JP2007271636A - Gas detecting device and method - Google Patents

Gas detecting device and method Download PDF

Info

Publication number
JP2007271636A
JP2007271636A JP2007160362A JP2007160362A JP2007271636A JP 2007271636 A JP2007271636 A JP 2007271636A JP 2007160362 A JP2007160362 A JP 2007160362A JP 2007160362 A JP2007160362 A JP 2007160362A JP 2007271636 A JP2007271636 A JP 2007271636A
Authority
JP
Japan
Prior art keywords
gas detection
layer
volatile organic
organic compound
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007160362A
Other languages
Japanese (ja)
Inventor
Soichi Tabata
総一 田畑
Katsumi Higaki
勝己 檜垣
Hiroichi Sasaki
博一 佐々木
Hisao Onishi
久男 大西
Shinichi Ochiwa
眞一 小知和
Takuya Suzuki
卓弥 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fuji Electric Holdings Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007160362A priority Critical patent/JP2007271636A/en
Publication of JP2007271636A publication Critical patent/JP2007271636A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide gas detecting technique capable of easily detecting the presence of a volatile organic compound of a low concentration of from several ppm to several ppb, at high sensitivity. <P>SOLUTION: A gas detecting device comprises a sensor element having a heater layer for heating a gas detecting layer, which is formed by making an SnO<SB>2</SB>film as the gas sensing layer, on the surface of the gas sensing layer on the support substrate of a diaphragm structure in which a thin film-like support film is supported by a supporting member, and then by making a selective combustion layer on the surface of the gas sensing layer; an energizing and driving means for energizing and driving the heater layer so that the temperature of the gas sensing layer changes from the low-temperature state to the high-temperature state; and a sensing section for detecting the presence of the volatile organic compound from the electric resistance value when the temperature of the gas sensing layer changes to the high-temperature state, in which, after starting energizing and driving, the volatile organic compound is detected by using the electric resistance value in the range of a predetermined elapsed time, in which the detection sensitivity of the gas sensing layer to the volatile organic compound is meaningfully obtained to air. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜状の支持膜の外周部又は両端部が支持部材により支持されたダイアフラム構造の支持基板上に、検出対象ガスの有無により電気抵抗値が変化する膜状酸化物、及び、前記膜状酸化物を加熱するための通電加熱体を形成したセンサ素子と、前記膜状酸化物の温度が低温状態から高温状態に変化するように、前記通電加熱体を通電駆動する通電駆動手段と、前記膜状酸化物の温度が高温状態に変化したときの前記膜状酸化物の電気抵抗値に基づいて、前記検出対象ガスの有無を検出する検出部とを備えたガス検出装置及びそのガス検出装置において実行されるガス検出方法に関し、特に、検出対象ガスとしてのホルムアルデヒドなどの揮発性有機化合物を検出するためのガス検出装置に関する。   The present invention provides a film-like oxide whose electrical resistance value varies depending on the presence or absence of a detection target gas on a support substrate having a diaphragm structure in which an outer peripheral portion or both end portions of a thin support film are supported by a support member, and A sensor element in which an energization heating body for heating the film-like oxide is formed; and an energization driving means for energizing and driving the energization heating body so that the temperature of the film-like oxide changes from a low temperature state to a high temperature state; A gas detection device including a detection unit that detects the presence or absence of the detection target gas based on an electric resistance value of the film oxide when the temperature of the film oxide is changed to a high temperature state, and the gas More particularly, the present invention relates to a gas detection device for detecting a volatile organic compound such as formaldehyde as a detection target gas.

上記のような揮発性有機化合物(VOC)とは、沸点範囲が0〜380℃の有機化合物であり、このような揮発性有機化合物として、エタノールやメタノールを含むアルコール類、ホルムアルデヒドやアセトアルデヒドを含むアルデヒド類、及び、アセトンを含むケトン類等があり、中でも、ホルムアルデヒド、トルエン、キシレン、クロロホルム、パラジクロロベンゼン等の揮発性有機化合物は、特に人間の嗅覚で感じないような数ppmから数ppbという濃度でも、長期に渡りそのような雰囲気中で暮らすことで、健康被害を引き起こすと指摘されている。
そして、近年の住宅の高気密化などに伴い、住居内において、空気中に低濃度のガス状揮発性有機化合物が長期に渡り存在することが問題となっている。
The volatile organic compound (VOC) as described above is an organic compound having a boiling range of 0 to 380 ° C. As such a volatile organic compound, alcohols including ethanol and methanol, aldehydes including formaldehyde and acetaldehyde are used. And ketones containing acetone. Among them, volatile organic compounds such as formaldehyde, toluene, xylene, chloroform, and paradichlorobenzene have a concentration of several ppm to several ppb which is not felt by human olfaction. It has been pointed out that living in such an atmosphere for a long time causes health damage.
And along with recent high airtightness of houses, there is a problem that a low concentration of gaseous volatile organic compound exists in the air for a long time in the house.

しかしながら、低濃度の揮発性有機化合物が空気中に存在することを高感度に検知することができる有効なガス検出装置が存在せず、このようなガス検出装置が望まれている。   However, there is no effective gas detection device that can detect with high sensitivity that a low-concentration volatile organic compound is present in the air, and such a gas detection device is desired.

従って、本発明は、上記の事情に鑑みて、数ppmから数ppbというような低濃度の揮発性有機化合物が空気中に存在することを高感度且つ簡単に検出することができるガス検出技術を提供することを目的とする。   Therefore, in view of the above circumstances, the present invention provides a gas detection technique that can easily and easily detect the presence of a low concentration volatile organic compound such as several ppm to several ppb in the air. The purpose is to provide.

〔構成1〕
上記の目的を達成するための本発明に係るガス検出装置は、特許請求の範囲の欄の請求項1に記載した如く、薄膜状の支持膜の外周部又は両端部が支持部材により支持されたダイアフラム構造の支持基板上に、ガス検知層としてのSnO2膜が形成されるとともに、選択燃焼層が前記ガス検知層の表面に形成されて成り、前記ガス検知層を加熱するヒータ層を備えたセンサ素子と、
前記ガス検知層の温度が低温状態から高温状態に変化するように、前記ヒータ層を通電駆動する通電駆動手段と、
前記ガス検知層の温度が高温状態に変化したときの前記ガス検知層の電気抵抗値に基づいて、検出対象ガスとしての揮発性有機化合物の有無を検出する検出部とを備え、
前記検出部が、前記通電駆動手段による前記ヒータ層への通電駆動の開始後、前記揮発性有機化合物に対する前記ガス検知層の検出感度が空気に対して有意に得られる所定の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行うことを特徴とする。
[Configuration 1]
In order to achieve the above object, the gas detection device according to the present invention is such that the outer peripheral portion or both ends of the thin film-like support film are supported by the support member as described in claim 1 of the claims. An SnO 2 film as a gas detection layer is formed on a support substrate having a diaphragm structure, and a selective combustion layer is formed on the surface of the gas detection layer, and a heater layer for heating the gas detection layer is provided. A sensor element;
Energization driving means for energizing and driving the heater layer so that the temperature of the gas detection layer changes from a low temperature state to a high temperature state;
Based on the electrical resistance value of the gas detection layer when the temperature of the gas detection layer is changed to a high temperature state, and a detection unit that detects the presence or absence of a volatile organic compound as a detection target gas,
After the start of energization driving to the heater layer by the energization driving means, the detection unit is within a predetermined elapsed time range in which the detection sensitivity of the gas detection layer with respect to the volatile organic compound is significantly obtained with respect to air. The volatile organic compound is detected using an electric resistance value of the gas detection layer.

また、上記の目的を達成するための本発明に係るガス検出方法は、上記構成1のガス検出装置により好適に実行されるものであり、特許請求の範囲の欄の請求項7に記載した如く、薄膜状の支持膜の外周部又は両端部が支持部材により支持されたダイアフラム構造の支持基板上に、ガス検知層としてのSnO2膜が形成されるとともに、選択燃焼層が前記ガス検知層の表面に形成されて成り、前記ガス検知層を加熱するヒータ層を備えたセンサ素子を用いて、
前記ヒータ層を通電駆動する通電駆動手段により前記ガス検知層の温度を低温状態から高温状態に変化させ、
前記ガス検知層の温度が高温状態に変化したときのガス検知層の電気抵抗値であって、前記ヒータ層への通電駆動の開始後、検出対象ガスとしての揮発性有機化合物に対する前記ガス検知層の検出感度が空気に対して有意に得られる所定の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行うことを特徴とする。
In addition, the gas detection method according to the present invention for achieving the above object is suitably executed by the gas detection device having the above-described configuration 1, and as described in claim 7 in the column of claims. An SnO 2 film as a gas detection layer is formed on a support substrate having a diaphragm structure in which the outer periphery or both ends of the thin support film are supported by a support member, and the selective combustion layer is formed of the gas detection layer. Using a sensor element comprising a heater layer formed on the surface and heating the gas detection layer,
The temperature of the gas detection layer is changed from a low temperature state to a high temperature state by energization driving means for energizing and driving the heater layer,
The electric resistance value of the gas detection layer when the temperature of the gas detection layer is changed to a high temperature state, and the gas detection layer with respect to the volatile organic compound as the detection target gas after the start of energization driving to the heater layer The volatile organic compound is detected by using the electric resistance value of the gas detection layer within a predetermined elapsed time range in which the detection sensitivity of the gas is significantly obtained with respect to air.

〔作用効果〕
本願発明者らは、極めて低熱容量のセンサ素子において、検出対象ガスとしての揮発性有機化合物の有無により電気抵抗値が変化する膜状酸化物としてのSnO2膜であるガス検知層を設け、ガス検知層が低温である上記低温状態からガス検知層が高温である高温状態とするべく、通電加熱体としてのヒータ層への通電駆動を開始した直後において、ガス検知層の電気抵抗値が揮発性有機化合物が多く存在する場合には著しく低下するということを発見し、その発見により、ヒータ層への通電駆動の開始後、所定の経過時間範囲内において、揮発性有機化合物の検出におけるガス検知層の検出感度が、空気に対して有意に得られるという新知見を得、本発明を完成するに至った。
[Function and effect]
The inventors of the present application provide a gas detection layer which is a SnO 2 film as a film-like oxide whose electric resistance value changes depending on the presence or absence of a volatile organic compound as a detection target gas in a sensor element with an extremely low heat capacity, The electric resistance value of the gas detection layer is volatile immediately after the start of energization driving to the heater layer as the energization heating body so that the gas detection layer is changed from the low temperature state where the detection layer is low temperature to the high temperature state where the gas detection layer is high temperature. It was discovered that when a large amount of organic compound is present, it is significantly reduced, and as a result, after the start of energization driving to the heater layer, the gas detection layer in the detection of volatile organic compounds within a predetermined elapsed time range. As a result, the present inventors have completed the present invention.

即ち、上記構成1のガス検出装置及びガス検出方法によれば、検出部において、通電駆動手段によりヒータ層への通電駆動の開始後の上記所定の経過時間範囲内のガス検知層の電気抵抗値を用いて揮発性有機化合物の検出をすることができる。
ここで、上記センサ素子においては、SnO2膜であるガス検知層の表面に選択燃焼層が形成される。当該選択燃焼層により、特定のガスが選択的に燃焼され、ガス検知層に到達するガス種が制限される。
従って、低濃度の揮発性有機化合物が空気中に存在する場合において、その揮発性有機化合物を、通電駆動開始後の上記所定の経過時間範囲内におけるガス検知層の電気抵抗値の低下により高感度に検出することができる。
That is, according to the gas detection device and the gas detection method of Configuration 1, in the detection unit, the electric resistance value of the gas detection layer within the predetermined elapsed time range after the start of energization drive to the heater layer by the energization drive means. Can be used to detect volatile organic compounds.
Here, in the sensor element, a selective combustion layer is formed on the surface of the gas detection layer which is a SnO 2 film. By the selective combustion layer, a specific gas is selectively burned, and the gas species reaching the gas detection layer is limited.
Therefore, when a low concentration volatile organic compound is present in the air, the volatile organic compound is highly sensitive due to a decrease in the electric resistance value of the gas detection layer within the predetermined elapsed time range after the start of energization driving. Can be detected.

〔構成2〕
本発明に係るガス検出装置は、特許請求の範囲の欄の請求項2に記載した如く、上記構成1のガス検出装置の構成に加えて、前記センサ素子が、前記通電駆動手段による前記ヒータ層への通電駆動の開始から前記ガス検知層の温度が前記高温状態となるまでの応答時間が50ミリ秒以下となるように構成され、
前記検出部が、前記通電駆動手段による前記ヒータ層への通電駆動の開始後、20ミリ秒以上200ミリ秒以下の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行なうように構成されていることを特徴とする。
[Configuration 2]
The gas detection device according to the present invention is, in addition to the configuration of the gas detection device of the above configuration 1, in addition to the configuration of the gas detection device of the above-described configuration 1, the sensor element includes the heater layer by the energization driving unit. The response time from the start of energization driving to the temperature of the gas detection layer becomes the high temperature state is configured to be 50 milliseconds or less,
After the start of energization driving to the heater layer by the energization driving means, the detection unit uses the electric resistance value of the gas detection layer within an elapsed time range of 20 milliseconds or more and 200 milliseconds or less, and the volatile organic It is configured to detect a compound.

また、本発明に係るガス検出方法は、上記構成2のガス検出装置により好適に実行されるものであり、特許請求の範囲の欄の請求項8に記載した如く、上記構成1のガス検出方法の構成に加えて、前記センサ素子が、前記ヒータ層への通電駆動の開始から前記ガス検知層の温度が前記高温状態となるまでの応答時間が50ミリ秒以下となるように構成され、
前記ヒータ層への通電駆動の開始後、20ミリ秒以上200ミリ秒以下の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行なうことを特徴とする。
Further, the gas detection method according to the present invention is suitably executed by the gas detection device having the above-described configuration 2, and as described in claim 8 in the column of the claims, the gas detection method having the above-described configuration 1 In addition to the configuration, the sensor element is configured such that the response time from the start of energization driving to the heater layer to the temperature of the gas detection layer being in the high temperature state is 50 milliseconds or less,
The volatile organic compound is detected using the electric resistance value of the gas detection layer within an elapsed time range of 20 milliseconds or more and 200 milliseconds or less after the start of energization driving to the heater layer. .

〔作用効果〕
前述のように、ヒータ層への通電駆動の開始後から所定の経過時間範囲内において、ガス検知層の検出感度が揮発性有機化合物に対して有意に得られる理由は、低温状態においてセンサ素子に吸着していた揮発性有機化合物が、ヒータ層への通電駆動を開始して高温状態に移行することで、センサ素子から脱離し、さらに、上記所定の経過時間範囲内においてその脱離した揮発性有機化合物がガス検知層近傍に滞留するため、ガス検知層近傍の揮発性有機化合物の濃度が一時的に高くなるからであると考えられる。
[Function and effect]
As described above, the reason why the detection sensitivity of the gas detection layer is significantly obtained for the volatile organic compound within the predetermined elapsed time range from the start of the energization drive to the heater layer is that the sensor element is in a low temperature state. The adsorbed volatile organic compound is desorbed from the sensor element by starting energization driving to the heater layer and shifting to a high temperature state, and further, the desorbed volatile organic compound within the predetermined elapsed time range. This is presumably because the concentration of the volatile organic compound near the gas detection layer temporarily increases because the organic compound stays in the vicinity of the gas detection layer.

よって、センサ素子の熱容量が大きかったり、ヒータ層の加熱量が小さかったりして、通電駆動手段によるヒータ層への通電駆動の開始からガス検知層の温度が前記高温状態となるまでの応答時間が比較的長い場合には、センサ素子から揮発性有機化合物が少しずつ脱離して、上記ガス検知層近傍において、揮発性有機化合物の一時的な濃度上昇が極めて小さくなり、揮発性有機化合物を高感度に検出することができなくなる。   Accordingly, the response time from the start of energization driving to the heater layer by the energization driving means until the temperature of the gas detection layer reaches the high temperature state due to the large heat capacity of the sensor element or the heating amount of the heater layer is small. If it is relatively long, the volatile organic compound is gradually desorbed from the sensor element, and the temporary increase in concentration of the volatile organic compound is extremely small in the vicinity of the gas detection layer. Can no longer be detected.

そこで、上記構成2のガス検出装置及びガス検出方法によれば、通電駆動手段によるヒータ層への通電駆動の開始からガス検知層の温度が高温状態となるまでの応答時間が50ミリ秒以下となるように、センサ素子を構成することで、ヒータ層への通電駆動の開始後20ミリ秒経過時から通電駆動開始後200ミリ秒経過時までの経過時間範囲内において、センサ素子から揮発性有機化合物が瞬時に脱離することで、ガス検知層近傍において一時的な揮発性有機化合物の大幅な濃度上昇を発生させることができ、その大幅な濃度上昇はガス検知層の電気抵抗の低下として良好に検出することができるので、低濃度の揮発性有機化合物でも高感度で検出することができる。   Therefore, according to the gas detection device and the gas detection method of configuration 2 above, the response time from the start of energization driving to the heater layer by the energization driving means until the temperature of the gas detection layer reaches a high temperature state is 50 milliseconds or less. Thus, by configuring the sensor element, the volatile organic substance is removed from the sensor element within an elapsed time range from the time 20 milliseconds after the start of energization driving to the heater layer to the time 200 milliseconds after the start of energization driving. The instantaneous desorption of the compound can cause a significant increase in the concentration of volatile organic compounds in the vicinity of the gas detection layer, which is good as a decrease in the electrical resistance of the gas detection layer. Therefore, even a low concentration volatile organic compound can be detected with high sensitivity.

さらに、上記のようにヒータ層への通電駆動を開始して瞬時に高温状態に移行することで、ガス検知層近傍にセンサ素子から瞬時に脱離した揮発性有機化合物により大幅な濃度上昇を発生させて、揮発性有機化合物を検出する場合には、高温状態に移行する前の低温状態において、センサ素子に充分な揮発性有機化合物が吸着されている方が好ましい。そこで、前記通電駆動手段を、前記ガス検知層の温度を例えば5秒間以上低温状態とした後に、前記ヒータ層への通電駆動を開始して、前記ガス検知層の温度を高温状態とするように構成することが好ましい。   Furthermore, by starting the energization drive to the heater layer as described above and instantaneously shifting to a high temperature state, a significant increase in concentration occurs due to the volatile organic compound instantaneously desorbed from the sensor element in the vicinity of the gas detection layer. Thus, when detecting a volatile organic compound, it is preferable that a sufficient volatile organic compound is adsorbed on the sensor element in a low temperature state before shifting to a high temperature state. Therefore, the energization driving means starts the energization drive to the heater layer after setting the temperature of the gas detection layer to a low temperature state for, for example, 5 seconds or more, and sets the temperature of the gas detection layer to a high temperature state. It is preferable to configure.

〔構成3〕
本発明に係るガス検出装置においては、特許請求の範囲の欄の請求項3に記載した如く、上記構成2のガス検出装置の構成に加えて、前記通電駆動手段が、前記ヒータ層への通電駆動を停止して前記ガス検知層の温度を前記低温状態とした後、前記ヒータ層への通電駆動を開始して前記ガス検知層の温度を前記高温状態として、再度の前記揮発性有機化合物の検出を行うことが好ましい。
また、本発明に係るガス検出方法は、上記構成3のガス検出装置により好適に実行されるものであり、特許請求の範囲の欄の請求項9に記載した如く、上記構成2のガス検出方法の構成に加えて、前記通電駆動手段を用いて、前記ヒータ層への通電駆動を停止して前記ガス検知層の温度を前記低温状態とした後、前記ヒータ層への通電駆動を開始して前記ガス検知層の温度を前記高温状態として、再度の前記揮発性有機化合物の検出を行うことが好ましい。
上記のようにヒータ層への通電駆動を開始して瞬時に高温状態に移行することで、ガス検知層近傍にセンサ素子から瞬時に脱離した揮発性有機化合物により大幅な濃度上昇を発生させて、揮発性有機化合物を検出する場合には、高温状態に移行する前の低温状態において、センサ素子に充分な揮発性有機化合物が吸着されている方が好ましい。すなわち、高温状態に移行する前の低温状態において、センサ素子(ガス検知層)に充分な揮発性有機化合物が吸着されていることが望まれる。そこで、前記通電駆動手段を、前記ガス検知層の温度を例えば5秒間以上低温状態とした後に、前記ヒータ層への通電駆動を開始して、前記ガス検知層の温度を高温状態とするように構成することが好ましい。
[Configuration 3]
In the gas detection device according to the present invention, as described in claim 3 in the column of the claims, in addition to the configuration of the gas detection device of the above configuration 2, the energization driving means supplies the energization to the heater layer. After the drive is stopped and the temperature of the gas detection layer is set to the low temperature state, the energization drive to the heater layer is started to set the temperature of the gas detection layer to the high temperature state, and the volatile organic compound is reused. It is preferable to perform detection.
Further, the gas detection method according to the present invention is suitably executed by the gas detection device having the above-described configuration 3, and as described in claim 9 in the column of the claims, the gas detection method having the above-described configuration 2 In addition to the configuration, the energization driving means is used to stop the energization drive to the heater layer and set the temperature of the gas detection layer to the low temperature state, and then start energization drive to the heater layer. It is preferable to detect the volatile organic compound again with the temperature of the gas detection layer set to the high temperature state.
By starting energization driving to the heater layer as described above and instantaneously shifting to a high temperature state, a significant increase in concentration is caused by the volatile organic compound instantaneously desorbed from the sensor element in the vicinity of the gas detection layer. When detecting a volatile organic compound, it is preferable that a sufficient volatile organic compound is adsorbed on the sensor element in a low temperature state before shifting to a high temperature state. That is, it is desired that a sufficient volatile organic compound is adsorbed on the sensor element (gas detection layer) in the low temperature state before the transition to the high temperature state. Therefore, the energization driving means starts the energization drive to the heater layer after setting the temperature of the gas detection layer to a low temperature state for, for example, 5 seconds or more, and sets the temperature of the gas detection layer to a high temperature state. It is preferable to configure.

〔構成4〕
本発明に係るガス検出装置においては、特許請求の範囲の欄の請求項4に記載した如く、上記構成1から3の何れかのガス検出装置の構成に加えて、前記選択燃焼層が、Pt及びPd触媒を担持してなることが好ましい。
また、本発明に係るガス検出方法は、上記構成4のガス検出装置により好適に実行されるものであり、特許請求の範囲の欄の請求項10に記載した如く、上記構成1から3の何れかのガス検出方法の構成に加えて、前記選択燃焼層が、Pt及びPd触媒を担持してなることが好ましい。
上記センサ素子においては、SnO2膜であるガス検知層の表面に、Pt及びPd触媒を担持した選択燃焼層が形成される。当該選択燃焼層により、Pt及びPd触媒によって燃焼されるガスが燃焼され、ガス検知層に到達するガス種が制限される。
[Configuration 4]
In the gas detection device according to the present invention, as described in claim 4 of the column of claims, in addition to the configuration of any of the gas detection devices of the above configurations 1 to 3, the selective combustion layer is made of Pt. And a Pd catalyst are preferably supported.
In addition, the gas detection method according to the present invention is suitably executed by the gas detection device having the above-described configuration 4, and as described in claim 10 in the claims section, any one of the above-described configurations 1 to 3 can be used. In addition to the configuration of the gas detection method, the selective combustion layer preferably carries Pt and Pd catalysts.
In the sensor element, a selective combustion layer carrying Pt and Pd catalysts is formed on the surface of the gas detection layer which is a SnO 2 film. The selective combustion layer burns the gas burned by the Pt and Pd catalysts, and limits the gas species that reach the gas detection layer.

〔構成5〕
本発明に係るガス検出装置においては、特許請求の範囲の欄の請求項5に記載した如く、上記構成1から4の何れかのガス検出装置の構成に加えて、前記ヒータ層が、前記ダイアフラム構造の支持基板上の全面に形成されていることが好ましい。
[Configuration 5]
In the gas detection device according to the present invention, as described in claim 5 in the column of claims, in addition to the configuration of any of the gas detection devices according to the first to fourth configurations, the heater layer includes the diaphragm. It is preferably formed on the entire surface of the support substrate having the structure.

〔構成6〕
本発明に係るガス検出装置においては、特許請求の範囲の欄の請求項6に記載した如く、上記構成1から5の何れかのガス検出装置の構成に加えて、前記揮発性有機化合物が、エタノール、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン、キシレン、クロロホルム及びパラジクロロベンゼンからなる群から選択される何れか一種であることが好ましい。
また、本発明に係るガス検出方法は、上記構成6のガス検出装置により好適に実行されるものであり、特許請求の範囲の欄の請求項11に記載した如く、上記構成1から4の何れかのガス検出方法の構成に加えて、前記揮発性有機化合物として、エタノール、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン、キシレン、クロロホルム及びパラジクロロベンゼンからなる群から選択される何れか一種の検出を行うことが好ましい。
[Configuration 6]
In the gas detection device according to the present invention, as described in claim 6 of the column of the claims, in addition to the configuration of the gas detection device of any one of the above configurations 1 to 5, the volatile organic compound is It is preferably any one selected from the group consisting of ethanol, formaldehyde, acetaldehyde, acetone, toluene, xylene, chloroform and paradichlorobenzene.
Further, the gas detection method according to the present invention is suitably executed by the gas detection device having the above-described configuration 6, and as described in claim 11 in the column of claims, any one of the above-described configurations 1 to 4 can be used. In addition to the configuration of the gas detection method, the volatile organic compound may be any one selected from the group consisting of ethanol, formaldehyde, acetaldehyde, acetone, toluene, xylene, chloroform and paradichlorobenzene. preferable.

以下、本発明に係るガス検出装置の実施形態について詳細を説明する。   Hereinafter, embodiments of the gas detection device according to the present invention will be described in detail.

〔センサ素子〕
図1に本発明の実施形態に用いた薄膜状のセンサ素子20の構造を示す。
センサ素子20は、薄膜状の支持層5(支持膜の一例)の外周部又は両端部がSi基板1(支持部材)により支持されたダイアフラム構造の支持基板上に、検出対象ガスの有無により電気抵抗値が変化する膜状酸化物のガス検知層10、及び、ガス検知層10を加熱するためのヒータ層7(通電加熱体)を形成して構成されている。
[Sensor element]
FIG. 1 shows a structure of a thin film sensor element 20 used in the embodiment of the present invention.
The sensor element 20 is electrically connected with the presence or absence of a detection target gas on a support substrate having a diaphragm structure in which an outer peripheral part or both ends of a thin film-like support layer 5 (an example of a support film) are supported by a Si substrate 1 (support member). A film-like oxide gas detection layer 10 having a variable resistance value and a heater layer 7 (electric heating element) for heating the gas detection layer 10 are formed.

次に、センサ素子20の製造方法を説明する。
両面に熱酸化膜2が300nm形成されたSi基板1の表面に、ダイアフラム構造の支持層5となるSiN膜3及びSiO2膜4を、順次プラズマCVD法にて、夫々150nm及び1μm形成する。
Next, a method for manufacturing the sensor element 20 will be described.
On the surface of the Si substrate 1 having the thermal oxide film 2 formed at 300 nm on both sides, the SiN film 3 and the SiO 2 film 4 that will become the support layer 5 of the diaphragm structure are sequentially formed by plasma CVD to 150 nm and 1 μm, respectively.

次に、この支持層5の上に、PtW膜からなるヒータ層7を0.5μm形成し、ウエットエッチングによりヒータパターンを形成する。
そして、ヒータ層7の上に、SiO2絶縁膜からなる絶縁層8を、スパッタ法により2.0μm形成し、さらに、ヒータ層7と後述の電極9の接合個所をHFにてエッチングして窓明けを行なう。
Next, a heater layer 7 made of a PtW film is formed on the support layer 5 by 0.5 μm, and a heater pattern is formed by wet etching.
Then, an insulating layer 8 made of a SiO 2 insulating film is formed on the heater layer 7 by a sputtering method with a thickness of 2.0 μm. Further, a junction between the heater layer 7 and an electrode 9 described later is etched with HF to open a window. Dawn.

次に、Pt/Ta(200nm/50nm)膜をガス検知層10の電極11として成膜し、それをウエットエッチングによりパターニングする。ここでTaはSiO2とPt膜間の接合層としての役割をもつ。 Next, a Pt / Ta (200 nm / 50 nm) film is formed as the electrode 11 of the gas detection layer 10, and is patterned by wet etching. Here, Ta serves as a bonding layer between the SiO 2 and Pt films.

さらに、絶縁層8及び電極11の上に、ガス検知層10としてスパッタ法によりガス検知層10としてのSnO2膜をリフトオフ法により0.1〜10μmの厚さにて形成する。
次に、アルミナ粒子にPt及びPd触媒を7.5wt%担持させた粉末を、バインダとともにペーストとし、それをスクリーン印刷によりガス検知層10としてのSnO2膜の表面に塗布した後に焼成して、約30μm厚の選択燃焼層12を形成する。最後に基板の裏面からドライエッチングによりSiを400μm径(ダイアフラム直径)の大きさにて完全に除去しダイアフラム構造とする。
Further, an SnO 2 film as a gas detection layer 10 is formed as a gas detection layer 10 on the insulating layer 8 and the electrode 11 by a sputtering method to a thickness of 0.1 to 10 μm by a lift-off method.
Next, a powder having 7.5% by weight of Pt and Pd catalyst supported on alumina particles is used as a paste together with a binder, and is applied to the surface of the SnO 2 film as the gas detection layer 10 by screen printing, and then fired. The selective combustion layer 12 having a thickness of about 30 μm is formed. Finally, Si is completely removed from the back surface of the substrate by dry etching to a diameter of 400 μm (diaphragm diameter) to obtain a diaphragm structure.

〔ガス検出方法〕
次に、本発明のガス検出装置におけるガス検出方法について図面に基づいて説明する。
ガス検出装置には、図1に示すように、ガス検知層10の温度が低温状態から高温状態に変化するように、ヒータ層7を電極9を介して通電駆動する通電駆動手段30と、ガス検知層10の温度が高温状態に変化したときのガス検知層10の電気抵抗値を電極11を介して検知して、検知した電気抵抗値に基づいて、検出対象ガスとしての有無を検出する検出部32とが設けられている。
[Gas detection method]
Next, the gas detection method in the gas detection apparatus of this invention is demonstrated based on drawing.
As shown in FIG. 1, the gas detection device includes an energization driving means 30 for energizing and driving the heater layer 7 via the electrode 9 so that the temperature of the gas detection layer 10 changes from a low temperature state to a high temperature state, and a gas Detection that detects the electric resistance value of the gas detection layer 10 when the temperature of the detection layer 10 is changed to a high temperature state via the electrode 11 and detects the presence or absence as a detection target gas based on the detected electric resistance value. A portion 32 is provided.

さらに、検出対象ガスが揮発性有機化合物としての例えばエタノールとされ、検出部32が、通電駆動手段30によるヒータ層7への通電駆動の開始後、揮発性有機化合物に対するガス検知層10の検出感度が有意に得られる所定の経過時間範囲内の膜状酸化物の電気抵抗値を用いて、揮発性有機化合物の検出を行うように構成されている。   Further, the detection target gas is, for example, ethanol as the volatile organic compound, and the detection unit 32 starts the energization driving to the heater layer 7 by the energization driving means 30, and then the detection sensitivity of the gas detection layer 10 with respect to the volatile organic compound. The volatile organic compound is detected using the electrical resistance value of the film-like oxide within a predetermined elapsed time range in which is significantly obtained.

詳しくは、上記通電駆動手段30は、ヒータ層7の通電駆動を停止してガス検知層10を室温(低温)とする低温状態と、ヒータ層7の通電駆動を実施してガス検知層10を所定の温度に加熱する高温状態とを繰り返し行なうように構成されている。
さらに、上記ヒータ層7の通電駆動を停止する時間(以下、ヒータOFF時間と呼ぶ。)と、上記ヒータ層7の通電駆動を実施する時間(以下、ヒータON時間と呼ぶ。)とは、任意の時間に設定することができる。
Specifically, the energization driving means 30 stops the energization driving of the heater layer 7 to bring the gas detection layer 10 to room temperature (low temperature), and the energization driving of the heater layer 7 to perform the gas detection layer 10. It is configured to repeatedly perform a high temperature state of heating to a predetermined temperature.
Furthermore, the time for stopping energization driving of the heater layer 7 (hereinafter referred to as heater OFF time) and the time for performing energization driving of the heater layer 7 (hereinafter referred to as heater ON time) are arbitrary. Can be set to a time.

また、図2に示すように、上記低温状態から上記高温状態に移行するべく、ヒータ層7への通電駆動を開始した直後において、ガス検知層10の電気抵抗値が揮発性有機化合物としてのエタノールが存在する場合に著しく低下し、さらに、ヒータ層7への通電駆動の開始後の所定の経過時間範囲内において、ガス検知層10の検出感度が揮発性有機化合物に対して有意に得られる。   Further, as shown in FIG. 2, immediately after the energization driving to the heater layer 7 is started to shift from the low temperature state to the high temperature state, the electric resistance value of the gas detection layer 10 is ethanol as a volatile organic compound. Is significantly reduced, and the detection sensitivity of the gas detection layer 10 is significantly obtained with respect to the volatile organic compound within a predetermined elapsed time range after the start of energization driving to the heater layer 7.

そこで、検出部32は、上記揮発性有機化合物の検出を行なうべく、上記通電駆動手段30によりヒータ層7の通電駆動を開始後の所定の経過時間範囲内におけるガス検知層10の電気抵抗値を検出し、揮発性有機化合物の存在をその電気抵抗値の低下として検出するのである。
尚、図2のグラフ図は、ヒータON時間とヒータOFF時間との和を30secとしてON時間を変化させ、ON時間の最後に計測したガス検知層10の電気抵抗値と、ON時間である経過時間との関係を示すものである。
Therefore, the detection unit 32 detects the electric resistance value of the gas detection layer 10 within a predetermined elapsed time range after the energization driving unit 30 starts energization driving of the heater layer 7 in order to detect the volatile organic compound. It detects and the presence of a volatile organic compound is detected as a decrease in its electrical resistance value.
In the graph of FIG. 2, the ON time is changed by setting the sum of the heater ON time and the heater OFF time to 30 seconds, and the electrical resistance value of the gas detection layer 10 measured at the end of the ON time and the elapsed time are the ON time. It shows the relationship with time.

また、このようにヒータ層7への通電駆動の開始後から所定の経過時間範囲内において、ガス検知層10の検出感度が揮発性有機化合物に対して有意に得られる理由は、低温状態においてセンサ素子20に吸着していた揮発性有機化合物が、ヒータ層7への通電駆動を開始して高温状態に移行することで、センサ素子20から脱離し、さらに、所定の経過時間範囲内においてその脱離した揮発性有機化合物がガス検知層10近傍に滞留するため、ガス検知層10近傍の揮発性有機化合物の濃度が一時的に高くなるからであると考えられる。   The reason why the detection sensitivity of the gas detection layer 10 is significantly obtained with respect to the volatile organic compound within a predetermined elapsed time range from the start of the energization driving to the heater layer 7 is that the sensor is in a low temperature state. The volatile organic compound adsorbed on the element 20 starts to be energized to the heater layer 7 and shifts to a high temperature state, so that it is desorbed from the sensor element 20 and further desorbed within a predetermined elapsed time range. This is probably because the separated volatile organic compound stays in the vicinity of the gas detection layer 10, so that the concentration of the volatile organic compound in the vicinity of the gas detection layer 10 temporarily increases.

そこで、本ガス検出装置は、上記のようなセンサ素子10からの揮発性有機化合物の脱離をできるだけ瞬時に行ない、揮発性有機化合物の一時的な濃度上昇を有効に発生させるべく、センサ素子20の熱容量が小さなものとして、通電駆動手段30によるヒータ層7への通電駆動の開始からガス検知層10の温度が高温状態となるまでの応答時間が50ミリ秒以下となるように構成されている。   In view of this, the present gas detection device performs desorption of the volatile organic compound from the sensor element 10 as described above as quickly as possible, and effectively generates a temporary increase in the concentration of the volatile organic compound. The response time from the start of energization driving to the heater layer 7 by the energization driving means 30 until the temperature of the gas detection layer 10 reaches a high temperature state is 50 milliseconds or less. .

具体的には、図3に示すように、高温状態におけるガス検知層10の設定温度を450℃とし、通電駆動開始からの経過時間が約30msecとなったときにガス検知層10の温度が設定温度の90%程度となり、経過時間が約50msecとなったときにガス検知層10の温度が設定温度となるように、センサ素子部20が構成されている。また、このセンサ素子20の上記応答時間は、通電駆動開始してから上記ガス検知層10の温度が設定温度となるまでの50msecとなる。
尚、このときのセンサ素子20の熱容量は、2.3ピコJ/K程度であった。
Specifically, as shown in FIG. 3, the temperature of the gas detection layer 10 is set when the set temperature of the gas detection layer 10 in a high temperature state is 450 ° C. and the elapsed time from the start of energization driving is about 30 msec. The sensor element unit 20 is configured so that the temperature of the gas detection layer 10 becomes the set temperature when the temperature is about 90% and the elapsed time is about 50 msec. The response time of the sensor element 20 is 50 msec from the start of energization driving until the temperature of the gas detection layer 10 reaches the set temperature.
At this time, the heat capacity of the sensor element 20 was about 2.3 pico J / K.

さらに、上記応答時間が前述のように50msec以下となるようにセンサ素子20を構成した場合に、図2に示すように、通電駆動手段30によるヒータ層7への通電駆動の開始後、20ミリ秒以上200ミリ秒以下の経過時間範囲内のガス検知層10の電気抵抗値が、揮発性有機化合物が存在した場合に大きく低下することが判る。よって、検出部32は、この経過時間範囲内のガス検知層10の電気抵抗値を用いて、揮発性有機化合物の検出を高感度で行なうことができる。   Furthermore, when the sensor element 20 is configured so that the response time is 50 msec or less as described above, as shown in FIG. 2, 20 mm after the start of energization driving to the heater layer 7 by the energization driving means 30. It can be seen that the electric resistance value of the gas detection layer 10 within the elapsed time range of not less than 2 seconds and not more than 200 milliseconds greatly decreases when a volatile organic compound is present. Therefore, the detection part 32 can detect a volatile organic compound with high sensitivity using the electrical resistance value of the gas detection layer 10 within this elapsed time range.

さらに、高温状態に移行する前の低温状態において、センサ素子20に充分な揮発性有機化合物が吸着されていることが望まれる。そこで、本ガス検出装置の通電駆動手段30は、ガス検知層10の温度を例えば5秒間以上低温状態とした後に、ヒータ層7への通電駆動を開始して、ガス検知層10の温度を高温状態とするように構成されている。即ち、通電駆動手段30は、ヒータOFF時間を5秒以上に設定する。   Furthermore, it is desired that a sufficient volatile organic compound is adsorbed on the sensor element 20 in a low temperature state before shifting to a high temperature state. Therefore, the energization drive means 30 of the present gas detection apparatus starts the energization drive to the heater layer 7 after setting the temperature of the gas detection layer 10 to a low temperature state for, for example, 5 seconds or more, and increases the temperature of the gas detection layer 10 to a high temperature. It is configured to be in a state. That is, the energization driving unit 30 sets the heater OFF time to 5 seconds or more.

即ち、図4に示すように、ヒータOFF時間が5sec以上であれば、ヒータ層7への通電駆動を開始した直後におけるガス検知層10の電気抵抗値の低下を得ることができるが、ヒータOFF時間が5sec未満であれば、その電気抵抗値の低下が小さいため検出が困難となり、特に、微小の揮発性有機化合物であるエタノールを検出する場合には、このOFF時間をできるだけ長くとることが好ましい。
尚、図4のグラフ図は、50msecのON時間の最後に計測したガス検知層10の電気抵抗値と、OFF時間との関係を示すものである。
That is, as shown in FIG. 4, if the heater OFF time is 5 seconds or more, a decrease in the electric resistance value of the gas detection layer 10 immediately after starting the energization drive to the heater layer 7 can be obtained, but the heater OFF If the time is less than 5 seconds, it is difficult to detect because the decrease in the electric resistance value is small. In particular, when detecting ethanol as a minute volatile organic compound, it is preferable to take this OFF time as long as possible. .
The graph of FIG. 4 shows the relationship between the electrical resistance value of the gas detection layer 10 measured at the end of the 50 msec ON time and the OFF time.

〔実施例と比較例との対比〕
次に、本発明に係るガス検出装置により揮発性有機化合物であるエタノールを検出した場合の実施例と、従来のガス検出装置により揮発性有機化合物であるエタノールを検出した場合の比較例との対比結果について説明する。
[Contrast between Example and Comparative Example]
Next, a comparison between an example in which ethanol as a volatile organic compound was detected by the gas detection device according to the present invention and a comparative example in which ethanol as a volatile organic compound was detected by a conventional gas detection device. The results will be described.

先ず、実施例におけるガス検出装置は、これまで説明してきたガス検出装置の実施形態と同様のセンサ素子20を備え、さらに、通電駆動手段30を、ガス検出層10を低温状態とするためのヒータOFF時間を29.95sec、ガス検出層10を高温状態とするヒータON時間を50msecとして、ヒータ層17を通電状態と否通電状態とを繰り返すように構成し、検出部32を、ヒータON時間の最後(即ち、ヒータ層7への通電駆動を開始後50msec経過時)のガス検知層10の電気抵抗値を検出するように構成した。
一方、比較例におけるガス検出装置は、実施例と同様のセンサ素子20を備え、さらに、ガス検出層10を常時高温状態とするべく、ヒータ層7へ常時通電してガス検知層10の電気抵抗値を検出するように構成した。
First, the gas detection device in the example includes the sensor element 20 similar to that of the embodiment of the gas detection device described so far, and further, the energization driving means 30 is a heater for bringing the gas detection layer 10 into a low temperature state. The heater ON time during which the OFF time is 29.95 sec and the gas detection layer 10 is in a high temperature state is 50 msec, and the heater layer 17 is repeatedly energized and not energized. The electrical resistance value of the gas detection layer 10 at the end (that is, when 50 msec has elapsed after starting the energization driving of the heater layer 7) is detected.
On the other hand, the gas detection device in the comparative example includes the sensor element 20 similar to that in the embodiment, and further, the heater layer 7 is always energized to keep the gas detection layer 10 in a constantly high temperature state. Configured to detect values.

実施例及び比較例において、センサ素子20に、空気のみを供給したときのガス検知層10の夫々の電気抵抗値、及び、0.1〜100ppmの濃度のエタノール(揮発性有機化合物)を供給したときのガス検知層10の夫々の電気抵抗値を、夫々図5及び図6に示す。
尚、図5及び図6において、空気のみを供給したときのガス検知層10の電気抵抗値を、エタノールの濃度が0.02ppmのポイントに記述しているが、実際には、空気中にエタノールは含まれていない。
In Examples and Comparative Examples, the electrical resistance value of the gas detection layer 10 when only air was supplied and ethanol (volatile organic compound) having a concentration of 0.1 to 100 ppm were supplied to the sensor element 20. The respective electric resistance values of the gas detection layer 10 are shown in FIGS. 5 and 6, respectively.
5 and 6, the electric resistance value of the gas detection layer 10 when only air is supplied is described at the point where the ethanol concentration is 0.02 ppm. Is not included.

結果、実施例のガス検出装置においては、図5に示すように、0.1ppmという超低濃度のエタノールを供給した場合でも、ガス検知層10の電気抵抗値が大幅に低下し、その低下によりエタノールの存在を高精度に検出することができることが確認できた。
一方、比較例のガス検出装置においては、図6に示すように、実施例とは異なり、エタノールが供給されても、ガス検知層10の電気抵抗値が殆ど低下しないので、エタノールを検出することが困難であることが確認できた。
従って、本発明に係るガス検出装置は、低濃度の揮発性有機化合物の代表であるエタノールが空気中に存在する場合において、そのエタノールを、通電駆動開始後の所定の経過時間範囲内におけるガス検知層10の電気抵抗値の低下により高感度に検出することができるといえる。
As a result, in the gas detection device of the example, as shown in FIG. 5, even when ethanol with an ultra-low concentration of 0.1 ppm was supplied, the electric resistance value of the gas detection layer 10 was greatly reduced, It was confirmed that the presence of ethanol can be detected with high accuracy.
On the other hand, in the gas detection device of the comparative example, as shown in FIG. 6, unlike the example, even if ethanol is supplied, the electric resistance value of the gas detection layer 10 hardly decreases, so that ethanol is detected. It was confirmed that this was difficult.
Therefore, the gas detection device according to the present invention detects gas in a predetermined elapsed time range after the start of energization driving when ethanol, which is representative of a low concentration volatile organic compound, is present in the air. It can be said that it can be detected with high sensitivity due to a decrease in the electric resistance value of the layer 10.

ガス検出装置の構造を示す概略図Schematic showing the structure of the gas detector ガス検知層の電気抵抗値と経過時間との関係を示すグラフ図A graph showing the relationship between the electrical resistance value of the gas detection layer and the elapsed time ガス検知層の昇温状態を示すグラフ図Graph showing the temperature rise state of the gas detection layer ガス検知層の電気抵抗値とヒータOFF時間との関係を示すグラフ図The graph which shows the relationship between the electrical resistance value of a gas detection layer, and heater OFF time 実施例のガス検出装置によるエタノール検出結果を示すグラフ図The graph which shows the ethanol detection result by the gas detection apparatus of an Example 比較例のガス検出装置によるエタノール検出結果を示すグラフ図The graph which shows the ethanol detection result by the gas detection apparatus of a comparative example

符号の説明Explanation of symbols

1:Si基板(支持部材)
3:SiN膜
4:SiO2
5:支持層(支持膜の一例)
7:ヒータ層(通電加熱体)
8:絶縁層
9:ヒータ層の電極
10:ガス検知層(膜状酸化物)
11:ガス検知層の電極
20:センサ素子
30:通電駆動手段
32:検出部
1: Si substrate (support member)
3: SiN film 4: SiO 2 film 5: Support layer (an example of a support film)
7: Heater layer (electric heating element)
8: Insulating layer 9: Electrode of heater layer 10: Gas detection layer (film oxide)
11: Electrode 20 of gas detection layer: Sensor element 30: Energization drive means 32: Detection part

Claims (11)

薄膜状の支持膜の外周部又は両端部が支持部材により支持されたダイアフラム構造の支持基板上に、ガス検知層としてのSnO2膜が形成されるとともに、選択燃焼層が前記ガス検知層の表面に形成されて成り、前記ガス検知層を加熱するヒータ層を備えたセンサ素子と、
前記ガス検知層の温度が低温状態から高温状態に変化するように、前記ヒータ層を通電駆動する通電駆動手段と、
前記ガス検知層の温度が高温状態に変化したときの前記ガス検知層の電気抵抗値に基づいて、検出対象ガスとしての揮発性有機化合物の有無を検出する検出部とを備え、
前記検出部が、前記通電駆動手段による前記ヒータ層への通電駆動の開始後、前記揮発性有機化合物に対する前記ガス検知層の検出感度が空気に対して有意に得られる所定の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行うガス検出装置。
A SnO 2 film as a gas detection layer is formed on a support substrate having a diaphragm structure in which the outer peripheral portion or both ends of the thin film support film are supported by a support member, and the selective combustion layer is a surface of the gas detection layer. A sensor element comprising a heater layer for heating the gas detection layer,
Energization driving means for energizing and driving the heater layer so that the temperature of the gas detection layer changes from a low temperature state to a high temperature state;
Based on the electrical resistance value of the gas detection layer when the temperature of the gas detection layer is changed to a high temperature state, and a detection unit that detects the presence or absence of a volatile organic compound as a detection target gas,
After the start of energization driving to the heater layer by the energization driving means, the detection unit is within a predetermined elapsed time range in which the detection sensitivity of the gas detection layer with respect to the volatile organic compound is significantly obtained with respect to air. A gas detection device that detects the volatile organic compound using an electric resistance value of a gas detection layer.
前記センサ素子が、前記通電駆動手段による前記ヒータ層への通電駆動の開始から前記ガス検知層の温度が前記高温状態となるまでの応答時間が50ミリ秒以下となるように構成され、
前記検出部が、前記通電駆動手段による前記ヒータ層への通電駆動の開始後、20ミリ秒以上200ミリ秒以下の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行なうように構成されている請求項1記載のガス検出装置。
The sensor element is configured such that the response time from the start of energization driving to the heater layer by the energization driving means until the temperature of the gas detection layer reaches the high temperature state is 50 milliseconds or less,
After the start of energization driving to the heater layer by the energization driving means, the detection unit uses the electric resistance value of the gas detection layer within an elapsed time range of 20 milliseconds or more and 200 milliseconds or less, and the volatile organic The gas detection apparatus according to claim 1, wherein the gas detection apparatus is configured to detect a compound.
前記通電駆動手段が、前記ヒータ層への通電駆動を停止して前記ガス検知層の温度を前記低温状態とした後、前記ヒータ層への通電駆動を開始して前記ガス検知層の温度を前記高温状態として、再度の前記揮発性有機化合物の検出を行う請求項2に記載のガス検出装置。   The energization drive means stops energization drive to the heater layer and sets the temperature of the gas detection layer to the low temperature state, and then starts energization drive to the heater layer to set the temperature of the gas detection layer to the temperature. The gas detection device according to claim 2, wherein the volatile organic compound is detected again as a high temperature state. 前記選択燃焼層が、Pt及びPd触媒を担持してなる請求項1から3の何れか一項に記載のガス検出装置。   The gas detection device according to any one of claims 1 to 3, wherein the selective combustion layer carries Pt and Pd catalysts. 前記ヒータ層が、前記ダイアフラム構造の支持基板上の全面に形成されている請求項1から4の何れか一項に記載のガス検出装置。   The gas detector according to any one of claims 1 to 4, wherein the heater layer is formed on an entire surface of the support substrate having the diaphragm structure. 前記揮発性有機化合物が、エタノール、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン、キシレン、クロロホルム及びパラジクロロベンゼンからなる群から選択される何れか一種である請求項1から5の何れか一項に記載のガス検出装置。   The gas detection according to any one of claims 1 to 5, wherein the volatile organic compound is any one selected from the group consisting of ethanol, formaldehyde, acetaldehyde, acetone, toluene, xylene, chloroform and paradichlorobenzene. apparatus. 薄膜状の支持膜の外周部又は両端部が支持部材により支持されたダイアフラム構造の支持基板上に、ガス検知層としてのSnO2膜が形成されるとともに、選択燃焼層が前記ガス検知層の表面に形成されて成り、前記ガス検知層を加熱するヒータ層を備えたセンサ素子を用いて、
前記ヒータ層を通電駆動する通電駆動手段により前記ガス検知層の温度を低温状態から高温状態に変化させ、
前記ガス検知層の温度が高温状態に変化したときのガス検知層の電気抵抗値であって、前記ヒータ層への通電駆動の開始後、検出対象ガスとしての揮発性有機化合物に対する前記ガス検知層の検出感度が空気に対して有意に得られる所定の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行うガス検出方法。
A SnO 2 film as a gas detection layer is formed on a support substrate having a diaphragm structure in which the outer peripheral portion or both ends of the thin film support film are supported by a support member, and the selective combustion layer is a surface of the gas detection layer. Using a sensor element comprising a heater layer that heats the gas detection layer,
The temperature of the gas detection layer is changed from a low temperature state to a high temperature state by energization driving means for energizing and driving the heater layer,
The electric resistance value of the gas detection layer when the temperature of the gas detection layer is changed to a high temperature state, and the gas detection layer with respect to the volatile organic compound as the detection target gas after the start of energization driving to the heater layer The gas detection method which detects the said volatile organic compound using the electrical resistance value of the gas detection layer in the predetermined elapsed time range in which the detection sensitivity of this is significantly obtained with respect to air.
前記センサ素子が、前記ヒータ層への通電駆動の開始から前記ガス検知層の温度が前記高温状態となるまでの応答時間が50ミリ秒以下となるように構成され、
前記ヒータ層への通電駆動の開始後、20ミリ秒以上200ミリ秒以下の経過時間範囲内のガス検知層の電気抵抗値を用いて、前記揮発性有機化合物の検出を行なう請求項7記載のガス検出方法。
The sensor element is configured to have a response time of 50 milliseconds or less from the start of energization driving to the heater layer until the temperature of the gas detection layer reaches the high temperature state,
The volatile organic compound is detected using an electric resistance value of the gas detection layer within an elapsed time range of 20 milliseconds or more and 200 milliseconds or less after the start of energization driving to the heater layer. Gas detection method.
前記通電駆動手段を用いて、前記ヒータ層への通電駆動を停止して前記ガス検知層の温度を前記低温状態とした後、前記ヒータ層への通電駆動を開始して前記ガス検知層の温度を前記高温状態として、再度の前記揮発性有機化合物の検出を行う請求項8記載のガス検出方法。   Using the energization drive means, the energization drive to the heater layer is stopped to bring the temperature of the gas detection layer to the low temperature state, and then the energization drive to the heater layer is started to start the temperature of the gas detection layer. The gas detection method according to claim 8, wherein the volatile organic compound is detected again in a high temperature state. 前記選択燃焼層が、Pt及びPd触媒を担持してなる請求項7から9の何れか一項に記載のガス検出方法。   The gas detection method according to any one of claims 7 to 9, wherein the selective combustion layer carries Pt and Pd catalysts. 前記揮発性有機化合物として、エタノール、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン、キシレン、クロロホルム及びパラジクロロベンゼンからなる群から選択される何れか一種の検出を行う請求項7から10の何れか一項に記載のガス検出方法。   The volatile organic compound according to any one of claims 7 to 10, wherein detection is performed as any one selected from the group consisting of ethanol, formaldehyde, acetaldehyde, acetone, toluene, xylene, chloroform, and paradichlorobenzene. Gas detection method.
JP2007160362A 2007-06-18 2007-06-18 Gas detecting device and method Pending JP2007271636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160362A JP2007271636A (en) 2007-06-18 2007-06-18 Gas detecting device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160362A JP2007271636A (en) 2007-06-18 2007-06-18 Gas detecting device and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002083074A Division JP4040337B2 (en) 2002-03-25 2002-03-25 Gas detection device and gas detection method

Publications (1)

Publication Number Publication Date
JP2007271636A true JP2007271636A (en) 2007-10-18

Family

ID=38674543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160362A Pending JP2007271636A (en) 2007-06-18 2007-06-18 Gas detecting device and method

Country Status (1)

Country Link
JP (1) JP2007271636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087906A1 (en) * 2013-12-13 2015-06-18 富士電機株式会社 Gas detection device and method thereof
CN111767660A (en) * 2020-09-02 2020-10-13 国网江西省电力有限公司电力科学研究院 Optimal arrangement method and device for gas storage devices of electric coupling energy system
JP7366507B2 (en) 2020-04-03 2023-10-23 Nissha株式会社 Voltage control method for gas analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316651A (en) * 1988-02-02 1989-12-21 Figaro Eng Inc Method and device for detecting gas
JP2000292394A (en) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd Thin film gas sensor
JP2000292397A (en) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd Gas sensor
JP2000292395A (en) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd Thin film gas sensor
JP2002116171A (en) * 2000-10-04 2002-04-19 Fuji Electric Co Ltd Thin film gas sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316651A (en) * 1988-02-02 1989-12-21 Figaro Eng Inc Method and device for detecting gas
JP2000292394A (en) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd Thin film gas sensor
JP2000292397A (en) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd Gas sensor
JP2000292395A (en) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd Thin film gas sensor
JP2002116171A (en) * 2000-10-04 2002-04-19 Fuji Electric Co Ltd Thin film gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087906A1 (en) * 2013-12-13 2015-06-18 富士電機株式会社 Gas detection device and method thereof
CN105283756A (en) * 2013-12-13 2016-01-27 富士电机株式会社 Gas detection device and method thereof
JP5946004B2 (en) * 2013-12-13 2016-07-05 富士電機株式会社 Gas detection apparatus and method
US9945803B2 (en) 2013-12-13 2018-04-17 Fuji Electric Co., Ltd. Gas detecting device and method thereof
JP7366507B2 (en) 2020-04-03 2023-10-23 Nissha株式会社 Voltage control method for gas analyzer
CN111767660A (en) * 2020-09-02 2020-10-13 国网江西省电力有限公司电力科学研究院 Optimal arrangement method and device for gas storage devices of electric coupling energy system

Similar Documents

Publication Publication Date Title
JP4640960B2 (en) Thin film gas sensor
US9945803B2 (en) Gas detecting device and method thereof
JP2011169634A (en) Thin film gas sensor
WO2020031909A1 (en) Mems type semiconductor gas detection element
JP5143591B2 (en) Gas detection device and gas detection method
JP4585756B2 (en) Semiconductor gas sensor and gas monitoring method using semiconductor gas sensor
JP6482973B2 (en) Gas sensor
JP2007271636A (en) Gas detecting device and method
JP4450773B2 (en) Thin film gas sensor
JP6372686B2 (en) Gas detection device and gas detection method
JP4040337B2 (en) Gas detection device and gas detection method
JP5065098B2 (en) Gas detection device and gas detection method
JP2011027752A (en) Thin film gas sensor
JP2008046007A (en) Method of detecting abnormality in thin-film gas sensor
JP5065097B2 (en) Gas detection device and gas detection method
JP4764981B2 (en) Method for manufacturing thin film gas sensor
JP6436835B2 (en) Gas detector
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JP6805852B2 (en) Gas sensor element and manufacturing method of gas sensor element
JP6958384B2 (en) Gas sensor element
JP4851610B2 (en) Thin film gas sensor
JP2020153735A (en) Gas detector and gas detection method
WO2020053982A1 (en) Gas detection device
JP2022064474A (en) Method and device for controlling temperature of gas detection device
Sacco et al. Humidity sensor based on multi-layer graphene (MLG) integrated onto a micro-hotplate (MHP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101202