JPS6310905B2 - - Google Patents

Info

Publication number
JPS6310905B2
JPS6310905B2 JP56150693A JP15069381A JPS6310905B2 JP S6310905 B2 JPS6310905 B2 JP S6310905B2 JP 56150693 A JP56150693 A JP 56150693A JP 15069381 A JP15069381 A JP 15069381A JP S6310905 B2 JPS6310905 B2 JP S6310905B2
Authority
JP
Japan
Prior art keywords
metal
resist
semiconductor substrate
gate
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56150693A
Other languages
Japanese (ja)
Other versions
JPS5852880A (en
Inventor
Yoshiaki Sano
Masahiro Akyama
Toshio Nonaka
Toshimasa Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15069381A priority Critical patent/JPS5852880A/en
Publication of JPS5852880A publication Critical patent/JPS5852880A/en
Publication of JPS6310905B2 publication Critical patent/JPS6310905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 この発明は半導体素子の製造方法に関し、詳し
くはMES FETの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing an MES FET.

従来のMES FETの製造方法を第1図により説
明する。まず、第1図Aに示すように、半絶縁性
基板11上にエピタキシヤル法あるいはイオン注
入法によつてn型導電層12を形成する。次に、
ホトリソによつてレジストマスクを形成してか
ら、半導体基板(半絶縁性基板11とn型導電層
12からなる)に高濃度イオン注入を行い、さら
にアニールすることによつて同第1図Aに示すよ
うにソース・ドレイン領域13,14を半導体基
板に形成する。続いて、ホトリソによるレジスト
パターンの形成、オーミツク金属の蒸着、その不
要部のリフトオフを行つて第1図Bに示すように
ソース・ドレイン電極15,16をソース・ドレ
イン領域13,14上に形成し、最後に同様にホ
トリソによるレジストパターンの形成、ゲート金
属の蒸着、その不要部のリフトオフを行つて同第
1図Bに示すようにゲート電極17を半導体基板
上の所定位置に形成する。
The conventional manufacturing method of MES FET will be explained with reference to FIG. First, as shown in FIG. 1A, an n-type conductive layer 12 is formed on a semi-insulating substrate 11 by an epitaxial method or an ion implantation method. next,
After forming a resist mask by photolithography, high concentration ions are implanted into the semiconductor substrate (consisting of a semi-insulating substrate 11 and an n-type conductive layer 12), and by further annealing, the structure shown in FIG. As shown, source/drain regions 13 and 14 are formed on a semiconductor substrate. Next, by forming a resist pattern by photolithography, depositing an ohmic metal, and lifting off unnecessary parts, source/drain electrodes 15, 16 are formed on the source/drain regions 13, 14 as shown in FIG. 1B. Finally, a resist pattern is formed by photolithography, gate metal is deposited, and unnecessary parts are lifted off to form a gate electrode 17 at a predetermined position on the semiconductor substrate as shown in FIG. 1B.

ところで、MES FETにおいては、ソース・ゲ
ートまたはゲート・ドレイン間距離が小さい程、
またゲート長が小さい程、高周波特性が大とな
る。しかるに、上記のような従来のホトリソ、マ
スク合わせ法による製造方法では、マスク合わせ
精度によつてソース・ゲート間あるいはゲート・
ドレイン間距離を小さくすることに限界があり、
高周波特性を向上させることに限りがあつた。ま
た、上記従来の方法では精度を要するマスク合わ
せを2度必要とし、特にゲート電極17がマスク
ずれなどによつてソース・ドレイン領域13,1
4に接触するとゲート耐圧の劣化をもたらすので
歩留りが悪かつた。
By the way, in MES FET, the smaller the source-gate or gate-drain distance,
Furthermore, the smaller the gate length, the greater the high frequency characteristics. However, in the conventional manufacturing method using photolithography and mask alignment methods as described above, the gap between the source and gate or between the gate and gate depends on the accuracy of mask alignment.
There is a limit to reducing the distance between drains,
There was a limit to how high frequency characteristics could be improved. In addition, the conventional method described above requires mask alignment twice, which requires precision, and in particular, the gate electrode 17 may be damaged due to mask misalignment, etc.
4, the gate withstand voltage deteriorates, resulting in poor yield.

この発明は上記の点に鑑みなされたもので、高
周波特性の向上したMES FETを歩留りよく製造
することができる半導体素子の製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can manufacture MES FETs with improved high frequency characteristics with a high yield.

以下この発明の実施例を第2図を参照して説明
する。
An embodiment of the present invention will be described below with reference to FIG.

第2図Aにおいて、21は半絶縁性GaAs基板
であり、まず、その基板21の表面上にエピタキ
シヤル成長を行つてn型の導電層22を形成す
る。次に、そのn型導電層22上にCVD法によ
つて絶縁膜(たとえばシリコン酸化膜)23を形
成し、続いてホトリソ、金属蒸着、リフトオフに
よつて金属(たとえば白金)パターン24を絶縁
膜23上に形成する。
In FIG. 2A, 21 is a semi-insulating GaAs substrate, and first, an n-type conductive layer 22 is formed on the surface of the substrate 21 by epitaxial growth. Next, an insulating film (for example, a silicon oxide film) 23 is formed on the n-type conductive layer 22 by CVD, and then a metal (for example, platinum) pattern 24 is formed on the insulating film by photolithography, metal vapor deposition, or lift-off. 23.

次に、金属パターン24をマスクとして絶縁膜
23のプラズマエツチングを行い、第2図Bに示
すようにソース・ドレインの窓(第1、第2窓)
25,26を絶縁膜23に形成する。この時、若
干のオーバーエツチングを行うことにより、金属
パターン24のオーバーハング部(ひさし)を形
成する。
Next, plasma etching is performed on the insulating film 23 using the metal pattern 24 as a mask to form source/drain windows (first and second windows) as shown in FIG. 2B.
25 and 26 are formed on the insulating film 23. At this time, an overhang portion (eaves) of the metal pattern 24 is formed by slightly overetching.

続いて、金属パターン24をマスクとしてn型
導電性不純物(たとえばSi+)の高濃度イオン注
入を半導体基板(半絶縁性GaAs基板21とn型
導電層22からなる)に対して行い、さらに700
〜900℃程度のアニールを行つてソース・ドレイ
ン領域(第1、第2の導電領域)27,28を第
2図Cに示すように半導体基板に形成する。
Next, high-concentration ion implantation of n-type conductive impurities (for example, Si + ) is performed into the semiconductor substrate (consisting of the semi-insulating GaAs substrate 21 and the n-type conductive layer 22 ) using the metal pattern 24 as a mask.
By performing annealing at about 900 DEG C., source/drain regions (first and second conductive regions) 27 and 28 are formed in the semiconductor substrate as shown in FIG. 2C.

次に、金属パターン24上を含む半導体基板上
の全面に第2図Dに示すようにポジ型ホトレジス
ト29のコーテイングを行う。この時金属パター
ン24の幅が高々2μ程度であるので、金属パタ
ーン24上のレジスト29の厚みは、半導体上の
レジスト29に較べて半分以下程度にすることが
できる。次に、レジスト29の全面露光を行う。
この時、光が金属(金属パターン24)で反射さ
れるため、金属パターン24上のレジスト29の
露光効率はその他に比較して倍以上にできる。し
たがつて、前記全面露光を行うと、厚さが薄いこ
と、および露光効率が高いことにより、金属パタ
ーン24上のレジスト29(特に斜線部30で示
す)のみを充分に露光することができる。よつ
て、続いて現像を行うと、図示しないが金属パタ
ーン24上のレジスト29(斜線部30)を完全
に除去して金属パターン24を露出させることが
できる。
Next, the entire surface of the semiconductor substrate including the metal pattern 24 is coated with a positive photoresist 29 as shown in FIG. 2D. At this time, since the width of the metal pattern 24 is approximately 2 μm at most, the thickness of the resist 29 on the metal pattern 24 can be made approximately half or less than that of the resist 29 on the semiconductor. Next, the entire surface of the resist 29 is exposed.
At this time, since the light is reflected by the metal (metal pattern 24), the exposure efficiency of the resist 29 on the metal pattern 24 can be more than doubled compared to other methods. Therefore, when the entire surface is exposed, only the resist 29 on the metal pattern 24 (particularly indicated by the shaded area 30) can be sufficiently exposed due to the thin thickness and high exposure efficiency. Therefore, when development is performed subsequently, the resist 29 (shaded area 30) on the metal pattern 24 can be completely removed, although not shown, and the metal pattern 24 can be exposed.

その後、残されたレジスト29をマスクとして
金属パターン24および絶縁膜23をエツチング
除去することにより、第2図Eに示すようにゲー
トの窓(第3窓)31を形成し、その部分の半導
体基板表面を露出させる。
Thereafter, by etching and removing the metal pattern 24 and the insulating film 23 using the remaining resist 29 as a mask, a gate window (third window) 31 is formed as shown in FIG. expose the surface.

次に、ゲートの窓31およびレジスト29上に
ゲート金属の蒸着を行つてから、レジスト29に
よつて不要部のゲート金属のリフトオフを行うこ
とにより、ソース・ドレイン領域27,28と整
合したゲート電極32を第2図Fに示すように半
導体基板上に形成する。
Next, gate metal is vapor-deposited on the gate window 31 and the resist 29, and unnecessary portions of the gate metal are lifted off using the resist 29, so that the gate electrode is aligned with the source/drain regions 27 and 28. 32 is formed on a semiconductor substrate as shown in FIG. 2F.

最後に、ホトリソ、オーミツク金属の蒸着、オ
ーミツク金属のリフトオフを行つて、同じく第2
図Fに示すようにソース・ドレイン電極33,3
4をソース・ドレイン領域27,28上に形成す
る。
Finally, photolithography, vapor deposition of ohmic metal, and lift-off of ohmic metal are performed, and the second
As shown in Figure F, source/drain electrodes 33, 3
4 are formed on the source/drain regions 27 and 28.

以上説明したように、実施例では、イオン注入
の方向性および、第2図Dに示すように微細な凸
部上のレジストは凹部に較べて薄くでき、かつ金
属上のレジストは露光効率が高いなどを利用し
て、ソース・ドレイン領域27,28とゲート電
極32をセルフアラインで形成できる。このた
め、精度を要するマスク合せが不要となつて、工
程が確実、容易になり、歩留りが向上する。
As explained above, in the example, the directionality of ion implantation and the resist on the fine convex parts can be made thinner than the concave parts as shown in FIG. 2D, and the resist on the metal has high exposure efficiency. The source/drain regions 27 and 28 and the gate electrode 32 can be formed in a self-aligned manner by using the above method. This eliminates the need for mask alignment that requires precision, making the process reliable and easy, and improving yield.

また、ソース・ゲート間隔、ゲート・ドレイン
間隔は第2図B工程において絶縁膜23のオーバ
―エツチング量で決定されるため、このエツチン
グ量を制御することによりサブミクロン領域まで
小さくすることができる。したがつて、直列抵抗
が低減され、高周波特性を向上させることができ
る。
Furthermore, since the source-to-gate spacing and the gate-to-drain spacing are determined by the amount of overetching of the insulating film 23 in the step B of FIG. 2, by controlling the amount of etching, it is possible to reduce the spacing to the submicron region. Therefore, series resistance is reduced and high frequency characteristics can be improved.

また、第2図C工程において、イオン注入のマ
スクとして、マスク性能が高い金属を用いている
ため、特にマスクを厚くする必要がなく(数千Å
以下でよい)、またこの金属は耐熱性の絶縁膜で
半導体基板とは分離されているため、イオン注入
後のアニール温度に特に制限はない。なお、この
アニールは省略することもできる。
In addition, in the step C in Figure 2, since a metal with high masking performance is used as the ion implantation mask, there is no need to make the mask particularly thick (several thousand Å).
In addition, since this metal is separated from the semiconductor substrate by a heat-resistant insulating film, there is no particular restriction on the annealing temperature after ion implantation. Note that this annealing can also be omitted.

以上実施例で詳述したように、この発明の半導
体素子の製造方法においては、イオン注入の方向
性および、微細な凸部上のレジストは凹部に較べ
て薄くでき、かつ金属上のレジストは露光効率が
高いなどを利用して、第1、第2の導電領域と電
極とをセルフアラインで形成できるようにしたの
で、またイオン注入時の金属マスクとその下の絶
縁膜の関係で電極と第1、第2の導電領域間の間
隔をサブミクロン領域まで小さくすることができ
るようにしたので、高周波特性の向上したMES
FETを歩留りよく製造することができる。また、
この発明の方法によれば、ゲート部のひさし形成
金属および絶縁膜を除去するために前記金属をレ
ジスト塗布後露出させる工程として、前記のよう
に微細な凸部上のレジストは凹部に較べて薄いこ
と、および金属上のレジストは露光効率が高いこ
とを利用して全面露光と現像により露光状態の違
いから前記金属上からはレジストを除去するよう
にしたので、このレジスト除去工程、延いては前
記金属と絶縁膜の除去工程が容易になる。さら
に、この方法によれば、レジストはゲート部の前
記金属上のみから除去されるものであり、第1、
第2の導電領域はレジストで覆われることになる
ので、ゲート電極金属がこの第1、第2の導電領
域に被着されることを防止できる。
As described in detail in the embodiments above, in the method of manufacturing a semiconductor device of the present invention, the directionality of ion implantation, the resist on the fine convex parts can be made thinner than the concave parts, and the resist on the metal can be exposed to light. Taking advantage of the high efficiency, we have made it possible to form the first and second conductive regions and electrodes in a self-aligned manner. 1. The spacing between the second conductive regions can be reduced to the submicron region, resulting in an MES with improved high frequency characteristics.
FETs can be manufactured with high yield. Also,
According to the method of the present invention, in the step of exposing the metal after applying a resist in order to remove the eaves-forming metal and the insulating film of the gate portion, the resist on the fine convex portions as described above is thinner than the concave portions. Taking advantage of the fact that the resist on the metal has high exposure efficiency, the resist was removed from the metal due to the difference in exposure conditions between full-surface exposure and development. The process of removing metal and insulating film becomes easier. Furthermore, according to this method, the resist is removed only from above the metal of the gate part, and the resist is removed only from the first,
Since the second conductive region is covered with resist, it is possible to prevent gate electrode metal from being deposited on the first and second conductive regions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMES FETの製造方法を説明す
るための断面図、第2図はこの発明の半導体素子
の製造方法の実施例を説明するための断面図であ
る。 21…半絶縁性GaAs基板、22…n型導電
層、23…絶縁膜、24…金属パターン、25,
26…ソース・ドレインの窓、27,28…ソー
ス・ドレイン領域、29…ポジ型ホトレジスト、
31…ゲートの窓、32…ゲート電極、33,3
4…ソース・ドレイン電極。
FIG. 1 is a sectional view for explaining a conventional MES FET manufacturing method, and FIG. 2 is a sectional view for explaining an embodiment of the semiconductor device manufacturing method of the present invention. 21... Semi-insulating GaAs substrate, 22... N-type conductive layer, 23... Insulating film, 24... Metal pattern, 25,
26... Source/drain window, 27, 28... Source/drain region, 29... Positive photoresist,
31...Gate window, 32...Gate electrode, 33,3
4...Source/drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 第1窓および第2窓を有する絶縁膜と、その
絶縁膜上に位置するひさしを有する金属を半導体
基板上に形成する工程と、前記金属をマスクとし
て半導体基板に対するイオン注入を行い、さらに
アニールを行いまたは行わずして、前記第1窓お
よび第2窓内の半導体基板中に各々第1、第2の
導電領域を形成する工程と、前記半導体基板上の
全面にレジストを塗布してから全面露光、現像を
行つて、前記金属上のレジストのみを除去する工
程と、前記金属および絶縁膜を除去して第3窓を
形成し半導体基板表面を露出させる工程と、前記
第3窓および前記レジスト上に金属の蒸着を行つ
た後、その金属の不要部を前記レジストによつて
リフトオフする工程とを具備してなる半導体素子
の製造方法。
1. A step of forming an insulating film having a first window and a second window and a metal having an eave located on the insulating film on a semiconductor substrate, performing ion implantation into the semiconductor substrate using the metal as a mask, and further annealing. forming first and second conductive regions in the semiconductor substrate within the first window and the second window, respectively, with or without performing , and applying a resist to the entire surface of the semiconductor substrate; a step of removing only the resist on the metal by performing whole-surface exposure and development; a step of removing the metal and the insulating film to form a third window and exposing the surface of the semiconductor substrate; 1. A method for manufacturing a semiconductor device, comprising the steps of depositing metal on a resist, and then lifting off unnecessary portions of the metal using the resist.
JP15069381A 1981-09-25 1981-09-25 Manufacture of semiconductor element Granted JPS5852880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15069381A JPS5852880A (en) 1981-09-25 1981-09-25 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15069381A JPS5852880A (en) 1981-09-25 1981-09-25 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS5852880A JPS5852880A (en) 1983-03-29
JPS6310905B2 true JPS6310905B2 (en) 1988-03-10

Family

ID=15502375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15069381A Granted JPS5852880A (en) 1981-09-25 1981-09-25 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS5852880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339402A (en) * 1993-05-31 1994-12-13 Isao Yoshida Shoe insole

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923565A (en) * 1982-07-30 1984-02-07 Hitachi Ltd Manufacture of semiconductor device
JPS60253277A (en) * 1984-05-30 1985-12-13 Oki Electric Ind Co Ltd Manufacture of semiconductor element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396671A (en) * 1977-02-03 1978-08-24 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396671A (en) * 1977-02-03 1978-08-24 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339402A (en) * 1993-05-31 1994-12-13 Isao Yoshida Shoe insole

Also Published As

Publication number Publication date
JPS5852880A (en) 1983-03-29

Similar Documents

Publication Publication Date Title
US5510280A (en) Method of making an asymmetrical MESFET having a single sidewall spacer
KR920002090B1 (en) Method of manufacturing field effect transistor
JP2778600B2 (en) Method for manufacturing semiconductor device
US4997779A (en) Method of making asymmetrical gate field effect transistor
US5306653A (en) Method of making thin film transistors
US4843024A (en) Method of producing a Schottky gate field effect transistor
JP2553699B2 (en) Method for manufacturing semiconductor device
US5587328A (en) Method for manufacturing semiconductor device
JPS6351550B2 (en)
JPS6310905B2 (en)
JPH09129653A (en) Preparation of field-effect transistor with t-type gate and self-aligning ldd structure
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
US4621415A (en) Method for manufacturing low resistance sub-micron gate Schottky barrier devices
JPS6144473A (en) Manufacture of semiconductor device
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JPS616870A (en) Manufacture of field-effect transistor
KR0144173B1 (en) The structure of the thin film transistor and a method of manufacture thereof
JPS6272175A (en) Manufacture of semiconductor device
JPH0845962A (en) Manufacture of semiconductor device
KR100272577B1 (en) Method for fabricating bipolar transistor
JPS6284566A (en) Field-effect transistor and manufacture thereof
JPS59986B2 (en) Method for manufacturing field effect transistors
JPH02262342A (en) Manufacture of semiconductor device
JPH0684954A (en) Manufacture of semiconductor device
JPH0536720A (en) Thin film field effect transistor and its manufacture