JP2911928B2 - Gas detection method - Google Patents

Gas detection method

Info

Publication number
JP2911928B2
JP2911928B2 JP32536489A JP32536489A JP2911928B2 JP 2911928 B2 JP2911928 B2 JP 2911928B2 JP 32536489 A JP32536489 A JP 32536489A JP 32536489 A JP32536489 A JP 32536489A JP 2911928 B2 JP2911928 B2 JP 2911928B2
Authority
JP
Japan
Prior art keywords
film
sno
temperature
gas
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32536489A
Other languages
Japanese (ja)
Other versions
JPH03185351A (en
Inventor
弘史 香田
宗春 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUIGARO GIKEN KK
Original Assignee
FUIGARO GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18176004&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2911928(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FUIGARO GIKEN KK filed Critical FUIGARO GIKEN KK
Priority to JP32536489A priority Critical patent/JP2911928B2/en
Publication of JPH03185351A publication Critical patent/JPH03185351A/en
Application granted granted Critical
Publication of JP2911928B2 publication Critical patent/JP2911928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の利用分野] この発明はSnO2膜の抵抗値の変化を利用したガスの検
出に関し、例えば硫化水素やエタノール、CO、イソブタ
ン等のガスの検出に用いる。
The present invention relates to detection of a gas using a change in the resistance value of a SnO 2 film, and is used, for example, for detecting a gas such as hydrogen sulfide, ethanol, CO, or isobutane.

[従来技術] 特開平1-206,252号は、ガスセンサをパルス加熱によ
り駆動し、ガスを検出することを開示している。この技
術では、センサを、パルス加熱時以外は、原則として室
温(R.T.)に置き、パルス加熱のデューティ比を小さく
して消費電力を減少させる。
[Prior Art] Japanese Patent Application Laid-Open No. 1-206,252 discloses that a gas sensor is driven by pulse heating to detect gas. In this technique, the sensor is generally kept at room temperature (RT) except during pulse heating, and the duty ratio of pulse heating is reduced to reduce power consumption.

この技術でのセンサに関する条件は、熱時定数が短
く、短時間にガスセンサを加熱できることである。この
条件が満たされれば、センサの構造は任意である。また
検出は原則としてパルス加熱時の出力から行うが、冷却
時の出力からも検出できる。しかしこの技術では、パル
ス加熱温度の効果については余り検討していない。
The condition for the sensor in this technique is that the thermal time constant is short and the gas sensor can be heated in a short time. If this condition is satisfied, the structure of the sensor is arbitrary. The detection is performed from the output during pulse heating in principle, but can also be detected from the output during cooling. However, in this technique, the effect of the pulse heating temperature has not been sufficiently studied.

次に、この出願の発明者らは、ガスセンサのパルス加熱
駆動について検討し、パルス加熱時の温度を100〜300℃
とすると・センサは湿度にのみ感じ、ガス感度が消滅す
ることを見いだした(特願平1-128,468号、特開平2-307
050号)。
Next, the inventors of this application examined pulse heating driving of the gas sensor, and set the temperature during pulse heating to 100 to 300 ° C.
It was found that the sensor sensed only humidity and the gas sensitivity disappeared (Japanese Patent Application No. 1-128,468, Japanese Patent Application Laid-Open No. 2-307).
050).

発明者は、これと平行してパルス加熱時の温度を更に
増した場合の特性を検討した。その結果、パルス加熱温
度をある温度以上とすると、以下の現象が生じることを
見いだした。
In parallel with this, the inventor studied characteristics when the temperature during pulse heating was further increased. As a result, it has been found that when the pulse heating temperature is set to a certain temperature or higher, the following phenomena occur.

(1) 冷却時の空気中でのセンサ抵抗が激増する。し
かしパルス加熱時のセンサ抵抗は、特に増加しない。
(1) The sensor resistance in air during cooling increases sharply. However, the sensor resistance during pulse heating does not particularly increase.

(2) 冷却時のガス中でのセンサ抵抗は特に増加せ
ず、パルス加熱時のガス中でのセンサ抵抗と大差はな
い。
(2) The sensor resistance in the gas at the time of cooling does not particularly increase, and is not much different from the sensor resistance in the gas at the time of pulse heating.

(3) この結果、冷却時のガス感度並びにガス濃度依
存性が向上する。
(3) As a result, gas sensitivity during cooling and gas concentration dependency are improved.

[目的] この発明の目的は、ガスセンサの感度を向上させると
共に、ガスセンサのガス濃度依存性を向上させることに
ある。
[Purpose] An object of the present invention is to improve the sensitivity of a gas sensor and the gas concentration dependency of the gas sensor.

[発明の構成] この発明では、SnO2膜を用いたガスセンサを450℃以
上の温度にパルス的に高温に加熱し、SnO2表面に活性な
酸素イオンを形成させる。次にSnO2膜を速やかに冷却す
ると、生成した活性な酸素イオンを保ったままSnO2膜が
冷却されるため、冷却時の空気中での抵抗値が激増す
る。冷却時の空気中での抵抗値は数MΩ以上、通常は10
MΩ以上で、実質的に無限大である。一方冷却時のガス
中での抵抗値は余り増加しない。この結果ガスセンサの
感度が増加する。更に空気中とガス中との抵抗値の比が
大きいため、センサのガス濃度依存性も向上する。
[Constitution of the Invention] In the present invention, a gas sensor using a SnO 2 film is heated to 450 ° C. or more in a pulsed manner at a high temperature to form active oxygen ions on the SnO 2 surface. Next, when the SnO 2 film is rapidly cooled, the SnO 2 film is cooled while maintaining the generated active oxygen ions, so that the resistance value in the air at the time of cooling sharply increases. The resistance in air at the time of cooling is several MΩ or more, usually 10 MΩ.
Above MΩ, virtually infinite. On the other hand, the resistance value in the gas during cooling does not increase so much. As a result, the sensitivity of the gas sensor increases. Further, since the ratio of the resistance value in air to the resistance value in gas is large, the gas concentration dependency of the sensor is also improved.

冷却時の空気中での抵抗値が増加する原因として、パ
ルス加熱による活性な酸素イオンの吸着の他に、パルス
加熱により吸着水が除去されることが考えられる。しか
し発明者の実験によれば、パルス加熱時のセンサ出力も
冷却時のセンサ出力も、湿度の影響を受けている。従っ
てパルス加熱により吸着水が完全に除去されるとは考え
難い。冷却時の空気中での抵抗値が増加する原因として
残るものは、パルス加熱時に活性な酸素イオンが生成
し、これが冷却時にも残存することのみである。
As a cause of the increase in the resistance value in the air at the time of cooling, it is considered that, besides the adsorption of active oxygen ions by pulse heating, the adsorbed water is removed by pulse heating. However, according to the experiment of the inventor, both the sensor output at the time of pulse heating and the sensor output at the time of cooling are affected by humidity. Therefore, it is difficult to imagine that the absorbed water is completely removed by the pulse heating. The only thing that remains as the cause of the increase in the resistance value in the air during cooling is that active oxygen ions are generated during pulse heating and remain even during cooling.

SnO2膜の冷却時の空気中での抵抗値の増加を著しくす
るため、パルス加熱温度を450℃以上とする。この温度
は、SnO2表面へのO-,O2-等の活性な酸素イオンが形成
される温度の文献値、(江頭A.C.S.Symposium Serial N
o.309,p71,1986)、とほぼ一致する。またこれらの吸着
酸素イオンの形成は、SnO2の低抗値を著しく増加させる
ことが知られている。これらのことは、パルス加熱によ
り冷却時の空気中での抵抗値が増加することの原因が、
活性な吸着酸素イオンの形成にあることを裏付ける。
In order to significantly increase the resistance value of the SnO 2 film in the air during cooling, the pulse heating temperature is set to 450 ° C. or higher. This temperature is the literature value of the temperature at which active oxygen ions such as O and O 2− are formed on the SnO 2 surface, (Egashira ACS Symposium Serial N
o.309, p71, 1986). It is also known that the formation of these adsorbed oxygen ions significantly increases the low resistance of SnO 2 . These are due to the fact that the resistance value in air during cooling increases due to pulse heating,
Supports the formation of active adsorbed oxygen ions.

次にこの発明について個別的に説明する。ガスセンサ
の熱時定数を短くするため、膜状(膜厚10〜20μm程度
の厚膜や、膜厚1μm以下の薄膜)のSnO2を用いる。
Next, the present invention will be described individually. In order to shorten the thermal time constant of the gas sensor, SnO 2 in the form of a film (thick film having a thickness of about 10 to 20 μm or thin film having a thickness of 1 μm or less) is used.

ガスセンサの構造について、重要なのはSnO2膜の熱時
定数を小さくすることである。熱時定数が大きく、パル
ス加熱からの冷却が遅いと、冷却の間に活性な酸素イオ
ンが失われ、冷却時のSnO2は余り高抵抗化せず、ガス感
度も低い。例えば通常用いられているチップ状に金属酸
化物半導体を成型したガスセンサでは、冷却時の熱時定
数は10秒〜数十秒程度で極めて遅く、高温から室温へ冷
却しても室温での抵抗値は無限大とはならず、また室温
でのガス感度も低い。これに対して冷却時の熱時定数を
短く、例えば100msec以下に、より好ましくは10msec以
下にすると、パルス加熱後の冷却時の抵抗値は無限大
で、ガス感度も高くなる。また熱時定数を小さくするの
は、パルス加熱時の最高加熱温度(以下この温度を“パ
ルス温度”という)に達するまでの時間を短縮し、加熱
パルスの幅を短くするとの効果を持つ。このことは、ガ
スセンサの消費電力を小さくすることになる。
It is important for the structure of the gas sensor to reduce the thermal time constant of the SnO 2 film. If the thermal time constant is large and cooling from pulse heating is slow, active oxygen ions are lost during cooling, and SnO 2 during cooling does not have a very high resistance, and the gas sensitivity is low. For example, in a gas sensor in which a metal oxide semiconductor is molded into a chip shape, which is commonly used, the thermal time constant during cooling is extremely slow, about 10 seconds to several tens of seconds, and the resistance value at room temperature even when cooled from high temperature to room temperature. Does not become infinite and the gas sensitivity at room temperature is low. On the other hand, if the thermal time constant at the time of cooling is short, for example, 100 msec or less, and more preferably 10 msec or less, the resistance value at the time of cooling after pulse heating is infinite and the gas sensitivity is high. Reducing the thermal time constant has the effect of shortening the time required to reach the maximum heating temperature during pulse heating (hereinafter, this temperature is referred to as “pulse temperature”) and shortening the width of the heating pulse. This reduces the power consumption of the gas sensor.

パルス加熱の温度は、SnO2膜の場合、450℃以上とす
ることが必要で、実施例では500℃とした。冷却時の温
度は消費電力の節減のため室温が好ましいが、室温付近
での空気中やガス中の抵抗値の温度依存性は小さく、室
温よりやや高い温度としても良く、冷却時の温度は150
℃以下とする。
In the case of a SnO 2 film, the temperature of the pulse heating needs to be 450 ° C. or higher, and was 500 ° C. in the example. The temperature at the time of cooling is preferably room temperature in order to save power consumption.However, the temperature dependence of the resistance value in air or gas near room temperature is small, and it may be slightly higher than room temperature.
It should be below ° C.

パルス加熱の時間幅は、SnO2膜を活性な酸素イオンが
形成する温度まで昇温し得るだけの幅とする。実施例で
は昇温時の熱時定数20msecのガスセンサに対して、幅20
msecの加熱パルスを加えた。冷却時の時間幅は、SnO2
の特性が、冷却時の定常値に達する間での時間以上とす
ることが好ましい。この時間は、実施例の条件では約30
0msecであった。次に冷却時の時間幅の上限は、重要で
はない。冷却後室温に数分程度放置すると、SnO2膜の抵
抗値は実用的に読み取りが可能な値まで減少し、ガス感
度も低下する。しかしSnO2膜の抵抗値が減少する前に出
力をサンプリングすれば良いのであって、サンプリング
後に抵抗値が減少しても問題とはならない。
The time width of the pulse heating is set to a width that can raise the temperature of the SnO 2 film to a temperature at which active oxygen ions are formed. In the embodiment, a width of 20 mm is applied to a gas sensor having a thermal time constant of 20 msec when the temperature is raised.
A heating pulse of msec was applied. The time width during cooling is preferably equal to or longer than the time required for the characteristics of the SnO 2 film to reach a steady value during cooling. This time is about 30 under the conditions of the embodiment.
It was 0 msec. Next, the upper limit of the time width during cooling is not important. When left at room temperature for several minutes after cooling, the resistance value of the SnO 2 film decreases to a value that can be read practically, and the gas sensitivity also decreases. However, the output may be sampled before the resistance value of the SnO 2 film decreases, and there is no problem even if the resistance value decreases after sampling.

[実施例] 測定法 第7図〜第10図により、実施例で用いた測定法を説明
する。第7図に、ガスセンサ02の例を示す。2は線径20
μmのFe-Cr-Al合金を用いた線状のヒータで、4は膜厚
約1μmのアルミナ絶縁膜、6,8は膜状の金電極であ
る。10は膜厚約0.5μmのSnO2膜で、その表面には膜厚
0.1μm以下のCuO膜を積層した。CuO膜は酸素イオンの
吸脱着促進触媒で、CoO,Mn23,Cr23等の任意の酸素
イオンの吸脱着触媒に変えても良い。ガスセンサO2
構造はCuO膜を設けた他は、出願人のガスセンサ“TGS50
1"と同様である。ガスセンサO2は、次のように製造し
た。ヒータ2の表面にアルミナゾルを付着させ、800℃
で熱分解してアルミナ絶縁膜4とした。次いで金電極6,
8を真空蒸着し、Snの有機化合物の溶液をアルミナ絶縁
膜4の表面に付着させて、乾燥後に550℃で熱分解し、S
nO2膜10とした。
[Example] Measuring method The measuring method used in the example will be described with reference to Figs. 7 to 10. FIG. 7 shows an example of the gas sensor 02. 2 is wire diameter 20
A linear heater using a μm Fe—Cr—Al alloy, 4 is an alumina insulating film having a film thickness of about 1 μm, and 6 and 8 are film-shaped gold electrodes. Reference numeral 10 denotes a SnO 2 film having a thickness of about 0.5 μm, and the film thickness is
A CuO film having a thickness of 0.1 μm or less was laminated. The CuO film is a catalyst for promoting the adsorption and desorption of oxygen ions, and may be changed to a catalyst for the adsorption and desorption of arbitrary oxygen ions such as CoO, Mn 2 O 3 , and Cr 2 O 3 . The structure of the gas sensor O 2 is the same as that of the applicant's gas sensor “TGS50
1 ". The gas sensor O 2 was manufactured as follows. Alumina sol was adhered to the surface of the heater 2 at 800 ° C.
To form an alumina insulating film 4. Then gold electrode 6,
8 is vacuum-deposited, a solution of an organic compound of Sn is adhered to the surface of the alumina insulating film 4, and after drying, it is thermally decomposed at 550 ° C.
The nO 2 film 10 was used.

このセンサ02を用いたのは、加熱時の熱時定数が20ms
ec、冷却時の熱時定数が5msecと短いためで、熱時定数
が小さければ他のセンサでも良い。例えばアルミナ基板
に、断熱用のガラス膜を介して、ヒータとSnO2膜とを積
層したものでも良い。この場合短時間のパルス加熱では
熱容量の大きな基板は昇温せず、室温に保たれる。ここ
でヒータをオン/オフすると、ヒータにSnO2膜を積層し
両者の距離が小さいため、SnO2膜の温度はヒータのオン
/オフに追随して変化する。この結果加熱時の熱時定数
を数msec程度とすることができる。またこれ以外に、空
洞上に架橋したSiO2等の薄膜にヒータと電極やSnO2膜を
形成したガスセンサでも良い。
This sensor 02 uses a thermal time constant of 20 ms during heating.
ec, because the thermal time constant during cooling is as short as 5 msec, other sensors may be used as long as the thermal time constant is small. For example, a heater and a SnO 2 film may be laminated on an alumina substrate via a heat insulating glass film. In this case, the substrate having a large heat capacity does not rise by short-time pulse heating, and is kept at room temperature. Here, when the heater is turned on / off, the SnO 2 film is stacked on the heater and the distance between the two is small, so that the temperature of the SnO 2 film changes following the on / off of the heater. As a result, the thermal time constant at the time of heating can be set to about several milliseconds. In addition, a gas sensor in which a heater, an electrode, and a SnO 2 film are formed on a thin film of SiO 2 or the like cross-linked on the cavity may be used.

第8図に回路の例を示す。図において、12は電源で、こ
こでは5Vのものを用いた。14はパルス加熱用の電源で、
ここでは出力0.65V、16はトランジスタスイッチで、リ
レー等の任意のスイッチでも良い。R1はガスセンサO2
の負荷抵抗で、測定には30KΩ〜300KΩのものを用い
た。18は制御用のタイマで、1秒周期で動作し、毎秒1
回20msecだけ、スイッチ16をオンさせてパルス温度500
℃でパルス加熱を行う。20はサンプルホールド回路で、
冷却時のセンサ出力(負荷抵抗R1への出力)を加熱パ
ルスの直前にサンプリングする。この結果センサO2
1秒周期で駆動され、20msecだけパルス温度500℃に加
熱され、他の期間は室温に保たれる。そしてパルス加熱
の直前(室温への冷却時間の終了直前)の出力から、ガ
スを検出する。
FIG. 8 shows an example of the circuit. In the figure, reference numeral 12 denotes a power supply, which is 5 V here. 14 is a power supply for pulse heating,
Here, the output 0.65V, 16 is a transistor switch, which may be an arbitrary switch such as a relay. R 1 is the gas sensor O 2
A load resistance of 30 KΩ to 300 KΩ was used for the measurement. Reference numeral 18 denotes a control timer that operates at a one-second cycle,
Turn on the switch 16 only for 20 msec and pulse temperature 500
Perform pulse heating at ° C. 20 is a sample and hold circuit,
Sampling the sensor output during cooling (output to the load resistor R 1) immediately before the heating pulse. As a result, the sensor O2 is driven at a cycle of one second, is heated to a pulse temperature of 500 ° C. for 20 msec, and is kept at room temperature during other periods. Then, the gas is detected from the output immediately before the pulse heating (immediately before the end of the cooling time to room temperature).

第9図に、センサ特性の測定条件を示す。前記のよう
に、SnO2膜10は、毎秒1回20msecだけ、0.65Vのヒータ
電圧で加熱され、最高500℃に加熱される。これ以外の
期間は、ヒータ2はオフされ、SnO2膜10は室温に保たれ
る。そして加熱パルスの終了直前と、室温から加熱パル
スへの移行の直前とに、負荷抵抗R1の出力から、セン
サ特性をサンプリングする。
FIG. 9 shows the measurement conditions of the sensor characteristics. As described above, the SnO 2 film 10 is heated at a heater voltage of 0.65 V once a second for 20 msec and heated up to 500 ° C. During other periods, the heater 2 is turned off, and the SnO 2 film 10 is kept at room temperature. And a immediately before the end of the heating pulse, to the immediately preceding transition to the heating pulse from room temperature, from the output of the load resistor R 1, sampling the sensor characteristics.

第10図に、ガスセンサO2のN2中での温度特性を示
す。縦軸は負荷抵抗R1への出力で、時刻0から100msec
の間、ヒータ2に加熱パルスを加え、SnO2膜10を室温か
ら加熱する。センサの出力は20〜25msecで定常値に達
し、これから加熱時の熱時定数が約20msecであることが
分かる。一方時刻0.1秒に加熱パルスを打ち切ると、セ
ンサ出力は5msec程度で減少し、これから冷却時の熱時
定数が数msec程度であることが分かる。次にサーモペイ
ントを用いて求めた、0.65Vのヒータ電圧での、SnO2膜1
0の温度の定常値は500℃である。SnO2膜10の熱時定数は
約20msecであることを考えると、0.65Vのパルス電圧で
のパルス温度は約500℃である。
FIG. 10 shows the temperature characteristics of the gas sensor O 2 in N 2 . In the vertical axis the output to the load resistor R 1, 100 msec from time 0
During this time, a heating pulse is applied to the heater 2 to heat the SnO 2 film 10 from room temperature. The output of the sensor reaches a steady value in 20 to 25 msec, and it can be seen from this that the thermal time constant during heating is about 20 msec. On the other hand, when the heating pulse is terminated at time 0.1 second, the sensor output decreases in about 5 msec, which indicates that the thermal time constant during cooling is about several msec. Next, the SnO 2 film 1 at a heater voltage of 0.65 V, determined using thermopaint, was used.
The steady-state value of the temperature of 0 is 500 ° C. Considering that the thermal time constant of the SnO 2 film 10 is about 20 msec, the pulse temperature at a pulse voltage of 0.65 V is about 500 ° C.

センサ特性 第1図〜第3図により、ガスセンサO2のガス感度と
ガス濃度依存性とを示す。第1図の測定条件は、動作周
期が1秒、加熱パルス幅が20msecでパルス温度が500
℃、加熱パルスを加えていないときの温度は室温であ
る。なお負荷抵抗R1は100KΩで、ガスには硫化水素2pp
mを用いた。第1図に、500℃での特性と室温での特性と
を示す。室温での空気中の抵抗値は無限大(10MΩ以
上)で、2ppmの硫化水素への感度は極めて高い。
The Figure 1-Figure 3 sensor characteristics, showing the gas sensitivity of the gas sensor O 2 gas concentration dependency. The measurement conditions in Fig. 1 are as follows: operating cycle is 1 second, heating pulse width is 20msec, pulse temperature is 500
The temperature when no heating pulse is applied is room temperature. Note the load resistance R 1 is 100 K.OMEGA, the gas hydrogen sulfide 2pp
m was used. FIG. 1 shows the characteristics at 500 ° C. and the characteristics at room temperature. The resistance in air at room temperature is infinite (more than 10 MΩ), and the sensitivity to 2 ppm hydrogen sulfide is extremely high.

第2図に、加熱パルスを加えた際の、センサ出力Vout
の波形を示す。時刻0から20msecの間加熱パルスを加
え、次いで室温へ冷却する。冷却後の空気中の抵抗値は
極めて高く、ガス感度も大きい。また室温での抵抗値が
無限大となる時間は、通常は冷却後10秒〜1分程度であ
った。従って加熱周期を10秒〜1分以下とすれば、常に
室温の空気中での抵抗値を無限大に保ったまま検出を行
うことができる。しかしこのことは、検出周期を例えば
5分程度と長くすることを排除するものではない。例え
ば室温への冷却後1秒程度経過した時点での出力をサン
プリングし、以後の出力を用いなければ、室温での抵抗
値が無限大から減少しても問題は生じない。
FIG. 2 shows the sensor output Vout when a heating pulse is applied.
3 shows the waveforms of FIG. A heating pulse is applied for 20 msec from time 0, and then cooled to room temperature. The resistance value in air after cooling is extremely high, and the gas sensitivity is also large. The time at which the resistance value at room temperature becomes infinite was usually about 10 seconds to 1 minute after cooling. Therefore, if the heating cycle is set to 10 seconds to 1 minute or less, detection can be performed while keeping the resistance value in air at room temperature to infinity. However, this does not exclude extending the detection cycle to, for example, about 5 minutes. For example, if the output at about 1 second after cooling to room temperature is sampled and the subsequent output is not used, no problem occurs even if the resistance value at room temperature decreases from infinity.

第3図に、硫化水素とエタノールとに対するガス濃度
特性を示す。図には500℃(パルス幅20msec)と室温と
の5秒周期での結果から、室温での抵抗値と500℃での
抵抗値を示す。また比較のために、SnO2膜10を常時350
℃に保った際の結果も示す。室温でのガス濃度依存性は
大きい。
FIG. 3 shows gas concentration characteristics with respect to hydrogen sulfide and ethanol. The figure shows the resistance value at room temperature and the resistance value at 500 ° C. based on the results of a cycle of 5 seconds between 500 ° C. (pulse width 20 msec) and room temperature. For comparison, the SnO 2 film 10
The results when the temperature was kept at ℃ are also shown. The gas concentration dependence at room temperature is large.

第4図に、湿度の影響を示す。パルス加熱の条件は、
パルス電圧がO.65Vで幅が20msec、1周期が5秒で、負
荷抵抗R1が30KΩである。測定には硫化水素1ppm(湿度
50%または100%)を用い、これ以外の期間は湿度50%
の空気中においた。図の上部の破線は500℃でのセンサ
出力を、下部の破線は室温(加熱パルスの直前)での出
力を表し、雰囲気の温度は20℃であった。図の第2のピ
ーク(硫化水素1ppm,湿度50%)と第3のピーク(硫化
水素1ppm,湿度100%)とを比べると、ガス中から取り出
し、20℃,R.H.50%の空気中に戻した際の応答が異な
る。これは500℃のパルス加熱では、SnO2膜10への吸着
水が完全には除去されず、センサ特性に湿度の影響が残
っていることを示している。
FIG. 4 shows the effect of humidity. Pulse heating conditions are
A pulse voltage width in O.65V 20msec, 1 cycle 5 seconds, the load resistance R 1 is 30 k.OMEGA. 1 ppm of hydrogen sulfide (humidity
50% or 100%) and 50% humidity during other periods
In the air. The dashed line at the top of the figure represents the sensor output at 500 ° C., the dashed line at the bottom represents the output at room temperature (immediately before the heating pulse), and the temperature of the atmosphere was 20 ° C. Comparing the second peak (1 ppm hydrogen sulfide, 50% humidity) with the third peak (1 ppm hydrogen sulfide, 100% humidity) in the figure, it was taken out of the gas and returned to the air at 20 ° C and 50% RH. Response is different. This indicates that the pulsed heating at 500 ° C. does not completely remove the water adsorbed on the SnO 2 film 10 and the humidity remains on the sensor characteristics.

500℃のパルス加熱により、室温の空気中での抵抗値
が激増する原因として考えられるのは、 (1) パルス加熱により活性な酸素イオンが、SnO2
面に吸着し、センサの抵抗値を増加させる、あるいは (2) SnO2表面への吸着水が完全に除去される、こと
である。第4図の結果から、パルス加熱により吸着水が
完全に除去されるとは考えにくい。従ってセンサの抵抗
値が無限大となる原因は、パルス加熱時に活性な酸素イ
オンがSnO2表面に形成されることにあると考えられる。
Possible causes of the rapid increase in resistance in air at room temperature due to pulse heating at 500 ° C are as follows: (1) Active oxygen ions are adsorbed on the SnO 2 surface by pulse heating, and the resistance of the sensor increases. Or (2) that the water adsorbed on the SnO 2 surface is completely removed. From the results shown in FIG. 4, it is unlikely that the absorbed water is completely removed by the pulse heating. Therefore, it is considered that the reason why the resistance value of the sensor becomes infinite is that active oxygen ions are formed on the SnO 2 surface during pulse heating.

第5図に、第1図と同じ測定条件で、パルス温度を30
0℃〜600℃に変化させた際の結果を示す。パルス温度を
増すと共に、空気中での抵抗値は増加し、ガス中での抵
抗値は減少する。そしてこの効果は450℃以上で著し
い。またこの温度はSnO2への活性酸素イオンの吸着温度
とも一致する。
In FIG. 5, the pulse temperature was set to 30 under the same measurement conditions as in FIG.
The results when the temperature is changed from 0 ° C to 600 ° C are shown. As the pulse temperature increases, the resistance in air increases and the resistance in gas decreases. And this effect is remarkable above 450 ° C. This temperature also coincides with the adsorption temperature of active oxygen ions on SnO 2 .

第6図に、パルス温度を500℃(パルス幅20msec、パ
ルス周期1秒)とし、冷却時の温度を室温から300℃の
範囲で変化させた際の、冷却時の抵抗値を示す。冷却時
の温度を室温としても100℃としても、結果に大差はな
い。しかし冷却時の温度を200℃とすると、空気中での
抵抗値が減少し、低感度化する。このことから冷却時の
温度は150℃以下、より好ましくは100℃以下が好まし
い。
FIG. 6 shows the resistance value during cooling when the pulse temperature is set to 500 ° C. (pulse width: 20 msec, pulse cycle: 1 second) and the temperature during cooling is changed from room temperature to 300 ° C. There is no significant difference in the results when the cooling temperature is set to room temperature or 100 ° C. However, when the temperature at the time of cooling is set to 200 ° C., the resistance value in the air decreases, and the sensitivity decreases. For this reason, the cooling temperature is preferably 150 ° C. or lower, more preferably 100 ° C. or lower.

[発明の効果] この発明では、(1)ガスセンサの感度を高めると共
に、(2)センサ特性のガス濃度依存性を高める。
[Effect of the Invention] In the present invention, (1) the sensitivity of the gas sensor is increased, and (2) the gas concentration dependency of the sensor characteristics is increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例でのガス検出結果を示す特性図であ
る。 第2図は、実施例での加熱パルス付近でのガスセンサ特
性を示す特性図である。 第3図は、実施例でのガス濃度依存性を示す特性図であ
る。 第4図は、実施例でのガスセンサ特性への湿度の影響を
示す特性図である。 第5図は、実施例でのパルス加熱温度の室温での特性へ
の影響を示す特性図である。 第6図は、実施例での冷却時の温度の影響を示す特性図
である。 第7図は、実施例に用いたガスセンサの要部平面図であ
る。 第8図は、実施例の回路図である。 第9図は、実施例での加熱パルスを示す波形図である。 第10図は、実施例に用いたガスセンサの熱応答特性を示
す特性図である。
FIG. 1 is a characteristic diagram showing a gas detection result in the embodiment. FIG. 2 is a characteristic diagram showing gas sensor characteristics near a heating pulse in the embodiment. FIG. 3 is a characteristic diagram showing gas concentration dependency in the embodiment. FIG. 4 is a characteristic diagram showing an influence of humidity on gas sensor characteristics in the embodiment. FIG. 5 is a characteristic diagram showing the influence of the pulse heating temperature on the characteristics at room temperature in the example. FIG. 6 is a characteristic diagram showing the effect of temperature during cooling in the embodiment. FIG. 7 is a plan view of a main part of the gas sensor used in the embodiment. FIG. 8 is a circuit diagram of the embodiment. FIG. 9 is a waveform diagram showing a heating pulse in the embodiment. FIG. 10 is a characteristic diagram showing a thermal response characteristic of the gas sensor used in the example.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SnO2膜を用いたガスセンサを、450℃以上
の温度のパルス加熱と冷却とのサイクルに置くことによ
り、 冷却時のSnO2膜の空気中での抵抗値を高抵抗状態に置
き、 冷却時のSnO2膜のガス中での抵抗値からガスを検出する
ようにした、ガス検出方法。
1. A gas sensor using a SnO 2 film is placed in a cycle of pulse heating and cooling at a temperature of 450 ° C. or more, so that the resistance value of the SnO 2 film in air during cooling becomes a high resistance state. A gas detection method, wherein the gas is detected from the resistance value of the SnO 2 film in the gas during cooling.
【請求項2】冷却時のSnO2膜の温度を室温としたことを
特徴とする、請求項1のガス検出方法。
2. The gas detection method according to claim 1, wherein the temperature of the SnO 2 film during cooling is room temperature.
【請求項3】SnO2膜の熱時定数を、冷却過程での酸素イ
オンの不活性状態への緩和が生じる時間よりも短くした
ことを特徴とする、請求項2のガス検出方法。
3. The gas detection method according to claim 2, wherein the thermal time constant of the SnO 2 film is shorter than the time during which the relaxation of oxygen ions to an inactive state in the cooling process occurs.
【請求項4】SnO2膜表面に酸素イオンの吸着促進触媒を
被覆したことを特徴とする、請求項3のガス検出方法。
4. The gas detection method according to claim 3, wherein the surface of the SnO 2 film is coated with a catalyst for promoting adsorption of oxygen ions.
JP32536489A 1989-12-14 1989-12-14 Gas detection method Expired - Fee Related JP2911928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32536489A JP2911928B2 (en) 1989-12-14 1989-12-14 Gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32536489A JP2911928B2 (en) 1989-12-14 1989-12-14 Gas detection method

Publications (2)

Publication Number Publication Date
JPH03185351A JPH03185351A (en) 1991-08-13
JP2911928B2 true JP2911928B2 (en) 1999-06-28

Family

ID=18176004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32536489A Expired - Fee Related JP2911928B2 (en) 1989-12-14 1989-12-14 Gas detection method

Country Status (1)

Country Link
JP (1) JP2911928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698356B2 (en) 2018-05-17 2023-07-11 Figaro Engineering Inc. Gas detection device and gas detection method using metal-oxide semiconductor gas sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111269A1 (en) * 2001-03-09 2002-09-12 Bosch Gmbh Robert Gas detection sensor
KR101131958B1 (en) * 2009-10-22 2012-03-29 주식회사 과학기술분석센타 Method for measuring concentriation of gas and device for the same
JP6749603B2 (en) * 2016-08-25 2020-09-02 フィガロ技研株式会社 MEMS gas sensor and gas detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698356B2 (en) 2018-05-17 2023-07-11 Figaro Engineering Inc. Gas detection device and gas detection method using metal-oxide semiconductor gas sensor

Also Published As

Publication number Publication date
JPH03185351A (en) 1991-08-13

Similar Documents

Publication Publication Date Title
JP2002267633A (en) Method of heating gas sensor, and gas sensor
JP2004132840A (en) Gas concentration detection device
JP2911928B2 (en) Gas detection method
JP5127750B2 (en) Gas sensor and gas detection method
JP3262867B2 (en) Semiconductor gas detector
JPH0426702B2 (en)
JPH03259736A (en) Gaseous hydrogen detecting element
JP2791473B2 (en) Gas detection method and device
JP4970584B2 (en) Thin film gas sensor
JP3831320B2 (en) Limit current type oxygen sensor
JPH11142356A (en) Semiconductor gas sensor
JP3522257B2 (en) Gas detection method and device
JPS63159744A (en) Gas sensor
JP2849395B2 (en) Driving method of gas sensor
JP4040337B2 (en) Gas detection device and gas detection method
JP2919874B2 (en) Ozone detector
JP2949898B2 (en) Gas leak alarm
JP4507438B2 (en) Gas detection method using a gas sensor
JP3735350B2 (en) Gas sensor device
JPH11344457A (en) Smell sensor
JP3035362B2 (en) Gas sensor
JP2002286672A (en) Gas detector and gas detection method
JP3265326B2 (en) Gas sensor
JPH01316651A (en) Method and device for detecting gas
JP2022064475A (en) Method and device for controlling temperature of gas detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees