JPH03185351A - Detection of gas - Google Patents

Detection of gas

Info

Publication number
JPH03185351A
JPH03185351A JP32536489A JP32536489A JPH03185351A JP H03185351 A JPH03185351 A JP H03185351A JP 32536489 A JP32536489 A JP 32536489A JP 32536489 A JP32536489 A JP 32536489A JP H03185351 A JPH03185351 A JP H03185351A
Authority
JP
Japan
Prior art keywords
gas
metal oxide
oxide semiconductor
film
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32536489A
Other languages
Japanese (ja)
Other versions
JP2911928B2 (en
Inventor
Hiroshi Koda
弘史 香田
Muneharu Shimabukuro
宗春 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18176004&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03185351(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP32536489A priority Critical patent/JP2911928B2/en
Publication of JPH03185351A publication Critical patent/JPH03185351A/en
Application granted granted Critical
Publication of JP2911928B2 publication Critical patent/JP2911928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the sensitivity of a gas sensor and the concn. dependence of gas by detecting the gas from the reduction in the resistance value of a metal oxide semiconductor film enhanced in sensitivity at the time of cooling. CONSTITUTION:A power supply 14 for pulse heating turns a transistor switch 16 ON to perform the pulse heating of the metal oxide film of a gas sensor 02 and an active oxygen ion is formed to the surface of the metal oxide semiconductor film. At this time, a control timer 18 is operated in an one-sec unit to turn the switch 16 ON for a predetermined time to heat the film. Subsequently, when the metal oxide semiconducte film is rapidly cooled, the signal from the sensor is sampled by a sample hold circuit 20 while an oxygen ion is held. At the time of cooling, the load resistor RL of the sensor 02 increases in its resistance value in air but does not increase in its resistance value in gas. When the gas is detected from the reduction in the resistance value of the metal oxide semiconductor film RL enhanced in sensitivity at the time of cooling, the sensitivity of the sensor 02 is enhanced and the concn. dependence of the gas can be enhanced.

Description

【発明の詳細な説明】 【発明の利用分野] この発明は金属酸化物半導体膜の抵抗値の変化を利用し
たガスの検出に関し、例えば硫化水素やエタノール、C
O1イソブタン等のガスの検出に用いる。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to the detection of gases using changes in the resistance value of metal oxide semiconductor films, such as hydrogen sulfide, ethanol, carbon dioxide, etc.
O1 Used to detect gases such as isobutane.

[従来技術1 特開平1−206.252号は、ガスセンサをパルス加
熱により駆動し、ガスを検出することを開示している。
[Prior Art 1 Japanese Patent Application Laid-open No. 1-206.252 discloses detecting gas by driving a gas sensor by pulse heating.

この技術では、センサを、パルス加熱時以外は、原則と
して室温(R,T、)に置き、パルス加熱のデユーティ
比を小さくして消費電力を減少させる。
In this technique, the sensor is basically placed at room temperature (R, T) except during pulse heating, and the duty ratio of pulse heating is reduced to reduce power consumption.

この技術でのセンサに関する条件は、熱時定数が短く、
短時間にガスセンサを加熱できることである。この条件
が満たされれば、センサの構造は任意である。また検出
は原則としてパルス加熱時の出力から行うが、冷却時の
出力からも検出できる。しかしこの技術では、パルス加
熱温度の効果については余り検討していない。
The sensor requirements for this technology are that the thermal time constant is short;
The gas sensor can be heated in a short time. As long as this condition is met, the structure of the sensor is arbitrary. In principle, detection is performed from the output during pulse heating, but it can also be detected from the output during cooling. However, in this technique, the effect of pulse heating temperature is not studied much.

次に、この出願の発明者らは、ガスセンサのパルス加熱
駆動について検討し、パルス加熱時の温度を100〜3
00℃とすると、センサは湿度にのみ感じ、ガス感度が
消滅することを見いだした(特願平1−128.468
号)。
Next, the inventors of this application studied the pulse heating drive of the gas sensor and set the temperature during pulse heating to 100 to 3
It was discovered that when the temperature is set to 00°C, the sensor senses only humidity and the gas sensitivity disappears (Patent Application No. 1-128.468)
issue).

発明者は、これと平行してパルス加熱時の温度を更に増
した場合の特性を検討した。その結果、パルス加熱温度
をある温度以上とすると、以下の現象が生じることを見
いだした。
In parallel with this, the inventor studied the characteristics when the temperature during pulse heating was further increased. As a result, it was found that the following phenomenon occurs when the pulse heating temperature is increased to a certain temperature or higher.

(1)  冷却時の空気中でのセンサ抵抗が激増する。(1) Sensor resistance in the air increases dramatically during cooling.

しかしパルス加熱時のセンサ抵抗は、特に増加しない。However, the sensor resistance during pulse heating does not particularly increase.

(2)冷却時のガス中でのセンサ抵抗は特に増加せず、
パルス加熱時のガス中でのセンサ抵抗と大差はない。
(2) Sensor resistance in gas during cooling does not particularly increase;
There is not much difference from the sensor resistance in gas during pulse heating.

(3)この結果、冷却時のガス感度並びにガス濃度依存
性が向上する。
(3) As a result, gas sensitivity and gas concentration dependence during cooling are improved.

[目的1 この発明の目的は、ガスセンサの感度を向上させると共
に、ガスセンサのガス濃度依存性を向上させることにあ
る。
[Objective 1 An object of the present invention is to improve the sensitivity of a gas sensor and to improve the gas concentration dependence of the gas sensor.

[発明の構成] この発明では、ガスセンサの金属酸化物半導体膜をパル
ス的に高温に加熱し、金属酸化物半導体表面に活性な酸
素イオンを形成させる。次に金属酸化物半導体膜を速や
かに冷却すると、生成した活性な酸素イオンを保ったま
ま金属酸化物半導体膜が冷却されるため、冷却時の空気
中での抵抗値が激増する。冷却時の空気中での抵抗値は
数MΩ以上、通常はIOMΩ以上で、実質的に無限大で
ある。一方冷却時のガス中での抵抗値は余り増加しない
。この結果ガスセンサの感度が増加する。
[Structure of the Invention] In the present invention, a metal oxide semiconductor film of a gas sensor is heated to a high temperature in a pulsed manner to form active oxygen ions on the surface of the metal oxide semiconductor. Next, when the metal oxide semiconductor film is rapidly cooled, the metal oxide semiconductor film is cooled while retaining the generated active oxygen ions, so that the resistance value in the air during cooling increases dramatically. The resistance value in air during cooling is several MΩ or more, usually IOMΩ or more, and is substantially infinite. On the other hand, the resistance value in gas during cooling does not increase much. As a result, the sensitivity of the gas sensor increases.

更に空気中とガス中との抵抗値の比が大きいため、セン
サのガス濃度依存性も向上する。
Furthermore, since the ratio of resistance values in air and gas is large, the dependence of the sensor on gas concentration is also improved.

冷却時の空気中での抵抗値が増加する原因として、パル
ス加熱による活性な酸素イオンの吸着の他に、パルス加
熱により吸着水が除去されることが考えられる。しかし
発明者の実験によれば、パルス加熱時のセンサ出力も冷
却時のセンサ出力も、湿度の影響を受けている。従って
パルス加熱により吸着水が完全に除去されるとは考え難
い。冷却時の空気中での抵抗値が増加する原因として残
るものは、パルス加熱時に活性な酸素イオンが生威し、
これが冷却時にも残存することのみである。
The reason for the increase in the resistance value in air during cooling is thought to be not only the adsorption of active oxygen ions by pulse heating but also the removal of adsorbed water by pulse heating. However, according to the inventor's experiments, both the sensor output during pulse heating and the sensor output during cooling are affected by humidity. Therefore, it is difficult to imagine that adsorbed water will be completely removed by pulse heating. The remaining cause of the increase in resistance value in air during cooling is the production of active oxygen ions during pulse heating.
This is the only thing that remains upon cooling.

金属酸化物半導体膜を5n02膜とした場合、冷却時の
空気中での抵抗値の増加は、パルス加熱温度を450℃
以上とすることにより、著しくなる。この温度は、Sn
O1表面へのo−、o”−等の活性な酸素イオンが形成
される温度の文献値、(江頭 ^、C,S、 Symp
osium 5erial No、 309. p71
゜1986) 、とほぼ一致する。またこれらの吸着酸
素イオンの形成は、SnO,等の金属酸化物半導体の抵
抗値を著しく増加させることが知られている。
When the metal oxide semiconductor film is a 5n02 film, the increase in resistance value in air during cooling is due to the pulse heating temperature being 450°C.
By doing the above, the problem becomes significant. This temperature is Sn
Literature values for the temperature at which active oxygen ions such as o- and o”- are formed on the O1 surface, (Egashira ^, C, S, Symp
osium 5erial No. 309. p71
゜1986), which is almost the same. It is also known that the formation of these adsorbed oxygen ions significantly increases the resistance value of metal oxide semiconductors such as SnO.

これらのことは、パルス加熱により冷却時の空気中での
抵抗値が増加することの原因が、活性な吸着酸素イオン
の形成にある゛ことを裏付ける。
These facts confirm that the increase in resistance value in air during cooling due to pulse heating is due to the formation of active adsorbed oxygen ions.

次にこの発明について、個別的に説明する。ガスセンサ
は熱時定数を短くするため、膜状(II厚lO〜20μ
m程度の厚膜や、膜厚1pm以下の薄膜)の金属酸化物
半導体を用いる。金属酸化物半導体には、例えばSnO
,やIn、03、ZnOを用いる。
Next, this invention will be explained individually. In order to shorten the thermal time constant, the gas sensor has a film-like structure (II thickness lO ~ 20 μm).
A metal oxide semiconductor with a thickness of about 1 pm or a thin film of 1 pm or less is used. Metal oxide semiconductors include, for example, SnO
, In, 03, and ZnO are used.

ガスセンサの構造について、重要なのは金属酸化物半導
体膜の熱時定数を小さくすることである。
Regarding the structure of the gas sensor, it is important to reduce the thermal time constant of the metal oxide semiconductor film.

熱時定数が大きく、パルス加熱からの冷却が遅いと、冷
却の間に活性な酸素イオンが失われ、冷却時の金属酸化
物半導体は余り高抵抗化せず、ガス感度も低い。例えば
通常用いられているチップ状に金属酸化物半導体を底型
したガスセンサでは、冷却時の熱時定数はlO秒〜数十
秒程度で極めて遅く、高温から室温へ冷却しても室温で
の抵抗値は無限大とはならず、また室温でのガス感度も
低い。これに対して冷却時の熱時定数を短く、例えばl
oOmsec以下に、より好ましくはlQ+++sec
以下にすると、パルス加熱後の冷却時の抵抗値は無限大
で、ガス感度も高くなる。また熱時定数を小さくするの
は、パルス加熱時の最高加熱温度(以下この温度を“パ
ルス温度゛″という)に達するまでの時間を短縮し、加
熱パルスの幅を短くするとの効果を持つ。このことは、
ガスセンサの消費電力を小さくすることになる。
If the thermal time constant is large and the cooling from pulse heating is slow, active oxygen ions are lost during cooling, and the resistance of the metal oxide semiconductor during cooling does not increase much and the gas sensitivity is low. For example, in a commonly used chip-shaped gas sensor with a metal oxide semiconductor bottom, the thermal time constant during cooling is extremely slow, ranging from 10 seconds to several tens of seconds, and even when cooled from high temperature to room temperature, the resistance at room temperature is The value is not infinite, and the gas sensitivity at room temperature is also low. On the other hand, if the thermal time constant during cooling is shortened, e.g.
oOmsec or less, more preferably lQ+++sec
If it is set below, the resistance value during cooling after pulse heating will be infinite and the gas sensitivity will also be high. Furthermore, reducing the thermal time constant has the effect of shortening the time required to reach the maximum heating temperature during pulse heating (hereinafter referred to as "pulse temperature") and shortening the width of the heating pulse. This means that
This will reduce the power consumption of the gas sensor.

パルス加熱の温度は、SnO2膜の場合450°C以上
とすることが必要で、実施例では500℃とした。5n
02以外の金属酸化物半導体を用いる場合、金属酸化物
半導体への活性酸素イオンの形成温度の変化に応じて、
パルス温度を変更する。
The temperature of pulse heating needs to be 450°C or higher in the case of a SnO2 film, and was set at 500°C in the example. 5n
When using a metal oxide semiconductor other than 02, depending on the change in the formation temperature of active oxygen ions in the metal oxide semiconductor,
Change pulse temperature.

冷却時の温度は消費電力の節減のため室温が好ましいが
、室温付近での空気中やガス中の抵抗値の温度依存性は
小さく、室温よりやや高い温度としても良い。5n02
膜の場合、冷却時の温度は150℃以下とする。
The temperature during cooling is preferably room temperature in order to save power consumption, but since the temperature dependence of the resistance value in air or gas near room temperature is small, the temperature may be slightly higher than room temperature. 5n02
In the case of a film, the temperature during cooling is 150°C or less.

パルス加熱の時間幅は、金属酸化物半導体膜を活性な酸
素イオンが形成する温度まで昇温し得るだけの幅とする
。実施例では昇温時の熱時定数2O−secのガスセン
サに対して、幅20IIsecの加熱パルスを加えた。
The time width of the pulse heating is set to be enough to raise the temperature of the metal oxide semiconductor film to a temperature at which active oxygen ions are formed. In the example, a heating pulse with a width of 20 II sec was applied to a gas sensor with a thermal time constant of 2 O-sec during temperature rise.

冷却時の時間幅は、金属酸化物半導体膜の特性が、冷却
時の定常値に達する間での時間以上とすることが好まし
い。この時間は5n01を用いた実施例の条件では約3
00m5ecであった。次に冷却時の時間幅の上限は、
重要ではない。冷却後室温に数分程度放置すると、金属
酸化物半導体膜の抵抗値は実用的に読み取りが可能な値
まで減少し、ガス感度も低下する。しかし金属酸化物半
導体膜の抵抗値が減少する前に出力をサンプリングすれ
ば良いのであって、サンプリング後に抵抗値が減少して
も問題とはならない。
It is preferable that the time width during cooling is equal to or longer than the time required for the characteristics of the metal oxide semiconductor film to reach a steady value during cooling. This time is about 3 under the conditions of the example using 5n01.
It was 00m5ec. Next, the upper limit of the cooling time is
not important. When the metal oxide semiconductor film is left at room temperature for several minutes after cooling, the resistance value of the metal oxide semiconductor film decreases to a value that can be practically read, and the gas sensitivity also decreases. However, it is sufficient to sample the output before the resistance value of the metal oxide semiconductor film decreases, and there is no problem even if the resistance value decreases after sampling.

【実施例] 測定法 第7図〜第1O図により、実施例で用いた測定法を説明
する。第7図に、ガスセンサ02の例を示す。2は線径
20μmのFe−Cr−Al合金を用いた線状のヒータ
で、4は膜厚的lpmのアルミナ絶縁膜、6.8は膜状
の金電極である。lOは膜厚的0.5μmの5n02膜
で、その表面には膜厚0.l/Jm以下のCuO膜を積
層した。CuO膜は酸素イオンの吸脱着促進触媒で、C
od。
[Example] Measurement method The measurement method used in the example will be explained with reference to FIGS. 7 to 1O. FIG. 7 shows an example of the gas sensor 02. 2 is a linear heater made of Fe-Cr-Al alloy with a wire diameter of 20 μm, 4 is an alumina insulating film with a film thickness of lpm, and 6.8 is a film-like gold electrode. 1O is a 5n02 film with a thickness of 0.5 μm, and the surface has a film thickness of 0.5 μm. CuO films of 1/Jm or less were laminated. The CuO film is a catalyst that promotes adsorption and desorption of oxygen ions, and
od.

Mn2O3,Cr2O,等の任意の酸素イオンの吸脱着
触媒に変えても良い。ガスセンサ02の構造はCuO膜
を設けた他は、出願人のガスセンサ″TGS501”と
同様である。ガスセンサ02は、次のように製造した。
Any oxygen ion adsorption/desorption catalyst such as Mn2O3 or Cr2O may be used instead. The structure of the gas sensor 02 is the same as the applicant's gas sensor "TGS501" except that a CuO film is provided. Gas sensor 02 was manufactured as follows.

ヒータ2の表面にアルミナゾルを付着させ、800℃で
熱分解してアルミナ絶縁膜4とした。次いで金電極6.
8を真空蒸着し、Snの有機化合物の溶液をアルミナ絶
縁膜4の表面に付着させて、乾燥後に550℃で熱分解
し、SnO,膜10とした。
Alumina sol was attached to the surface of the heater 2 and thermally decomposed at 800° C. to form an alumina insulating film 4. Next, gold electrode 6.
8 was vacuum-deposited, a solution of an organic compound of Sn was attached to the surface of the alumina insulating film 4, and after drying, it was thermally decomposed at 550° C. to form a SnO film 10.

このセンサ02を用いたのは、加熱時の熱時定数が29
m5ec、冷却時の熱時定数が5 wesecと短いた
めで、熱時定数が小さければ他のセンサでも良い。例え
ばアルミナ基板に、断熱用のガラス膜を介して、ヒータ
と金属酸化物半導体膜とを積層したものでも良い。この
場合短時間のパルス加熱では熱容量の大きな基板は昇温
姥す、室温に保たれる。ここでヒータをオン/オフする
と、ヒータに金属酸化物半導体膜を積層し両者の距離が
小さいため、金属酸化物半導体膜の温度はヒータのオン
/オフに追随して変化する。この結果加熱時の熱時定数
を数m5ec程度とすることができる。またこれ以外に
、空洞上に架橋したSing等の薄膜にヒータと電極や
金属酸化物半導体膜を形成したガスセンサでも良い。
This sensor 02 was used because the thermal time constant during heating is 29.
This is because the thermal time constant during cooling is as short as m5ec and 5 wesec, and other sensors may be used as long as the thermal time constant is small. For example, a heater and a metal oxide semiconductor film may be laminated on an alumina substrate with a heat insulating glass film interposed therebetween. In this case, short-time pulse heating causes the substrate with a large heat capacity to heat up, but is kept at room temperature. When the heater is turned on/off here, the metal oxide semiconductor film is laminated on the heater and the distance between the two is small, so the temperature of the metal oxide semiconductor film changes following the on/off of the heater. As a result, the thermal time constant during heating can be set to about several m5ec. In addition to this, a gas sensor may be used in which a heater, an electrode, and a metal oxide semiconductor film are formed on a thin film such as Sing cross-linked on a cavity.

第8図に回路の例を示す。図において、12は電源で、
ここでは5Vのものを用いた。14はパルス加熱用の電
源で、ここでは出力0.65V。
FIG. 8 shows an example of the circuit. In the figure, 12 is a power supply,
Here, a voltage of 5V was used. 14 is a power supply for pulse heating, and here the output is 0.65V.

16はトランジスタスイッチで、リレー等の任意のスイ
ッチでも良い。R1はガスセンサ02の負荷抵抗で、測
定には3OKΩ〜300にΩのものを用いた。18は制
御用のタイマで、1秒周期で動作し、毎秒1回20II
ISeCだけ、スイッチ16をオンさせてパルス温度5
00℃でパルス加熱を行う。20はサンプルホールド回
路で、冷却時のセンサ出力(負荷抵抗R1への出力)を
加熱パルスの直前にサンプリングする。この結果センサ
02は1秒周期で駆動され、29m5ecだけパルス温
度500℃に加熱され、他の期間は室温に保たれる。
16 is a transistor switch, which may be any switch such as a relay. R1 is the load resistance of the gas sensor 02, and a resistance of 30KΩ to 300Ω was used for the measurement. 18 is a timer for control, which operates at a cycle of 1 second, once every second at 20II.
Only for ISeC, turn on switch 16 and set pulse temperature to 5.
Pulse heating is performed at 00°C. 20 is a sample hold circuit that samples the sensor output during cooling (output to the load resistor R1) immediately before the heating pulse. As a result, the sensor 02 is driven at a cycle of 1 second, heated to a pulse temperature of 500° C. for 29 m5 ec, and kept at room temperature for the rest of the period.

そしてパルス加熱の直前(室温への冷却時間の終了直前
)の出力から、ガスを検出する。
Then, gas is detected from the output immediately before pulse heating (just before the end of the cooling time to room temperature).

第9図に、センサ特性の測定条件を示す。前記のように
、SnO,膜lOは、毎秒1回20m5ecだけ、0.
65Vのヒータ電圧で加熱され、最高500℃に加熱さ
れる。これ以外の期間は、ヒータ2はオフされ、SnO
,膜lOは室温に保たれる。そして加熱パルスの終了直
前と、室温から加熱パルスへの移行の直前とに、負荷抵
抗R1の出力から、センサ特性をサンプリングする。
FIG. 9 shows measurement conditions for sensor characteristics. As mentioned above, the SnO, film 1O is heated once every second for 20 m5ec at 0.
It is heated with a heater voltage of 65V to a maximum of 500°C. During other periods, the heater 2 is turned off and the SnO
, the membrane IO is kept at room temperature. Immediately before the end of the heating pulse and immediately before transition from room temperature to the heating pulse, sensor characteristics are sampled from the output of the load resistor R1.

第10図に、ガスセンサ02のN、中での温度特性を示
す。縦軸は負荷抵抗R1への出力で、時刻0から100
 m5ecの間、ヒータ2に加熱パルスを加え、SnO
,膜10を室温から加熱する。センサの出力は20〜2
511SeCで定常値に達し、これから加熱時の熱時定
数が約20m5ecであることが分かる。一方時刻0.
1秒に加熱パルスを打ち切ると、センサ出力は5 +1
sec程度で減少し、これから冷却時の熱時定数が数m
5ec程度であることが分かる。次にサーモペイントを
用いて求めた、0゜65Vのヒータ電圧での、SnO,
膜lOの温度の定常値は500℃である。SnO,膜l
Oの熱時定数は約2011ISeCであることを考える
と、0.65Vのパルス電圧でのパルス温度は約500
℃である。
FIG. 10 shows the temperature characteristics in N of the gas sensor 02. The vertical axis is the output to the load resistor R1, from time 0 to 100
During m5ec, a heating pulse is applied to heater 2, and SnO
, the membrane 10 is heated from room temperature. The output of the sensor is 20-2
A steady-state value is reached at 511 SeC, and from this it can be seen that the thermal time constant during heating is about 20 m5ec. On the other hand, time 0.
If the heating pulse is interrupted at 1 second, the sensor output will be 5 +1
The thermal time constant during cooling will decrease to several meters from now on.
It can be seen that it is about 5ec. Next, SnO,
The steady-state value of the temperature of the membrane IO is 500°C. SnO, film
Considering that the thermal time constant of O is about 2011 ISeC, the pulse temperature at a pulse voltage of 0.65 V is about 500
It is ℃.

センサ特性 第1図〜第3図により、ガスセンサ02のガス感度とガ
ス濃度依存性とを示す。第1図の測定条件は、動作周期
が1秒、加熱パルス幅が2011SeCでパルス温度が
500℃、加熱パルスを加えていないときの温度は室温
である。なお負荷抵抗R1は100KΩで、ガスには硫
化水素2ppmを用いた。第1図に、500℃での特性
と室温での特性とを示す。室温での空気中の抵抗値は無
限大(10MΩ以上)で、2ppmの硫化水素への感度
は極めて高い。
Sensor characteristics FIGS. 1 to 3 show the gas sensitivity and gas concentration dependence of the gas sensor 02. The measurement conditions in FIG. 1 are that the operating cycle is 1 second, the heating pulse width is 2011 SeC, the pulse temperature is 500° C., and the temperature when no heating pulse is applied is room temperature. Note that the load resistance R1 was 100 KΩ, and 2 ppm of hydrogen sulfide was used as the gas. FIG. 1 shows the characteristics at 500° C. and the characteristics at room temperature. The resistance value in air at room temperature is infinite (more than 10 MΩ), and the sensitivity to 2 ppm hydrogen sulfide is extremely high.

第2図に、加熱パルスを加えた際の、センサ出力Vou
Lの波形を示す。時刻0から20m5ecの間加熱パル
スを加え、次いで室温へ冷却する。冷却後の空気中の抵
抗値は極めて高く、ガス感度も大きい。また室温での抵
抗値が無限大となる時間は、通常は冷却後lO秒〜1分
程度であった。従って加熱周期を10秒〜1分以下とす
れば、常に室温の空気中での抵抗値を無限大に保ったま
ま検出を行うことができる。しかしこのことは、検出周
期を例えば5分程度と長くすることを排除するものでは
ない。例えば室温への冷却後1秒程度経過した時点での
出力をサンプリングし、以後の出力を用いなければ、室
温での抵抗値が無限大から減少しても問題は生じない。
Figure 2 shows the sensor output Vou when a heating pulse is applied.
The waveform of L is shown. A heating pulse is applied for 20 m5 ec from time 0, then cooled to room temperature. The resistance value in the air after cooling is extremely high, and the gas sensitivity is also high. Further, the time required for the resistance value to reach infinity at room temperature was usually about 10 seconds to 1 minute after cooling. Therefore, if the heating period is set to 10 seconds to 1 minute or less, detection can be performed while always keeping the resistance value in air at room temperature infinite. However, this does not preclude increasing the detection period to, for example, about 5 minutes. For example, if the output is sampled after about 1 second has elapsed after cooling to room temperature and the subsequent outputs are not used, no problem will occur even if the resistance value at room temperature decreases from infinity.

第3図に、硫化水素とエタノールとに対するガス濃度特
性を示す。図には500℃(パルス幅20 m5ec)
と室温との5秒周期での結果から、室温での抵抗値と5
00℃での抵抗値を示す。また比較のために、SnO,
膜lOを常時350℃に保った際の結果も示す。室温で
のガス濃度依存性は大きい。
FIG. 3 shows gas concentration characteristics for hydrogen sulfide and ethanol. The figure shows 500℃ (pulse width 20 m5ec)
From the results of 5 seconds period between and room temperature, the resistance value at room temperature and 5
The resistance value at 00°C is shown. For comparison, SnO,
The results are also shown when the membrane IO was constantly maintained at 350°C. The gas concentration dependence at room temperature is large.

第4図に、湿度の影響を示す。パルス加熱の条件は、パ
ルス電圧が0.65Vで幅が20m5ec。
Figure 4 shows the influence of humidity. The pulse heating conditions were a pulse voltage of 0.65V and a width of 20m5ec.

■周期が5秒で、負荷抵抗R1が30にΩである。(2) The period is 5 seconds, and the load resistance R1 is 30Ω.

測定には硫化水素1ppm(湿度50%または100%
)を用い、これ以外の期間は湿度50%の空気中におい
た。図の上部の破線は500℃でのセンサ出力を、下部
の破線は室温(加熱パルスの直前)での出力を表し、雰
囲気の温度は20℃であった。図の第2のピーク(硫化
水素tl)pm。
For measurement, hydrogen sulfide 1 ppm (humidity 50% or 100%)
), and was kept in air with a humidity of 50% for the rest of the time. The dashed line at the top of the figure represents the sensor output at 500°C, and the dashed line at the bottom represents the output at room temperature (just before the heating pulse), where the ambient temperature was 20°C. The second peak in the figure (hydrogen sulfide tl) pm.

湿度50%)と第3のピーク(fL化水素lppm。humidity 50%) and the third peak (fL hydrogen hydride lppm.

湿度lOO%)とを比べると、ガス中から取り出し、2
0℃、R,8,50%の空気中に戻した際の応答が異な
る。これは500℃のパルス加熱では、5n02膜10
への吸着水が完全には除去されず、センサ特性に湿度の
影響が残っていることを示している。
Humidity lOO%)
The response when returned to air at 0°C, R, 8, and 50% is different. This is because 5n02 film 10
This shows that the adsorbed water on the sensor is not completely removed, and the influence of humidity remains on the sensor characteristics.

500’Oのパルス加熱により、室温の空気中での抵抗
値が激増する原因として考えられるのは、(1)  パ
ルス加熱により活性な酸素イオンが、SnO2表面に吸
着し、センサの抵抗値を増加させる、あるいは (2)SnO,表面への吸着水が完全に除去される、こ
とである。第4図の結果から、パルス加熱により吸着水
が完全に除去されるとは考えにくい。従ってセンサの抵
抗値が無限大となる原因は、パルス加熱時に活性な酸素
イオンがSnO,表面に形成されることにあると考えら
れる。
Possible causes of the dramatic increase in resistance value in air at room temperature due to pulse heating at 500'O are: (1) Active oxygen ions adsorb to the SnO2 surface due to pulse heating, increasing the resistance value of the sensor. or (2) water adsorbed on the surface of SnO is completely removed. From the results shown in FIG. 4, it is difficult to imagine that adsorbed water would be completely removed by pulse heating. Therefore, it is thought that the reason why the resistance value of the sensor becomes infinite is that active oxygen ions are formed on the surface of SnO during pulse heating.

第5図に、第1図と同じ測定条件で、パルス温度を30
0℃〜600℃に変化させた際の結果を示す。パルス温
度を増すと共に、空気中での抵抗値は増加し、ガス中で
の抵抗値は減少する。そしてこの効果は450℃以上で
著しい。またこの温度は5n02への活性酸素イオンの
吸着温度とも一致する。
Figure 5 shows the pulse temperature at 30°C under the same measurement conditions as Figure 1.
The results are shown when changing the temperature from 0°C to 600°C. With increasing pulse temperature, the resistance in air increases and the resistance in gas decreases. This effect is significant above 450°C. This temperature also coincides with the adsorption temperature of active oxygen ions to 5n02.

第6図に、パルス温度を500℃(パルス輻2Q m5
ec、パルス周期1秒)とし、冷却時の温度を室温から
300℃の範囲で変化させた際の、冷却時の抵抗値を示
す。冷却時の温度を室温としても100℃としても、結
果に大差はない。しかし冷却時の温度を200℃とする
と、空気中での抵抗値が減少し、低感度化する。このこ
とから冷却時の温度は150℃以下、より好ましくは1
00°C以下が好ましい。
Figure 6 shows the pulse temperature at 500°C (pulse intensity 2Q m5
ec, pulse period 1 second), and the resistance value during cooling is shown when the temperature during cooling is varied in the range from room temperature to 300°C. There is no significant difference in the results whether the temperature during cooling is room temperature or 100°C. However, if the temperature during cooling is set to 200° C., the resistance value in air decreases, resulting in lower sensitivity. Therefore, the temperature during cooling should be 150°C or less, more preferably 150°C or less.
00°C or less is preferable.

[発明の効果] この発明では、(1)ガスセンサの感度を高めると共に
、(2)センサ特性のガス濃度依存性を高める。
[Effects of the Invention] The present invention (1) increases the sensitivity of the gas sensor, and (2) increases the dependence of sensor characteristics on gas concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例でのガス検出結果を示す特性図である
。 第2図は、実施例での加熱パルス付近でのガスセンサ特
性を示す特性図である。 第3図は、実施例でのガス濃度依存性を示す特性図であ
る。 第4図は、実施例でのガスセンサ特性への湿度の影響を
示す特性図である。 第5図は、実施例でのパルス加熱温度の室温での特性へ
の影響を示す特性図である。 第6図は、実施例での冷却時の温度の影響を示す特性図
である。 第7図は、実施例に用いたガスセンサの要部平面図であ
る。 第8図は、実施例の回路図である。 第9図は、実施例での加熱パルスを示す波形図である。 第1O図は、実施例に用いたガスセンサの熱応答特性を
示す特性図である。 第 図 HzS(ppm) 第 5 図 RILSE TEMP、 (’c ) 第 厘 R,T。 00 00 00 TEMP、 at PLILSE OFF  (’c ) 第 図 2 第 図 HEATERC0NTR0L 119 麿 第10 図 IME (sec )
FIG. 1 is a characteristic diagram showing gas detection results in an example. FIG. 2 is a characteristic diagram showing the gas sensor characteristics near the heating pulse in the example. FIG. 3 is a characteristic diagram showing gas concentration dependence in the example. FIG. 4 is a characteristic diagram showing the influence of humidity on the gas sensor characteristics in the example. FIG. 5 is a characteristic diagram showing the influence of the pulse heating temperature on the characteristics at room temperature in the example. FIG. 6 is a characteristic diagram showing the influence of temperature during cooling in the example. FIG. 7 is a plan view of the main parts of the gas sensor used in the example. FIG. 8 is a circuit diagram of the embodiment. FIG. 9 is a waveform diagram showing heating pulses in the example. FIG. 1O is a characteristic diagram showing the thermal response characteristics of the gas sensor used in the example. Fig. HzS (ppm) Fig. 5 RILSE TEMP, ('c) No. R,T. 00 00 00 TEMP, at PLILSE OFF ('c) Fig. 2 Fig. HEATERC0NTR0L 119 Maro No. 10 Fig. IME (sec)

Claims (6)

【特許請求の範囲】[Claims] (1)ガスセンサの金属酸化物半導体膜を、パルス加熱
と冷却とのサイクルにおいて、ガスを検出する方法にお
いて、 パルス加熱により金属酸化物半導体表面に活性な酸素イ
オンを吸着させ、 吸着した酸素イオンを保ったまま金属酸化物半導体膜を
冷却することにより、冷却時の空気中での金属酸化物半
導体膜を高抵抗化させて、金属酸化物半導体膜を高感度
化させ、 冷却時の高感度化した金属酸化物半導体膜の抵抗値の減
少からガスを検出することを特徴とする、ガス検出方法
(1) In a method of detecting gas by subjecting the metal oxide semiconductor film of a gas sensor to a cycle of pulse heating and cooling, active oxygen ions are adsorbed onto the metal oxide semiconductor surface by pulse heating, and the adsorbed oxygen ions are removed. By cooling the metal oxide semiconductor film while maintaining the temperature, the resistance of the metal oxide semiconductor film increases in the air during cooling, making the metal oxide semiconductor film highly sensitive. A gas detection method characterized by detecting gas from a decrease in resistance value of a metal oxide semiconductor film.
(2)ガスセンサの金属酸化物半導体を、パルス加熱と
冷却とのサイクルにおいて、ガスを検出する方法におい
て、 パルス加熱により、金属酸化物半導体膜の冷却時の空気
中での抵抗値を実質的に無限大とし、金属酸化物半導体
膜のガスとの接触による、冷却時の抵抗値の減少から、
ガスを検出することを特徴とする、ガス検出方法。
(2) In a method of detecting gas in a metal oxide semiconductor film of a gas sensor through a cycle of pulse heating and cooling, pulse heating substantially reduces the resistance value in air when the metal oxide semiconductor film is cooled. It is assumed to be infinite, and the resistance value decreases during cooling due to contact with gas of the metal oxide semiconductor film.
A gas detection method characterized by detecting a gas.
(3)SnO_2膜を用いたガスセンサを、450℃以
上の温度のパルス加熱と冷却とのサイクルに置くことに
より、 冷却時のSnO_2膜の空気中での抵抗値を高抵抗状態
に置き、 冷却時のSnO_2膜のガス中での抵抗値からガスを検
出するようにした、ガス検出方法。
(3) By placing a gas sensor using a SnO_2 film in a cycle of pulse heating and cooling at a temperature of 450°C or higher, the resistance value of the SnO_2 film in the air during cooling is placed in a high resistance state, and when cooling A gas detection method in which gas is detected from the resistance value of the SnO_2 film in the gas.
(4)冷却時のSnO_2膜の温度を室温としたことを
特徴とする、請求項3のガス検出方法。
(4) The gas detection method according to claim 3, wherein the temperature of the SnO_2 film during cooling is set to room temperature.
(5)SnO_2膜の熱時定数を、冷却過程での酸素イ
オンの不活性状態への緩和が生じる時間よりも短くした
ことを特徴とする、請求項4のガス検出方法。
(5) The gas detection method according to claim 4, characterized in that the thermal time constant of the SnO_2 film is made shorter than the time during which oxygen ions relax to an inactive state during the cooling process.
(6)SnO_2膜表面に酸素イオンの吸着促進触媒を
被覆したことを特徴とする、請求項5のガス検出方法。
(6) The gas detection method according to claim 5, characterized in that the surface of the SnO_2 film is coated with an oxygen ion adsorption promoting catalyst.
JP32536489A 1989-12-14 1989-12-14 Gas detection method Expired - Fee Related JP2911928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32536489A JP2911928B2 (en) 1989-12-14 1989-12-14 Gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32536489A JP2911928B2 (en) 1989-12-14 1989-12-14 Gas detection method

Publications (2)

Publication Number Publication Date
JPH03185351A true JPH03185351A (en) 1991-08-13
JP2911928B2 JP2911928B2 (en) 1999-06-28

Family

ID=18176004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32536489A Expired - Fee Related JP2911928B2 (en) 1989-12-14 1989-12-14 Gas detection method

Country Status (1)

Country Link
JP (1) JP2911928B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073176A3 (en) * 2001-03-09 2003-10-02 Bosch Gmbh Robert Sensor for detecting gas
CN102043001A (en) * 2009-10-22 2011-05-04 株式会社科学技术分析中心 Gas concentration detection method and gas concentration detector for the same
JP2018031685A (en) * 2016-08-25 2018-03-01 フィガロ技研株式会社 Mems gas sensor and gas detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220741A1 (en) 2018-05-17 2019-11-21 フィガロ技研株式会社 Gas detection device and gas detection method using metal-oxide semiconductor gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073176A3 (en) * 2001-03-09 2003-10-02 Bosch Gmbh Robert Sensor for detecting gas
CN102043001A (en) * 2009-10-22 2011-05-04 株式会社科学技术分析中心 Gas concentration detection method and gas concentration detector for the same
JP2018031685A (en) * 2016-08-25 2018-03-01 フィガロ技研株式会社 Mems gas sensor and gas detector

Also Published As

Publication number Publication date
JP2911928B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US4324760A (en) Hydrogen detector
JP2007024508A (en) Membrane gas sensor
US20210116405A1 (en) Mems type semiconductor gas detection element
JP6213866B2 (en) Thin film hydrogen gas sensor
JPH03185351A (en) Detection of gas
JP3262867B2 (en) Semiconductor gas detector
JP2791473B2 (en) Gas detection method and device
JP2816704B2 (en) Gas detection method
CN112585453A (en) Gas detection device
JPH11142356A (en) Semiconductor gas sensor
JP3988909B2 (en) Gas sensor manufacturing method and gas detection method
JP2001330577A (en) Gas detector
JP3522257B2 (en) Gas detection method and device
Hattori et al. Ozone sensor made by dip coating method
JP2919874B2 (en) Ozone detector
JP2002286672A (en) Gas detector and gas detection method
JP2019015703A (en) Oxidative gas sensor, gas alarm, controller, and control method
JPS61201149A (en) Sensor driving method
JP2949898B2 (en) Gas leak alarm
JP3177089B2 (en) Sensor element refresh method and exhaust gas analyzer having the refresh function
JP2022064475A (en) Method and device for controlling temperature of gas detection device
JP2022064474A (en) Method and device for controlling temperature of gas detection device
JP2919873B2 (en) Underwater chlorine detector
JPH01227952A (en) Detection of gas
JPH01206249A (en) Method of detecting fire and apparatus therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees