅5 m5ecで電圧0
.7Vのパルスを加えたものである。またこの例では負
荷抵抗INlをIOKΩとし、5Vの検出電圧を加えて
、加熱パルス終了直後の出力Voutをサンプリングし
た。センサ2の応答速度は、実用に耐えるものである。
FIG. 5 shows the response characteristics to 1100 pp of ethanol. The heating conditions were once per second with a width of 5 m5ec and a voltage of 0.
.. A 7V pulse is added. In this example, the load resistance INl was set to IOKΩ, a detection voltage of 5 V was applied, and the output Vout was sampled immediately after the heating pulse ended. The response speed of the sensor 2 is suitable for practical use.

 表1に、各種の加熱条件と特性との関係を示す。Table 1 shows the relationship between various heating conditions and characteristics.

表−月* 連続加熱     250  6.5  5.0  3
.0100m5ec/sec   800 13   
7.0  3.550m5ec/see   600 
 8.0  8.0  4.015m5ec/sec 
  350  6,0  5.0  3.55m5ec
/see   300  4,0  4.5  4.5
15m5ec/l0sec  300  4.5  5
.0’  4.015m5ec/sin    400
   3.0     G、0   4.010m5e
c/min*   oo   IOMΩ IOMΩ I
MΩ* ガス濃度は各100 pp@、感度は空気中と
ガス中との抵抗値の比を示す、また最後の例では毎分1
回1ossecのパルスで加熱し、次の加熱の直前の抵
抗値を測定、この例では空気中の抵抗値を測定できずガ
ス中での抵抗値を表示、 加熱電圧はいずれら0.7V、抵抗値はにΩ単位で表示
Table - Month * Continuous heating 250 6.5 5.0 3
.. 0100m5ec/sec 800 13
7.0 3.550m5ec/see 600
8.0 8.0 4.015m5ec/sec
350 6.0 5.0 3.55m5ec
/see 300 4,0 4.5 4.5
15m5ec/l0sec 300 4.5 5
.. 0' 4.015m5ec/sin 400
3.0 G, 0 4.010m5e
c/min* oo IOMΩ IOMΩ I
MΩ* Gas concentration is 100 pp@ each, sensitivity is the ratio of resistance in air and gas, and in the last example 1/min.
Heating with 1 ossec pulse and measuring the resistance value just before the next heating. In this example, the resistance value in air cannot be measured and the resistance value in gas is displayed. The heating voltage is 0.7V in both cases, and the resistance value is displayed. Values are expressed in ohms.

第4図、第5図、及び表1の結果では、全ての例に対し
てガスセンサ2は動作し、不満足な結果は得られていな
い。
According to the results shown in FIG. 4, FIG. 5, and Table 1, the gas sensor 2 operates in all cases, and no unsatisfactory results were obtained.

・第9図に、加熱パルスの幅を0 、2 m5ecとし
た際の結果を示す。この例ではヒータ4に毎秒1回幅0
 、25secで電圧3.’2Vの加熱パルスを加え、
空気中とガス中とでのセンサ出力Voutを測定した。
- Figure 9 shows the results when the width of the heating pulse was set to 0.2 m5ec. In this example, heater 4 is supplied with a width of 0 once per second.
, voltage 3. for 25 seconds. 'Add a 2V heating pulse,
The sensor output Vout was measured in air and gas.

0 、2 m5ec/ seeの加熱条件でも、ガスを
検出できる。なおセンサ出力のピークはパルス印加後0
 、4 m5ec程度に生じ、パルス印加から10m5
ec程度経過′4゛るとセンサ出力はほぼ0まで減少し
た。
Gas can be detected even under heating conditions of 0,2 m5ec/see. Note that the peak of the sensor output is 0 after pulse application.
, 4 m5ec, and 10m5 after pulse application.
After 4' elapsed, the sensor output decreased to almost 0.

加熱パルスに関する発明者の見解を示す。好ましいパル
スの幅はlμSee〜2 secであり、より好ましく
は50μsec〜20 (lssecとする。次にパル
スの間隔はI OOtasec〜l OIain程度が
好ましく、より好ましくは0 、5 sec〜2 mi
nとする。更に加熱のデユーティ比は115以下とし、
好ましくは1/20以下とする。デユーティ比は、第9
図から明らかなように115000以下と小さくしても
良く、例えば10′□@程度でも良い。なおここでパル
ス幅の下限に付いて補足する。パルス幅自体は、例えば
lμsecと極端に短いものでも良いのである。パルス
幅の限界は、ヒータ4の耐圧で定まる。第9図から明ら
かなように、パルス幅を短くするとセンサ出力に遅れが
生じる。これはヒータ4に電力を加えたのち、金属酸化
物半導体層6が加熱されるまでの時間遅れ等によるもの
であろう。するとこの時間以下の加熱パルスの場合、加
熱パルスの幅や電力よりも1回のパルス当たりのエネル
ギーの方が重要になるはずである。従って、回路的に可
能で、ヒータ4か耐える範囲で、加熱パルスの幅は無限
に小さくしても良いのである。
The inventor's view regarding heating pulses is shown. The width of the pulse is preferably lμSee~2 sec, more preferably 50μsec~20 (lssec). Next, the pulse interval is preferably about IOOtasec~lOIain, more preferably 0,5 sec~2 mi.
Let it be n. Furthermore, the heating duty ratio is set to 115 or less,
Preferably it is 1/20 or less. The duty ratio is 9th
As is clear from the figure, it may be as small as 115,000 or less, for example, about 10'□@. Here, we will add some additional information regarding the lower limit of the pulse width. The pulse width itself may be extremely short, for example, 1 μsec. The limit of the pulse width is determined by the withstand voltage of the heater 4. As is clear from FIG. 9, shortening the pulse width causes a delay in the sensor output. This is probably due to a time delay between when power is applied to the heater 4 and when the metal oxide semiconductor layer 6 is heated. Then, in the case of a heating pulse of less than this time, the energy per pulse should be more important than the width or power of the heating pulse. Therefore, the width of the heating pulse may be made infinitely small as long as the circuit allows it and the heater 4 can withstand it.

第6図〜第8図に、実施例に用いたガスセンサ2を示す
。第6図において、4はFe−Cr−Al合金やNi−
Cr合金、あるいはPt線等の金属発熱体で、ここでは
線径(直径)10〜100μm程度のものを用いる。8
は金属発熱体4のほぼ全面に設けた耐熱絶縁性被覆で、
アルミナやシリカ等を用いる。この被覆8は、イオンブ
レーティングやスパッタリング、プラズマCVDあるい
は、A1やSi等の真空蒸着膜の酸化、更にはアルミナ
ゾルやシリカゾル等の被覆等により設ける。被覆8の厚
さは例えば100A〜5μm程度とすれば良い。
6 to 8 show the gas sensor 2 used in the example. In Fig. 6, 4 is Fe-Cr-Al alloy or Ni-
A metal heating element such as a Cr alloy or a Pt wire, with a wire diameter of about 10 to 100 μm, is used here. 8
is a heat-resistant insulating coating provided on almost the entire surface of the metal heating element 4,
Alumina, silica, etc. are used. This coating 8 is provided by ion blasting, sputtering, plasma CVD, oxidation of a vacuum-deposited film such as A1 or Si, or coating with alumina sol, silica sol, or the like. The thickness of the coating 8 may be, for example, about 100 A to 5 μm.

6は、5nOtや、In2O5、ZnO等の金属酸化物
半導体層である。I O,+ 2は電極で、AuやPt
、nh、Ru5t等を用い、真空蒸着やこれらのペース
トの塗布等により設ける。耐熱絶縁性被覆8の一部を剥
離させ、金属発熱体4を金属酸化物半導体層6の電極に
兼用する場合、電極10.12は一方のみでも良い。こ
の場合は金属発熱体4を貴金属で構成するのが好ましい
6 is a metal oxide semiconductor layer such as 5nOt, In2O5, ZnO, etc. I O, + 2 is an electrode, made of Au or Pt
, nh, Ru5t, etc., and is provided by vacuum evaporation or application of a paste of these materials. When part of the heat-resistant insulating coating 8 is peeled off and the metal heating element 4 is used also as an electrode for the metal oxide semiconductor layer 6, only one electrode 10.12 may be used. In this case, it is preferable that the metal heating element 4 is made of a noble metal.

14はアルミナ等の耐熱絶縁性基板で、ステンレス等の
金属表面にガラス等を被覆して絶縁したもの等でも良い
。16は空洞で、金属化合物溶液の熱分解等で金属酸化
物半導体層6を形成する場合に、金属化合物の溶液と基
板!4とを分離するためのものである。なお実施例では
Snの有機化合物の溶液を熱分解して金属酸化物半導体
層6とした。しかしスパッタリングや真空蒸着等で金属
酸化物半導体層6を設ける場合、空洞16は不要である
Reference numeral 14 is a heat-resistant insulating substrate made of alumina or the like, which may be made of stainless steel or other metal surface coated with glass or the like for insulation. Reference numeral 16 denotes a cavity, in which the metal compound solution and the substrate are formed when the metal oxide semiconductor layer 6 is formed by thermal decomposition of the metal compound solution, etc. This is to separate the two. In the example, a solution of an organic compound of Sn was thermally decomposed to form the metal oxide semiconductor layer 6. However, when the metal oxide semiconductor layer 6 is provided by sputtering, vacuum evaporation, etc., the cavity 16 is not necessary.

18.20.22は金やPd1Rust等を印刷した膜
状11[i1!で、真空蒸着等で設けてら良い。そして
電極18.22に金属発熱体4の両端を溶接等で接続す
ると共に、電極IOを膜状電極18に、検出電極12を
膜状電極20に、金ペーストや酸化ルテニウムペースト
等の導電性接着剤24で接続する。導電性接着剤24に
変え、膜状電極18゜20と電極10.12とを、超音
波加熱等で接続しても良い。30は外部ピンを兼用した
リードフレームで、各リードフレーム30と膜状電極+
8゜20.22とをリード線で接続する。
18.20.22 is film-like 11 [i1! printed with gold, Pd1Rust, etc. Therefore, it is better to provide it by vacuum evaporation or the like. Then, both ends of the metal heating element 4 are connected to the electrodes 18 and 22 by welding or the like, and the electrode IO is connected to the membrane electrode 18 and the detection electrode 12 is connected to the membrane electrode 20 using conductive adhesive such as gold paste or ruthenium oxide paste. Connect with agent 24. Instead of using the conductive adhesive 24, the membrane electrode 18.20 and the electrode 10.12 may be connected by ultrasonic heating or the like. 30 is a lead frame that also serves as an external pin, and each lead frame 30 and a membrane electrode +
Connect 8°20.22 with lead wire.

第7図に、センサの要部拡大断面図を示す。図において
、26は金属発熱体4と膜状電極18゜22との溶接部
である。そして金属発熱体4を膜状電極18.22に溶
接すると共に、導電性接着剤24で?li極10.12
を1状電極18.20に)?続する。なお金属発熱体4
は、これ以外の位置では基板14に接触しない。これは
溶接時に多少の遊びが生じるため、金属発熱体4に微か
な反りが生じるためである。
FIG. 7 shows an enlarged sectional view of the main parts of the sensor. In the figure, 26 is a welded portion between the metal heating element 4 and the membrane electrode 18°22. Then, the metal heating element 4 is welded to the membrane electrode 18, 22, and a conductive adhesive 24 is used. li pole 10.12
to 1-shaped electrode 18.20)? Continue. Note that the metal heating element 4
does not contact the substrate 14 at any other position. This is because the metal heating element 4 is slightly warped due to some play during welding.

導電性接着剤24は電極10.12と膜状電極18.2
0との接続の池に、金属発熱体4の溶接部を腐蝕から保
護する作用を持つ。これは溶接により金属発熱体4の組
織が変化し、腐蝕を受けやすくなるためで、導電性接着
剤24で溶接部を雰囲気から遮断し、保護を行う。溶接
部の保護が不要な場合、膜状電極22には導電性接着剤
24を用いなくてし良い。実施例では、膜状電極18に
電極10と金属発熱体4とを接続したか、両者を分離し
4つの膜状電極を基板14にしうけてし良い。
The conductive adhesive 24 connects the electrode 10.12 and the membrane electrode 18.2.
0 has the effect of protecting the welded part of the metal heating element 4 from corrosion. This is because the structure of the metal heating element 4 changes due to welding and becomes susceptible to corrosion, so the conductive adhesive 24 protects the welded portion by shielding it from the atmosphere. If protection of the welded portion is not required, the conductive adhesive 24 may not be used for the membrane electrode 22. In the embodiment, the electrode 10 and the metal heating element 4 may be connected to the membrane electrode 18, or they may be separated and four membrane electrodes may be received on the substrate 14.

第8図にガスセンサ2の全体構造を示す。図において、
32は合成樹脂等のベース、34は合成樹脂等のカバー
で円柱状や角柱状等に形成しである。
FIG. 8 shows the overall structure of the gas sensor 2. In the figure,
32 is a base made of synthetic resin or the like, and 34 is a cover made of synthetic resin or the like, which is formed into a cylindrical or prismatic shape.

」二足の実施例では、線状の金属発熱体4を用いたが、
金属発熱体は例えば箔状でも良い。
In the two-leg example, a linear metal heating element 4 was used,
The metal heating element may be in the form of a foil, for example.

第4図、第5図や表1の測定には、以下の条件でセンサ
2を調整した。直径20μmのFe−Cr−A1合金線
2に、(スエーデンのガブリウス社製のカンタル、カン
タルは商品名)、アルミナゾルを塗布し、800℃で熱
分解して、アルミナ皮膜とした。この工程を10回繰り
返し、厚さ1μm程度のアルミナ被覆8とした。被覆8
は合金線4の全面に設けた。合金線4を長さ1.2mm
に切断し、そのまま膜状電極18.22に溶接した。溶
接部26での絶縁性被覆8は、溶接時の圧力や溶接電流
等で剥離し、予め被覆8を除去しないでも溶接できた。
For the measurements shown in FIGS. 4 and 5 and Table 1, the sensor 2 was adjusted under the following conditions. A Fe-Cr-A1 alloy wire 2 with a diameter of 20 μm was coated with alumina sol (Kantal manufactured by Gabrius, Sweden, Kanthal is a trade name) and thermally decomposed at 800° C. to form an alumina film. This process was repeated 10 times to obtain an alumina coating 8 with a thickness of about 1 μm. Covering 8
was provided on the entire surface of the alloy wire 4. Alloy wire 4 with a length of 1.2 mm
It was cut into pieces and directly welded to the membrane electrodes 18 and 22. The insulating coating 8 at the welded portion 26 peeled off due to the pressure, welding current, etc. during welding, and welding could be performed without removing the coating 8 in advance.

溶接後の合金線2にマスクを被せ、真空蒸着で金7J1
極10.12を設けた。電極10.12の形成後に、S
nの何機化合物、ここではS n(OCtl 5)3(
0(CH*)*N l−1*)、のイソブタノール溶液
を滴下し、500℃で熱分解して、S n Oyの金属
酸化物半導体層6とした。ここで空洞16により、液滴
と基板!4との接触を防止した。次いで導電性接着剤2
4により、電極10.12を接続し、また電極22の溶
接部を保護した。これらの後に、基板!4をリードフレ
ーム30にグイボンディングし、また電極+8.20.
22をリードフレーム30にワイヤボンディングし、セ
ンサ2とした。
After welding, put a mask on the alloy wire 2 and apply gold 7J1 by vacuum evaporation.
A pole 10.12 was provided. After forming the electrode 10.12, S
How many organic compounds of n, here S n (OCtl 5) 3 (
An isobutanol solution of 0(CH*)*N l-1*) was dropped and thermally decomposed at 500°C to obtain a metal oxide semiconductor layer 6 of S n Oy. Here, due to the cavity 16, the droplet and the substrate! Contact with 4 was prevented. Next, conductive adhesive 2
4 connected the electrodes 10.12 and also protected the welds of the electrodes 22. After these, the board! 4 to the lead frame 30, and electrodes +8.20.
22 was wire-bonded to the lead frame 30 to form the sensor 2.

[発明の効果コ この発明では、ガスセンサの消費電力を減少させること
ができる。
[Effects of the Invention] According to the present invention, the power consumption of the gas sensor can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の回路図、第2図は変形例の回路図、第
3図は実施例の動作波形図で、第3図1)は金属発熱体
への加熱パルス波形を、第3図2)はセンサ温度の波形
を、第3図3)はセンサ出力の波形を示す。第4図、第
5図は実施例の特性図である。 第6図は実施例に用いたガスセンサの要部正面図、第7
図は実施例に用いたガスセンサの要部拡大断面、第8図
は実施例に用いたガスセンサの断面図である。 第9図は、実施例の特性図である。 図において、2 ガスセンサ、 4 金属発熱体、6 金属酸化物半導体層、8 耐熱絶
縁性被覆。 特許出願人 フィガロ技研株式会社 第7図 第8図 第5図 第6図
Fig. 1 is a circuit diagram of the embodiment, Fig. 2 is a circuit diagram of a modified example, and Fig. 3 is an operation waveform diagram of the embodiment. FIG. 2) shows the waveform of the sensor temperature, and FIG. 3) shows the waveform of the sensor output. FIG. 4 and FIG. 5 are characteristic diagrams of the embodiment. Figure 6 is a front view of the main parts of the gas sensor used in the example, Figure 7
The figure is an enlarged sectional view of a main part of the gas sensor used in the example, and FIG. 8 is a sectional view of the gas sensor used in the example. FIG. 9 is a characteristic diagram of the example. In the figure, 2 gas sensor, 4 metal heating element, 6 metal oxide semiconductor layer, 8 heat-resistant insulating coating. Patent applicant Figaro Giken Co., Ltd. Figure 7 Figure 8 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)金属発熱体の表面に耐熱絶縁性被覆を施し、この
被覆上に金属酸化物半導体層と少なくとも1個の電極と
を設け、金属酸化物半導体層の抵抗値からガスを検出す
るようにしたガスセンサを用い、金属発熱体を幅2秒以
下、デューティ比1/5以下の加熱パルスにより間欠的
に発熱させ、加熱パルスを加えない期間はガスセンサを
室温付近に放置した状態で、 金属酸化物半導体層の抵抗値からガスを検出するように
した、ガス検出方法。
(1) A heat-resistant insulating coating is applied to the surface of the metal heating element, a metal oxide semiconductor layer and at least one electrode are provided on the coating, and gas is detected from the resistance value of the metal oxide semiconductor layer. Using a heated gas sensor, the metal heating element is intermittently heated by heating pulses with a width of 2 seconds or less and a duty ratio of 1/5 or less, and the gas sensor is left near room temperature during the period when no heating pulses are applied. A gas detection method that detects gas based on the resistance value of a semiconductor layer.
(2)金属発熱体の表面に耐熱絶縁性被覆を設け、この
被覆上に金属酸化物半導体層と少なくとも1個の電極と
を設け、金属酸化物半導体層の抵抗値からガスを検出す
るようにしたガスセンサと、幅2秒以下でデューティ比
1/5以下の加熱パルスを金属発熱体に加えてガスセン
サを間欠的に加熱すると共に、加熱パルスを加えない期
間はガスセンサを室温付近に放置するためのパルス電源
と、 加熱時の金属酸化物半導体層の抵抗値からガスを検出す
るためのガス検出手段とを設けた、ガス検出装置。
(2) A heat-resistant insulating coating is provided on the surface of the metal heating element, a metal oxide semiconductor layer and at least one electrode are provided on the coating, and gas is detected from the resistance value of the metal oxide semiconductor layer. A heating pulse with a width of 2 seconds or less and a duty ratio of 1/5 or less is applied to the metal heating element to intermittently heat the gas sensor, and the gas sensor is left near room temperature during the period when no heating pulse is applied. A gas detection device equipped with a pulse power source and a gas detection means for detecting gas from the resistance value of a metal oxide semiconductor layer during heating.
(3)特許請求の範囲第2項記載のガス検出装置におい
て、 前記パルス電源のパルス幅を0.2秒以下、パルスとパ
ルスとの間隔を0.5秒〜10分としたことを特徴とす
る、ガス検出装置。
(3) The gas detection device according to claim 2, characterized in that the pulse width of the pulse power source is 0.2 seconds or less, and the interval between pulses is 0.5 seconds to 10 minutes. gas detection device.
(4)金属発熱体の表面に耐熱絶縁性被覆を設け、この
被覆上に金属酸化物半導体層と少なくとも1個の電極と
を設け、金属酸化物半導体層の抵抗値からガスを検出す
るようにしたガスセンサと、幅2秒以下でデューティ比
1/5以下の加熱パルスを金属発熱体に加えてガスセン
サを間欠的に加熱すると共に、加熱パルスを加えない期
間はガスセンサを室温付近に放置するためのパルス電源
と、 室温付近に放置時の金属酸化物半導体層の抵抗値からガ
スを検出するためのガス検出手段とを設けた、ガス検出
装置。
(4) A heat-resistant insulating coating is provided on the surface of the metal heating element, a metal oxide semiconductor layer and at least one electrode are provided on the coating, and gas is detected from the resistance value of the metal oxide semiconductor layer. A heating pulse with a width of 2 seconds or less and a duty ratio of 1/5 or less is applied to the metal heating element to intermittently heat the gas sensor, and the gas sensor is left near room temperature during the period when no heating pulse is applied. A gas detection device equipped with a pulse power source and a gas detection means for detecting gas from the resistance value of a metal oxide semiconductor layer when left at room temperature.
JP3155488A 1988-02-02 1988-02-12 Method and device for detecting gas Pending JPH01316651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3155488A JPH01316651A (en) 1988-02-02 1988-02-12 Method and device for detecting gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-22479 1988-02-02
JP2247988 1988-02-02
JP3155488A JPH01316651A (en) 1988-02-02 1988-02-12 Method and device for detecting gas

Publications (1)

Publication Number Publication Date
JPH01316651A true JPH01316651A (en) 1989-12-21

Family

ID=26359706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3155488A Pending JPH01316651A (en) 1988-02-02 1988-02-12 Method and device for detecting gas

Country Status (1)

Country Link
JP (1) JPH01316651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271636A (en) * 2007-06-18 2007-10-18 Osaka Gas Co Ltd Gas detecting device and method
WO2008007438A1 (en) * 2006-07-14 2008-01-17 Fis Inc. Gas detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007438A1 (en) * 2006-07-14 2008-01-17 Fis Inc. Gas detector
JP5016599B2 (en) * 2006-07-14 2012-09-05 エフアイエス株式会社 Gas detector
US8293179B2 (en) 2006-07-14 2012-10-23 Fis Inc. Gas detection apparatus
JP2007271636A (en) * 2007-06-18 2007-10-18 Osaka Gas Co Ltd Gas detecting device and method

Similar Documents

Publication Publication Date Title
US4938928A (en) Gas sensor
JP4640960B2 (en) Thin film gas sensor
US5627305A (en) Gas sensing apparatus and method
JP2791473B2 (en) Gas detection method and device
JP5127750B2 (en) Gas sensor and gas detection method
JP2791472B2 (en) Gas detector
JPH01316651A (en) Method and device for detecting gas
CN112023196B (en) Micropore atomization assembly and device with temperature measurement function
JP4970584B2 (en) Thin film gas sensor
Amamoto et al. Development of pulse-drive semiconductor gas sensor
JP2004020377A (en) Catalytic combustion type gas sensor
JP2816704B2 (en) Gas detection method
JP2911928B2 (en) Gas detection method
JPH0710286Y2 (en) Gas detector
JP2000206081A (en) Gas sensor with two electrodes
JP2791474B2 (en) Incomplete combustion detection method and apparatus
JPH01206249A (en) Method of detecting fire and apparatus therefor
JP2919874B2 (en) Ozone detector
JP3999831B2 (en) Gas detection method and apparatus
JP2000019139A (en) Ceramic chlorine gas sensor
JP2002310982A (en) Gas sensor element and gas sensor
JPH07104308B2 (en) Sensor and manufacturing method thereof
JPH08304318A (en) Gas detecting element
JP3312781B2 (en) Gas concentration measurement method
JPH08189912A (en) Combastible gas detecting device