JP6749603B2 - MEMS gas sensor and gas detector - Google Patents

MEMS gas sensor and gas detector Download PDF

Info

Publication number
JP6749603B2
JP6749603B2 JP2016164287A JP2016164287A JP6749603B2 JP 6749603 B2 JP6749603 B2 JP 6749603B2 JP 2016164287 A JP2016164287 A JP 2016164287A JP 2016164287 A JP2016164287 A JP 2016164287A JP 6749603 B2 JP6749603 B2 JP 6749603B2
Authority
JP
Japan
Prior art keywords
oxygen
gas
oxide semiconductor
metal oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016164287A
Other languages
Japanese (ja)
Other versions
JP2018031685A (en
Inventor
憲剛 島ノ江
憲剛 島ノ江
賢 渡邉
賢 渡邉
旬春 大山
旬春 大山
昂一 末松
昂一 末松
麻衣子 西堀
麻衣子 西堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2016164287A priority Critical patent/JP6749603B2/en
Publication of JP2018031685A publication Critical patent/JP2018031685A/en
Application granted granted Critical
Publication of JP6749603B2 publication Critical patent/JP6749603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

この発明は、MEMSガスセンサによるガスの検出に関する。 The present invention relates to gas detection by a MEMS gas sensor.

MEMS技術により作製したMEMSガスセンサは、ヒータをパルス駆動すると、超低消費電力のセンサとなる。MEMSガスセンサは、医療機器やスマートフォンなどの様々な電子機器に実装可能なので、医療への応用、環境のモニタなどの新たな応用が期待される。 The MEMS gas sensor manufactured by the MEMS technology becomes an ultra-low power consumption sensor when the heater is pulse-driven. Since the MEMS gas sensor can be mounted on various electronic devices such as medical devices and smartphones, new applications such as medical applications and environmental monitoring are expected.

発明者らは、Ba1-xLaxFeO3-δ(BLF)等のペロブスカイト型酸化物の、酸素の収脱着挙動を昇温脱離法により検討してきた。また、これらのペロブスカイト型酸化物の酸素透過特性を測定した(例えば非特許文献1)。 The inventors have investigated the sorption and desorption behavior of oxygen in perovskite type oxides such as Ba1-xLaxFeO3-δ (BLF) by the temperature programmed desorption method. Further, the oxygen permeation characteristics of these perovskite type oxides were measured (for example, Non-Patent Document 1).

"Microstructure Effect on the Oxygen Permeation through Ba0.95La0.05FeO3-δ Membrane Fabricated by Different Methods" J. American Ceramic Soc., 93 (7), 2012-2017 (2010)"Microstructure Effect on the Oxygen Permeation through Ba0.95La0.05FeO3-δ Membrane Fabricated by Different Methods" J. American Ceramic Soc., 93 (7), 2012-2017 (2010)

発明者は、BLF等の酸素収脱着材料を金属酸化物半導体ガスセンサの検出温度付近へ昇温させると、酸素を放出することに着目し、ガスセンサを高感度化することを検討した。即ち、ガスセンサをパルス的に検出温度へ加熱し、酸素収脱着材料から酸素を放出させる。そしてこの酸素を用いて、金属酸化物半導体のガス感度を高める。MEMSガスセンサでは、短時間で酸素収脱着材料を昇温させることにより、効果的に酸素を放出させ、かつガスの検出後に短時間で冷却することにより、酸素を吸収させるサイクルが可能である。 The inventor has focused on releasing oxygen when the temperature of an oxygen sorption/desorption material such as BLF is raised to near the detection temperature of the metal oxide semiconductor gas sensor, and has examined increasing the sensitivity of the gas sensor. That is, the gas sensor is heated in a pulsed manner to the detection temperature to release oxygen from the oxygen sorption/desorption material. Then, this oxygen is used to enhance the gas sensitivity of the metal oxide semiconductor. In the MEMS gas sensor, a cycle in which oxygen is effectively released by raising the temperature of the oxygen sorption/desorption material in a short time and cooled in a short time after detecting the gas is possible.

この発明は、酸素収脱着材料からの酸素の放出により高感度化した、MEMSガスセンサを提供することと、このガスセンサを用いるガス検出装置を提供することを課題とする。 An object of the present invention is to provide a MEMS gas sensor which has high sensitivity due to release of oxygen from an oxygen sorption/desorption material, and a gas detection device using this gas sensor.

この発明は、Si基板の空洞上の絶縁膜に、ヒータと、電極と、金属酸化物半導体を含有するガス感応膜が設けられているMEMSガスセンサにおいて、
前記ガス感応膜が、前記金属酸化物半導体と、前記金属酸化物半導体によるガスの検出温度で酸素を放出し、検出温度よりも低い温度で酸素を吸収する酸素収脱着材料を含有することを特徴とする。
This invention provides a MEMS gas sensor in which a heater, an electrode, and a gas sensitive film containing a metal oxide semiconductor are provided in an insulating film on a cavity of a Si substrate,
The gas-sensitive film contains the metal oxide semiconductor and an oxygen sorption/desorption material that releases oxygen at a temperature detected by the metal oxide semiconductor and absorbs oxygen at a temperature lower than the detection temperature. And

またこの発明のガス検出装置は、前記のMEMSガスセンサと、
前記MEMSガスセンサのヒータ電力を制御することにより、MEMSガスセンサのガス感応膜の温度を、前記金属酸化物半導体によるガスの検出と酸素収脱着材料からの酸素の放出に適した検出温度と、酸素収脱着材料が酸素を吸収する吸収温度に変化させるヒータ制御手段と、
前記検出温度での前記金属酸化物半導体の抵抗値に基づいて、ガスを検出するガス検出手段、とを備えている。
Further, the gas detector of the present invention, the MEMS gas sensor,
By controlling the heater power of the MEMS gas sensor, the temperature of the gas sensitive film of the MEMS gas sensor, the detection temperature suitable for detection of gas by the metal oxide semiconductor and release of oxygen from the oxygen sorption/desorption material, and oxygen absorption. Heater control means for changing the desorption material to an absorption temperature at which it absorbs oxygen,
Gas detection means for detecting a gas based on the resistance value of the metal oxide semiconductor at the detection temperature.

前記金属酸化物半導体は、例えばPd等の貴金属を含有するSnO2である。金属酸化物半導体は、In2O3,WO3,ZnO等の他の金属酸化物半導体でも良く、PdはPt,Au,Rh等の他の貴金属で置き換えても良い。また金属酸化物半導体に貴金属を含有させなくても良い。さらにガス感応膜はシリカ、アルミナ、感応膜表面の触媒層などの第3成分を含んでいても良い。 The metal oxide semiconductor is SnO2 containing a noble metal such as Pd. The metal oxide semiconductor may be another metal oxide semiconductor such as In2O3, WO3, ZnO or the like, and Pd may be replaced with another noble metal such as Pt, Au or Rh. Further, the metal oxide semiconductor does not need to contain a noble metal. Further, the gas sensitive membrane may contain a third component such as silica, alumina, a catalyst layer on the surface of the sensitive membrane.

酸素収脱着材料は、好ましくは組成式がABO3-δのペロブスカイト材料で、Aサイトに原子番号57-71の希土類元素,Sr,Ba,Ca,Yの少なくともいずれかが含まれ、BサイトにMn,Co,Ni,Fe,In,Zn,Cu,V,Moの少なくともいずれかが含まれる。酸素の非化学量論性因子であるδは、記載を省略することがある。好ましい酸素収脱着材料を例示すると、
Ba1-xLaxFeO3(xは例えば0以上0.3以下、好ましくは0以上0.2以下、特に好ましくは0以上0.06以下)、
BaFe1-xMxO3(Mは例えばIn,Zn,Mn,Co,Ni,Cu,V,Mo、xは例えば0以上0.3以下、好ましくは0以上0.2以下、特に好ましくは0以上0.1以下)、
LnMO3(Lnは原子番号57-71の希土類元素またはSr、例えばLa,Gd,Srである。希土類元素とSrは任意の割合で固溶していても良く、MはMn,Co,Ni,Fe,In,Zn,Cu,V,Mo等)、等である。なおこれらのペロブスカイトは、酸素イオン導電性と電子導電性を備えていることが多いが、一般にSnO2に比べ低抵抗で、この明細書では金属酸化物半導体には含めない。
The oxygen sorption/desorption material is preferably a perovskite material having a composition formula of ABO3-δ, the A site contains at least one of the rare earth elements of atomic numbers 57-71, Sr, Ba, Ca, Y, and the B site contains Mn. , Co, Ni, Fe, In, Zn, Cu, V, Mo are included. Description of δ, which is a non-stoichiometric factor of oxygen, may be omitted. Exemplifying a preferable oxygen sorption/desorption material,
Ba1-xLaxFeO3 (x is, for example, 0 or more and 0.3 or less, preferably 0 or more and 0.2 or less, particularly preferably 0 or more and 0.06 or less),
BaFe1-xMxO3 (M is, for example, In, Zn, Mn, Co, Ni, Cu, V, Mo, x is, for example, 0 or more and 0.3 or less, preferably 0 or more and 0.2 or less, particularly preferably 0 or more and 0.1 or less),
LnMO3 (Ln is a rare earth element with atomic number 57-71 or Sr, for example, La, Gd, Sr. The rare earth element and Sr may be solid-solved at any ratio, and M is Mn, Co, Ni, Fe. , In, Zn, Cu, V, Mo, etc.), etc. Although these perovskites often have oxygen ion conductivity and electronic conductivity, they generally have lower resistance than SnO2, and are not included in the metal oxide semiconductor in this specification.

酸素収脱着材料は加熱により酸素を放出し、冷却により酸素を吸収し、酸素を放出あるいは吸収する温度は様々である。しかしPd,Pt,Au等の貴金属を酸素収脱着材料に担持させると、酸素を放出あるいは吸収する温度を低下させることができる。金属酸化物半導体と酸素収脱着材料との質量比は、例えば金属酸化物半導体が70〜95mass%、酸素収脱着材料が30〜5mass%である。酸素収脱着材料の割合を増すとガス感応膜が低抵抗化し、ガスセンサの出力を測定しにくくなる。酸素収脱着材料が少ないと、放出された酸素による感度の上昇が小さくなる。 The oxygen sorption/desorption material releases oxygen by heating, absorbs oxygen by cooling, and has various temperatures for releasing or absorbing oxygen. However, when a noble metal such as Pd, Pt, or Au is supported on the oxygen sorption/desorption material, the temperature at which oxygen is released or absorbed can be lowered. The mass ratio of the metal oxide semiconductor and the oxygen sorption/desorption material is, for example, 70 to 95 mass% for the metal oxide semiconductor and 30 to 5 mass% for the oxygen sorption/desorption material. When the proportion of the oxygen sorbing/desorbing material is increased, the resistance of the gas sensitive film becomes low and it becomes difficult to measure the output of the gas sensor. Fewer oxygen sorption and desorption materials will reduce the increase in sensitivity due to released oxygen.

例えば、酸素収脱着材料の粒子径を金属酸化物半導体の粒子径よりも大きくし、酸素収脱着材料の粒子表面に金属酸化物半導体粒子を付着させる。これによって、酸素収脱着材料粒子の表面に金属酸化物半導体の層を形成し、酸素収脱着材料から放出された酸素を速やかに金属酸化物半導体へ移動させる。また金属酸化物半導体の層を互いに接続することにより、金属酸化物半導体の電気伝導度を測定し易くする。しかし単に、酸素収脱着材料と金属酸化物半導体を混合しても良く、また大径の金属酸化物半導体粒子の表面に小径の酸素収脱着材料を担持させても良い。 For example, the particle diameter of the oxygen sorption/desorption material is made larger than that of the metal oxide semiconductor, and the metal oxide semiconductor particles are attached to the particle surface of the oxygen sorption/desorption material. As a result, a layer of the metal oxide semiconductor is formed on the surface of the oxygen sorption/desorption material particles, and the oxygen released from the oxygen sorption/desorption material is quickly transferred to the metal oxide semiconductor. In addition, by connecting the layers of the metal oxide semiconductor to each other, the electrical conductivity of the metal oxide semiconductor can be easily measured. However, the oxygen sorption/desorption material may be simply mixed with the metal oxide semiconductor, or the small diameter oxygen sorption/desorption material may be supported on the surface of the large diameter metal oxide semiconductor particles.

この発明では、ガス感応膜を200℃〜500℃程度の検出温度に加熱し、酸素収脱着材料から酸素を放出させる。放出された酸素は、金属酸化物半導体に酸素イオンとして吸着され、あるいは還元性ガスの酸化に用いられる。そして酸素イオンの吸着量が増すと、金属酸化物半導体が高抵抗化するため、空気中での抵抗値が増加しガス感度が増す、と考えられる。また還元性ガスの酸化を促進しても、反応中間体の吸着量が増してガス感度が増す、と考えられる。ガス感応膜が検出温度から冷却されると、酸素収脱着材料は酸素を再吸収し、元の状態に戻る。そしてMEMSガスセンサでは短時間で加熱と冷却を行うことができるので、効果的に酸素を放出させることができる。 In the present invention, the gas sensitive membrane is heated to a detection temperature of about 200°C to 500°C to release oxygen from the oxygen sorption/desorption material. The released oxygen is adsorbed on the metal oxide semiconductor as oxygen ions or used for oxidizing the reducing gas. It is considered that when the adsorption amount of oxygen ions increases, the resistance of the metal oxide semiconductor increases, so that the resistance value in air increases and the gas sensitivity increases. It is considered that even if the oxidation of the reducing gas is promoted, the adsorption amount of the reaction intermediate increases and the gas sensitivity increases. When the gas-sensitive membrane cools from the sensing temperature, the oxygen sorption/desorption material reabsorbs oxygen and returns to its original state. Since the MEMS gas sensor can perform heating and cooling in a short time, oxygen can be effectively released.

実施例のMEMSガスセンサの断面図Sectional view of the MEMS gas sensor of the example 実施例のガス検出装置のブロック図Block diagram of the gas detector of the embodiment 実施例での、ヒータ電圧の波形(a)と、金属酸化物半導体付近の酸素分圧の波形(b)、を模式的に示す図The figure which shows typically the waveform (a) of the heater voltage and the waveform (b) of the oxygen partial pressure near the metal oxide semiconductor in the example. 昇温脱離での、Ba0.95La0.05FeO3-δからの酸素放出量を示す特性図Characteristic diagram showing oxygen release from Ba0.95La0.05FeO3-δ during temperature programmed desorption 50℃と250℃との間で温度変化させた際の、Ba0.95La0.05FeO3-δの質量変化を示す特性図Characteristic diagram showing the mass change of Ba0.95La0.05FeO3-δ when the temperature is changed between 50°C and 250°C 室温と加熱温度との間で、ヒータ電圧を1秒毎にON/OFFさせた際の、200ppm C7H8への感度を示す図: 実施例ではBLF添加のPd-SnO2の感度を、比較例では酸素収脱着材料無しのPd-SnO2の感度を示す。A diagram showing the sensitivity to 200 ppm C7H8 when the heater voltage is turned on/off every one second between room temperature and heating temperature: the sensitivity of Pd-SnO2 with BLF added in the example, and the oxygen of the comparative example. The sensitivity of Pd-SnO2 without a sorption/desorption material is shown. 加熱温度を一定にした際の、実施例と比較例での200ppm C7H8への感度を示す図Diagram showing sensitivity to 200 ppm C7H8 in Example and Comparative Example when heating temperature was constant

以下に本発明を実施するための最適実施例を示す。 The best examples for carrying out the present invention will be shown below.

図1に、実施例のMEMSガスセンサ2を示す。4はシリコンなどの基板で、空洞6が設けられており、空洞6上に絶縁膜8が設けられている。空洞6は絶縁膜8側からエッチングしたものでも、あるいは貫通孔でもよい。 FIG. 1 shows a MEMS gas sensor 2 of the embodiment. Reference numeral 4 denotes a substrate made of silicon or the like, in which a cavity 6 is provided, and an insulating film 8 is provided on the cavity 6. The cavity 6 may be etched from the insulating film 8 side or may be a through hole.

絶縁膜8には例えばPt膜から成るヒータ10が設けられ、絶縁膜8の表面に例えば一対のPt膜等の電極11,12が設けられ、厚膜のガス感応膜14が電極11,12を被覆する。なお、電極11,12を設けず、ヒータ10を絶縁膜8の上部に露出させ、ヒータ10とガス感応膜14との合成抵抗を測定してもよい。またガス感応膜14は薄膜でも良い。 The insulating film 8 is provided with a heater 10 made of, for example, a Pt film, the surface of the insulating film 8 is provided with electrodes 11, 12 such as a pair of Pt films, and the thick gas-sensitive film 14 is provided with the electrodes 11, 12. Cover. It is also possible to measure the combined resistance of the heater 10 and the gas sensitive film 14 by exposing the heater 10 above the insulating film 8 without providing the electrodes 11 and 12. Further, the gas sensitive film 14 may be a thin film.

ガス感応膜14は、金属酸化物半導体と、ペロブスカイトから成る酸素収脱着材料との混合物からなる。ガス感応膜14の構造を図1の右上に示し、酸素収脱着材料粒子16は金属酸化物半導体の粒子に比べ粒子径が大きく、酸素収脱着材料粒子16の表面にSnO2層18が設けられ、SnO2層18が互いに繋がって、電気伝導度が発現する。 The gas sensitive film 14 is made of a mixture of a metal oxide semiconductor and an oxygen sorption/desorption material made of perovskite. The structure of the gas sensitive film 14 is shown in the upper right of FIG. 1, the oxygen sorption/desorption material particles 16 have a larger particle diameter than the particles of the metal oxide semiconductor, and the SnO 2 layer 18 is provided on the surface of the oxygen sorption/desorption material particles 16. The SnO2 layers 18 are connected to each other to develop electrical conductivity.

SnO2の粒子径と酸素収脱着材料粒子16の粒子径を例えば同程度とし、これらを混合してガス感応膜14としてもよい。あるいは酸素収脱着材料粒子16の粒子径をSnO2の粒子径よりも小さくし、酸素収脱着材料粒子をSnO2粒子に担持させてもよい。 For example, the particle size of SnO2 and the particle size of the oxygen sorption/desorption material particles 16 may be approximately the same, and these may be mixed to form the gas sensitive film 14. Alternatively, the particle size of the oxygen sorption/desorption material particles 16 may be made smaller than the particle size of SnO2, and the oxygen sorption/desorption material particles may be supported on the SnO2 particles.

図2は、実施例のガス検出装置20を示し、ガス感応膜14に負荷抵抗R1を接続し、検出電圧Vccを加える。マイクロコンピュータ21のヒータドライブ22は、周期的にヒータ10の電力を制御し、A/Dコンバータ23は負荷抵抗R1への出力電圧を、ガス感応膜14の昇温時にA/D変換し、ガス検出部24でガスを検出する。 FIG. 2 shows a gas detection device 20 of the embodiment, in which a load resistor R1 is connected to the gas sensitive film 14 and a detection voltage Vcc is applied. The heater drive 22 of the microcomputer 21 periodically controls the electric power of the heater 10, and the A/D converter 23 A/D-converts the output voltage to the load resistance R1 when the gas sensitive film 14 is heated, The detector 24 detects the gas.

図3は、ヒータ10の電圧波形と、ガス感応膜14内の酸素分圧を模式的に示す。実施例では、ヒータ10を1秒毎にON/OFFしたが、ヒータ10をONする時間幅は、10msec以上1分以下が好ましく、ヒータ10をOFFする時間幅は、0.1秒以上1分以下が好ましい。またヒータ10をON/OFFするのではなく、サイン波あるいはランプ波などによって、ヒータ電圧を制御してもよい。 FIG. 3 schematically shows the voltage waveform of the heater 10 and the oxygen partial pressure in the gas sensitive film 14. In the embodiment, the heater 10 is turned on/off every 1 second, but the time width for turning on the heater 10 is preferably 10 msec or more and 1 minute or less, and the time width for turning off the heater 10 is 0.1 second or more and 1 minute or less. preferable. The heater voltage may be controlled by a sine wave, a ramp wave, or the like instead of turning on/off the heater 10.

酸素収脱着材料は加熱により酸素を放出し、冷却により酸素を吸収する。このため、ガス感応膜内の酸素分圧は、ヒータのONに同期して上昇し、OFFに同期して低下する。そして酸素収脱着材料から放出された酸素は、金属酸化物半導体に酸素イオンとして吸着され、ガスセンサ2の抵抗値を増加させる。あるいはまた、放出された酸素と検出対象の還元性ガスとの反応により、金属酸化物半導体の抵抗値を減少させる中間体が生成し、感度が向上する。 The oxygen sorption/desorption material releases oxygen by heating and absorbs oxygen by cooling. Therefore, the oxygen partial pressure in the gas sensitive film rises in synchronization with ON of the heater and decreases in synchronization with OFF of the heater. Oxygen released from the oxygen sorption/desorption material is adsorbed on the metal oxide semiconductor as oxygen ions to increase the resistance value of the gas sensor 2. Alternatively, the reaction between the released oxygen and the reducing gas to be detected produces an intermediate that reduces the resistance value of the metal oxide semiconductor, thereby improving the sensitivity.

図4は、Ba0.95La0.05FeO3を4℃/分の速度で昇温させた際の酸素の放出量を示す。370℃付近に酸素の放出ピークがあり、この温度はMEMSガスセンサ2でのガスの検出温度にほぼ等しい。なおBa0.95La0.05FeO3(BLF)に代えて、Ln1-xSrxCoO3,La1-xSrxFeO3,
La1-xSrxMnO3,LaMnO3,LaCoO3,LaNiO3などの類似のペロブスカイトを用いてもよい。またGd1-xSrxCoO3などのように、ペロブスカイトのLa元素をGd元素などで置き換えてもよい。さらにSrCoO3,SrFeO3なども400〜500℃付近で酸素を放出する。
FIG. 4 shows the amount of released oxygen when Ba0.95La0.05FeO3 was heated at a rate of 4° C./min. There is an oxygen release peak near 370° C., and this temperature is almost equal to the gas detection temperature of the MEMS gas sensor 2. Note that instead of Ba0.95La0.05FeO3 (BLF), Ln1-xSrxCoO3, La1-xSrxFeO3,
Similar perovskites such as La1-xSrxMnO3, LaMnO3, LaCoO3, LaNiO3 may be used. Further, as in Gd1-xSrxCoO3, etc., the La element of perovskite may be replaced with a Gd element or the like. Furthermore, SrCoO3, SrFeO3, etc. also release oxygen at around 400-500°C.

酸素収脱着材料が酸素を放出する温度が、金属酸化物半導体によるガスの検出温度よりも高い場合、Pd,Pt,Auなどの貴金属を酸素収脱着材料に担持させることにより、酸素の放出温度と吸収温度を低下させることができる。 When the temperature at which the oxygen sorption/desorption material releases oxygen is higher than the temperature at which the gas is detected by the metal oxide semiconductor, the oxygen sorption/desorption material is loaded with a noble metal such as Pd, Pt, or Au, and The absorption temperature can be lowered.

図5は、BLFの温度を50℃と250℃との間で周期的に変化させた際の、BLFの質量の変化を示す。250℃への昇温と同期してBLFの質量が減少し、50℃への冷却と同期して質量が増加している。このことは、図4のピークよりも低い温度で酸素の放出が始まり、250℃で可燃性ガスを検出するガスセンサをBLFにより高感度化できることを示している。 FIG. 5 shows changes in the mass of BLF when the temperature of BLF was cyclically changed between 50° C. and 250° C. The mass of BLF decreases in synchronization with the temperature rise to 250°C, and the mass increases in synchronization with the cooling to 50°C. This indicates that the release of oxygen starts at a temperature lower than the peak in FIG. 4, and the sensitivity of the gas sensor that detects combustible gas at 250° C. can be increased by using BLF.

ガス感応膜14の調製例を示す。SnCl4水溶液を中和し、沈殿を洗浄後に遠心分離し、水熱処理により、SnO2のゾルを得、700℃で焼成しSnO2粉末とした。SnO2の平均一次粒子径は16nmで、SnO2粒子は単分散していた。SnO2粉末にPd塩の水溶液を加え、乾燥後に焼成し、1.5mass%のPdを担持したPd-SnO2とした。 An example of preparation of the gas sensitive film 14 will be shown. The SnCl4 aqueous solution was neutralized, the precipitate was washed and then centrifuged, and hydrothermal treatment was carried out to obtain SnO2 sol, which was calcined at 700°C to obtain SnO2 powder. The average primary particle diameter of SnO2 was 16 nm, and the SnO2 particles were monodispersed. An aqueous solution of Pd salt was added to SnO2 powder, dried and baked to obtain Pd-SnO2 carrying 1.5 mass% Pd.

Fe(3価)とBaとLaとの硝酸塩をモル比で20:19:1の割合で含む混合水溶液を調整し、アンモニアにより中和し、FeイオンとBaイオンとLaイオンを共沈させた。この沈殿を乾燥させ、最高温度が1050℃となるように焼成し、Ba0.95La0.05FeO3を調製した。Ba0.95La0.05FeO3を粉砕し、平均1次粒子径が50nmのBLF粉体とした。Pd-SnO2粉体85mass%とBLF粉体15mass%とを混合し、電極11,12を設けた絶縁膜8上に塗布し、乾燥焼成により図1のガスセンサ2とした。他に、
1.5mass%のPd担持のSnO2をガス感応膜とするガスセンサ(比較例)、
Pd-SnO2粉体70mass%とBLF粉体30mass%の混合物をガス感応膜とするガスセンサ、
Ba1-xLaxFeO3でのxを変化させたガスセンサ、
BaFe1-xMxO3(MはIn等)とPd-SnO2を用いたガスセンサ、
BLFとPd-In2O3を用いたガスセンサ、等を調製した。
A mixed aqueous solution containing Fe (trivalent) and Ba and La nitrates in a molar ratio of 20:19:1 was prepared and neutralized with ammonia to coprecipitate Fe, Ba and La ions. .. This precipitate was dried and calcined so that the maximum temperature was 1050°C to prepare Ba0.95La0.05FeO3. Ba0.95La0.05FeO3 was crushed to obtain BLF powder having an average primary particle size of 50 nm. 85 mass% of Pd-SnO2 powder and 15 mass% of BLF powder were mixed and applied on the insulating film 8 provided with the electrodes 11 and 12, and dried and fired to obtain the gas sensor 2 of FIG. other,
Gas sensor using 1.5 mass% Pd-supported SnO2 as a gas sensitive film (comparative example),
A gas sensor using a mixture of Pd-SnO2 powder 70mass% and BLF powder 30mass% as a gas sensitive film,
Gas sensor with varying x in Ba1-xLaxFeO3,
Gas sensor using BaFe1-xMxO3 (M is In, etc.) and Pd-SnO2,
A gas sensor using BLF and Pd-In2O3 was prepared.

図6は、上記のガスセンサ2をパルス駆動(室温と250℃との間で温度変化するように、1秒毎にヒータ電圧をon/off)した際の、200ppmのC7H8に対するガス感度を示す。なおガス感度は空気中での抵抗値とガス中での抵抗値の比により定義し、BLFを含有させることにより、ガス感度が著しく増加した。 FIG. 6 shows gas sensitivity to C7H8 of 200 ppm when the gas sensor 2 is pulse-driven (heater voltage is turned on/off every one second so as to change the temperature between room temperature and 250° C.). The gas sensitivity was defined by the ratio of the resistance value in air to the resistance value in gas, and the inclusion of BLF significantly increased the gas sensitivity.

図7は、上記のガスセンサ2を250℃の一定温度で動作させた際の、200ppmのC7H8に対するガス感度を示す。Pd-SnO2のみから成るガスセンサと、BLF含有のPd-SnO2から成るガスセンサとで、ガス感度に大差はない。図6と図7とから、ガス感応膜の温度変化により、BLFが酸素の放出と吸収とを繰り返し、ガスセンサ2が高感度化したことが分かる。 FIG. 7 shows the gas sensitivity to 200 ppm of C7H8 when the gas sensor 2 is operated at a constant temperature of 250° C. There is no great difference in gas sensitivity between the gas sensor composed of only Pd-SnO2 and the gas sensor composed of Pd-SnO2 containing BLF. From FIG. 6 and FIG. 7, it can be seen that the BLF repeatedly releases and absorbs oxygen due to the temperature change of the gas-sensitive film, and the gas sensor 2 has high sensitivity.

Pd-SnO2粉体70mass%とBLF粉体30mass%の混合物をガス感応膜とし、室温と250℃の間で温度変化させると、250℃での抵抗値が増加した。このことは、図2のA/Dコンバータ23に高精度なものが必要になることを意味する。Ba1-xLaxFeO3でのxを0としても図6と同様の特性が得られた。しかしxを0.1とすると、酸素放出のピークは450℃付近に移動し、室温と350〜500℃の間で温度変化させるLPGセンサ及びCH4センサに適した特性が得られた。 When a mixture of Pd-SnO2 powder 70mass% and BLF powder 30mass% was used as a gas sensitive film and the temperature was changed between room temperature and 250℃, the resistance value at 250℃ increased. This means that the A/D converter 23 of FIG. 2 needs to be highly accurate. Even when x in Ba1-xLaxFeO3 was set to 0, the same characteristics as in Fig. 6 were obtained. However, when x was set to 0.1, the peak of oxygen release moved to around 450 ℃, and the characteristics suitable for the LPG sensor and CH4 sensor, in which the temperature was changed between room temperature and 350-500 ℃, were obtained.

検出対象ガスはC7H8に限らず、H2,LPG,CH4、VOCガス(揮発性有機物のガスで、C7H8はその代表的化合物)など任意である。そしてガス感応膜の検出温度に応じて、酸素収脱着材料の種類と酸素収脱着材料への貴金属担持の有無を変化させればよい。例えば酸素収脱着材料はBLFに限らず、極めて類似した化合物であるBaFe1-xMxO3(MはIn,Zn,Mn,Co,Ni,Cu,V,Mo、xは0以上0.3以下、好ましくは0.01以上0.2以下)に変えても良い。この場合、MがInでは酸素放出のピークは380℃付近に現れ、実施例と同様室温と250℃の間の温度変化でC7H8等のガスを検出できた。MがZn,Niの場合、酸素放出のピークは450℃付近に移動し、LPG,CH4等を室温と350〜500℃との間の温度変化で検出するのに適した特性が得られた。 The gas to be detected is not limited to C7H8, but may be any gas such as H2, LPG, CH4, VOC gas (volatile organic substance gas, C7H8 is a typical compound thereof). The type of oxygen sorption/desorption material and the presence/absence of noble metal loading on the oxygen sorption/desorption material may be changed according to the temperature detected by the gas-sensitive film. For example, the oxygen sorption/desorption material is not limited to BLF, but is a very similar compound BaFe1-xMxO3 (M is In, Zn, Mn, Co, Ni, Cu, V, Mo, x is 0 or more and 0.3 or less, preferably 0.01 or more. 0.2 or less). In this case, when M was In, the peak of oxygen release appeared near 380°C, and gases such as C7H8 could be detected by the temperature change between room temperature and 250°C as in the example. When M was Zn and Ni, the peak of oxygen release shifted to around 450 ℃, and the characteristics suitable for detecting LPG, CH4, etc. at room temperature and the temperature change between 350 and 500 ℃ were obtained.

AサイトをLa等の希土類元素とSr,Ba, Ca, Yの少なくともいずれか、特にLa等の希土類元素子とSrの混合物とし、BサイトをMn,Co,Ni,Fe,In,Zn,Cu,V,Moとする、La1-xSrxBO3(xは任意)をBLFの代わりに用いても良い。特にBサイトをFe,Co,またはFeとCoの混合物とし、xを0.2以上0.9以下とすると、150℃〜300℃に酸素放出のピークが生じた。 The A site is a mixture of a rare earth element such as La and at least one of Sr, Ba, Ca and Y, especially a rare earth element such as La and Sr, and the B site is Mn, Co, Ni, Fe, In, Zn, Cu. , V, Mo, La1-xSrxBO3 (x is arbitrary) may be used instead of BLF. Particularly, when the B site was made of Fe, Co, or a mixture of Fe and Co, and x was 0.2 or more and 0.9 or less, a peak of oxygen release occurred at 150 ℃ to 300 ℃.

Pd-In2O3とBLFの混合物をガス感応膜とし、室温と250℃の間を温度変化させても、同様にC7H8への感度を向上させることができた。このことは金属酸化物半導体の種類は任意であることを示している。また金属酸化物半導体に添加する貴金属の種類と濃度は任意である。 Even if the mixture of Pd-In2O3 and BLF was used as a gas sensitive film and the temperature was changed between room temperature and 250°C, the sensitivity to C7H8 could be similarly improved. This indicates that the type of metal oxide semiconductor is arbitrary. The type and concentration of the noble metal added to the metal oxide semiconductor are arbitrary.

2 MEMSガスセンサ
4 基板
6 空洞
8 絶縁膜
10 ヒータ
11,12 電極
14 ガス感応膜
16 酸素収脱着材料粒子
18 SnO2層
20 ガス検出装置
21 マイクロコンピュータ
22 ヒータドライブ
23 A/Dコンバータ
24 ガス検出部

R1 負荷抵抗
Vcc 検出電圧
2 MEMS gas sensor
4 board
6 cavities
8 Insulating film
10 heater
11,12 electrodes
14 Gas sensitive membrane
16 Oxygen sorption/desorption material particles
18 SnO2 layer
20 gas detector
21 Microcomputer
22 heater drive
23 A/D converter
24 Gas detector

R1 load resistance
Vcc detection voltage

Claims (3)

Si基板の空洞上の絶縁膜に、ヒータと、電極と、金属酸化物半導体を含有するガス感応膜が設けられているMEMSガスセンサにおいて、
前記ガス感応膜が、前記金属酸化物半導体と、前記金属酸化物半導体によるガスの検出温度で酸素を放出し、検出温度よりも低い温度で酸素を吸収する酸素収脱着材料を含有し、 かつ前記酸素収脱着材料の粒子径は前記金属酸化物半導体の粒子径よりも大きく、さらに前記酸素収脱着材料の粒子表面に前記金属酸化物半導体粒子が付着していることを特徴とする、MEMSガスセンサ。
In a MEMS gas sensor in which a heater, an electrode, and a gas sensitive film containing a metal oxide semiconductor are provided in an insulating film on a cavity of a Si substrate,
The gas-sensitive film contains the metal oxide semiconductor, and an oxygen sorption/desorption material that releases oxygen at a detection temperature of gas by the metal oxide semiconductor and absorbs oxygen at a temperature lower than the detection temperature , and A particle size of the oxygen sorption/desorption material is larger than a particle size of the metal oxide semiconductor, and the metal oxide semiconductor particles adhere to the surface of the particles of the oxygen sorption/desorption material .
前記酸素収脱着材料は組成式がABO3-δのペロブスカイト材料で、Ba1-xLaxFeO3−δ
(xは0以上0.3以下)、またはBaFe1-xMxO3−δ(MはIn,Zn,Mn,Co,Ni,Cu,V,またはMo、xは0以上0.3以下)であることを特徴とする請求項1のMEMSガスセンサ。
The oxygen sorption/desorption material is a perovskite material having a composition formula of ABO3-δ, Ba1-xLaxFeO3-δ
(X is 0 or more and 0.3 or less) or BaFe1-xMxO3−δ (M is In, Zn, Mn, Co, Ni, Cu, V, or Mo, x is 0 or more and 0.3 or less) Item 1 MEMS gas sensor.
請求項1または2のMEMSガスセンサと、
前記MEMSガスセンサのヒータ電力を制御することにより、MEMSガスセンサのガス感応膜の温度を、前記金属酸化物半導体によるガスの検出と酸素収脱着材料からの酸素の放出に適した検出温度と、酸素収脱着材料が酸素を吸収する吸収温度に変化させるヒータ制御手段と、
前記検出温度での前記金属酸化物半導体の抵抗値に基づいて、ガスを検出するガス検出手段、とを備えている、ガス検出装置。
The MEMS gas sensor according to claim 1 or 2,
By controlling the heater power of the MEMS gas sensor, the temperature of the gas sensitive film of the MEMS gas sensor, the detection temperature suitable for detection of gas by the metal oxide semiconductor and release of oxygen from the oxygen sorption/desorption material, and oxygen absorption. Heater control means for changing the desorption material to an absorption temperature at which it absorbs oxygen,
A gas detection unit that detects a gas based on a resistance value of the metal oxide semiconductor at the detection temperature.
JP2016164287A 2016-08-25 2016-08-25 MEMS gas sensor and gas detector Active JP6749603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016164287A JP6749603B2 (en) 2016-08-25 2016-08-25 MEMS gas sensor and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164287A JP6749603B2 (en) 2016-08-25 2016-08-25 MEMS gas sensor and gas detector

Publications (2)

Publication Number Publication Date
JP2018031685A JP2018031685A (en) 2018-03-01
JP6749603B2 true JP6749603B2 (en) 2020-09-02

Family

ID=61303335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164287A Active JP6749603B2 (en) 2016-08-25 2016-08-25 MEMS gas sensor and gas detector

Country Status (1)

Country Link
JP (1) JP6749603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408093B2 (en) 2020-04-20 2024-01-05 フィガロ技研株式会社 gas detection device
TWI762198B (en) * 2021-02-19 2022-04-21 財團法人工業技術研究院 Micro electromechanical heater
CN114487036A (en) * 2022-01-10 2022-05-13 海宁微纳芯传感技术有限公司 MEMS gas sensor with gas enrichment function and working method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830648A (en) * 1981-08-17 1983-02-23 Hitachi Ltd Semiconductor gas sensor
JPS61147148A (en) * 1984-12-20 1986-07-04 Fuigaro Giken Kk Waste gas sensor
JPH0755676Y2 (en) * 1986-02-12 1995-12-20 矢崎総業株式会社 Gas alarm
JP2911928B2 (en) * 1989-12-14 1999-06-28 フィガロ技研株式会社 Gas detection method
JPH04161219A (en) * 1990-10-26 1992-06-04 Osaka Gas Co Ltd Treatment of oxygen-containing gas
JPH0658899A (en) * 1992-08-06 1994-03-04 Figaro Eng Inc Gas sensor
JPH11271255A (en) * 1998-03-19 1999-10-05 Fis Kk Semiconductor gas sensor
JP4788238B2 (en) * 2005-08-22 2011-10-05 富士電機株式会社 Thin film gas sensor manufacturing method and thin film gas sensor

Also Published As

Publication number Publication date
JP2018031685A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
Joshi et al. One-step approach for preparing ozone gas sensors based on hierarchical NiCo 2 O 4 structures
Çiftyürek et al. Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species
Chen et al. CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor
JP5642845B2 (en) Hydrogen sensitive composite material, hydrogen gas sensor, and sensor for detecting hydrogen and other gases with improved reference resistance
Gong et al. Micromachined nanocrystalline silver doped SnO2 H2S sensor
Raj et al. Zinc (II) oxide-zinc (II) molybdate composite humidity sensor
Zhang et al. CO2 gas sensors based on Yb1− xCaxFeO3 nanocrystalline powders
JP6749603B2 (en) MEMS gas sensor and gas detector
Kapse et al. H2S sensing properties of La-doped nanocrystalline In2O3
Lee et al. Thick-film hydrocarbon gas sensors
Ghosh et al. Modeling the sensing characteristics of chemi-resistive thin film semi-conducting gas sensors
Jain et al. Studies on gas sensing performance of (Ba0. 8Sr0. 2)(Sn0. 8Ti0. 2) O3 thick film resistors
Patil et al. Effect of firing temperature on gas sensing properties of nanocrystalline perovskite BaTiO3 thin films prepared by spray pyrolysis techniques
Qu et al. Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2
Li et al. CO 2 sensing properties of La 1− x Ba x FeO 3 thick film and packed powder sensors
Wagh et al. Surface customization of SnO2 thick films using RuO2 as a surfactant for the LPG response
Ratna Phani et al. Effect of additives on the response of sensors utilizing semiconducting oxide on carbon monoxide sensitivity
Tulliani et al. New NOx sensors based on hematite doped with alkaline and alkaline-earth elements
Sundaram Comparative study on micromorphology and humidity sensitive properties of thick film and disc humidity sensors based on semiconducting SnWO4–SnO2 composites
JP2017020815A (en) Gas sensor material, method for manufacturing the same and method for manufacturing gas sensor using gas sensor material
JP7389960B2 (en) carbon dioxide gas sensor
Shimizu et al. Nitric Oxide Gas Sensors Using Multilayered Thin Film with Interspaces.
Wang et al. Effect of Ce3+ and Pd2+ doping on coral-like nanostructured SnO2 as acetone gas sensor
Pedhekar et al. CeO2 activated ZnO-TiO2 thick film for CO2 gas sensor
Miskovic et al. Analysis of electronic properties of pseudobrookite thick films with possible application for NO gas sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200804

R150 Certificate of patent or registration of utility model

Ref document number: 6749603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250