JPS63107549A - Vibration damper - Google Patents

Vibration damper

Info

Publication number
JPS63107549A
JPS63107549A JP61253039A JP25303986A JPS63107549A JP S63107549 A JPS63107549 A JP S63107549A JP 61253039 A JP61253039 A JP 61253039A JP 25303986 A JP25303986 A JP 25303986A JP S63107549 A JPS63107549 A JP S63107549A
Authority
JP
Japan
Prior art keywords
vibration
damping
layer
viscoelastic
viscoelastic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61253039A
Other languages
Japanese (ja)
Inventor
淳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61253039A priority Critical patent/JPS63107549A/en
Publication of JPS63107549A publication Critical patent/JPS63107549A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工作機械、家電製品、プリンタなどのOA機
器、船舶、自動車、音響機器、精密機器などに用いて振
動・騒音の低減を図る制振体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used in machine tools, home appliances, OA equipment such as printers, ships, automobiles, audio equipment, precision equipment, etc. to reduce vibration and noise. This relates to vibration damping bodies.

〔従来の技術〕[Conventional technology]

IC−LSI・光通信をはじめとする超精密加工業界で
は、工場内の微少振動が製品の品質を左右するようにな
っている。
In the ultra-precision processing industry, including IC-LSI and optical communications, minute vibrations within factories have come to affect the quality of products.

また高精度な機器を船や車に搭載して用いる機会が増え
るに従い、これら移動体の振動による機器の損傷が問題
となっている。一方生活環境の面からは、OA機幸がオ
フィスや家庭内に普及するにつれ、これら機器が発生す
る騒音による環境の悪化が問題となってきている。
Furthermore, as the number of high-precision devices mounted on ships and cars increases, damage to the devices due to vibrations from these moving objects has become a problem. On the other hand, from the aspect of the living environment, as office automation equipment has become widespread in offices and homes, the deterioration of the environment due to the noise generated by these equipment has become a problem.

振動・騒音を抑制するためには、勿論その発生源をなく
することが重要であるが、一般にその対策は容易でない
場合が多い6 そこで、発生した振動・騒音を低減させる制振方法が必
要となっている。その一つとして粘弾性材料を用いる方
法が知られている。
In order to suppress vibrations and noise, it is of course important to eliminate their sources, but in general, countermeasures are often not easy.6 Therefore, vibration control methods are needed to reduce the generated vibrations and noises. It has become. One known method is to use a viscoelastic material.

粘弾性材料を用いて制振する従来の方法は、いづれも粘
弾性材料の変形により振動エネルギーの低減を図るもの
であるが、その方法は被制振体に粘弾性層と拘束層(弾
性層)を設けた拘束型と、粘弾性層のみを設けた非拘束
型とに大別される。
Conventional methods of damping vibration using viscoelastic materials aim to reduce vibration energy by deforming the viscoelastic material, but this method consists of a viscoelastic layer and a constraint layer (elastic layer) on the damped object. ) and the non-restricted type, which has only a viscoelastic layer.

粘弾性材料による制振機構は、粘弾性体の振動にともな
って起る変形により特徴づけられる。すなわち、各制振
方法による制振機構は、拘束型ではずれ変形を主体とし
だ制振機構、非拘束型では粘弾性層の弾性率の大きさに
よって、伸縮変形を主体とした制振機構および厚み方向
変形を主体としだ制振機構である。
A vibration damping mechanism using a viscoelastic material is characterized by deformation that occurs as the viscoelastic body vibrates. In other words, the damping mechanism based on each damping method is a constrained type, which mainly uses shear deformation, and a non-constrained type, which uses mainly expansion and contraction deformation depending on the elastic modulus of the viscoelastic layer. This is a vibration damping mechanism that mainly uses deformation in the thickness direction.

拘束型と非拘束型とでは制振機構により得られる制振性
能は異なる。すなわち、ずれ変形や厚み変形を主体とし
た拘束型または非拘束型制振機構では、高い制振性能が
得られるものの、前記性能が周波数に対して変化するた
め使用可能な周波数範囲がずれ変形の場合低周波、厚み
変形の場合高周波に限られる。また伸縮変形を主体とし
た非拘束型制振機構では、周波数に対してほぼ一定の制
振性能が得られるものの、高い制振性能が得難い。
The damping performance obtained by the damping mechanism is different between the constrained type and the non-constrained type. In other words, although high damping performance can be obtained with constrained or non-constrained vibration damping mechanisms that mainly deal with shear deformation or thickness deformation, the usable frequency range is limited to the extent of shear deformation because the performance changes with frequency. In case of thickness deformation, it is limited to low frequency, and in case of thickness deformation, it is limited to high frequency. Furthermore, although a non-restrictive vibration damping mechanism mainly based on expansion/contraction deformation can obtain damping performance that is substantially constant with respect to frequency, it is difficult to obtain high damping performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以」;のように、従来の拘束型、非拘束型単独の制振機
構では、低周波から高周波までの広い周波数範囲で高い
制振性能を得難いという欠点を有していた。このため対
象とする振動の周波数特性をあらかじめ知り、前記特性
に適した制振方法を選定使用しなければならないという
厄介な問題があった・ 本発明は前記問題点を解決するものであり、その目的と
するところは広い周波数範囲で高い割振性能を実現する
制振体を提供することにある。
As described above, conventional restraint type and non-restraint type vibration damping mechanisms have the disadvantage that it is difficult to obtain high vibration damping performance over a wide frequency range from low frequencies to high frequencies. For this reason, there was a troublesome problem in that the frequency characteristics of the target vibration had to be known in advance and a vibration damping method suitable for the characteristics had to be selected and used.The present invention solves the above problems, and The objective is to provide a vibration damper that achieves high allocation performance over a wide frequency range.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は被制振体に貼り付けられた第1の粘弾性層と、
その表面に貼り付けられた弾性層と、該弾性層の表面に
貼り付けられた第2の粘弾性層との積層構造を有するこ
とを特徴とする制振体である。
The present invention includes a first viscoelastic layer attached to a vibration damped body;
The vibration damping body is characterized by having a laminated structure of an elastic layer attached to the surface of the vibration damper and a second viscoelastic layer attached to the surface of the elastic layer.

〔作用〕[Effect]

ずれ変形を主体としだ制振機構の性能は一般に次式で示
される。
The performance of a damping mechanism mainly based on shear deformation is generally expressed by the following equation.

2(1+N)X/Xopt ζ350°″ma” 1+2N−X/Xopt+ X/
Xopt)     (1)G、11 X:阿2(−こ−3) %/ (1+Y)(1+η−) ey”  −hi−”−hit−’ (Hz’を当)E
、      Hl    H,2 である。
2(1+N)X/Xopt ζ350°″ma” 1+2N-X/Xopt+ X/
Xopt) (1) G, 11
, Hl H,2.

(1)式より制振性能ζは、粘弾性層の損失係数η2が
大きい程、また拘束層(弾性層)のヤング率および厚み
が大きい程良い。望ましくはヤング率1011dyn/
cJ以上である。制振性能ζは、周波数依存性があり(
式中のω)、実効的に低周波(IK)Iz以下)で最大
をとり変化する。
From equation (1), the damping performance ζ is better as the loss coefficient η2 of the viscoelastic layer is larger and as the Young's modulus and thickness of the constraining layer (elastic layer) are larger. Desirably Young's modulus is 1011 dyn/
It is more than cJ. The damping performance ζ is frequency dependent (
ω) in the formula, effectively takes a maximum at low frequency (IK) (below Iz) and changes.

厚み変形を主体とした場合、制振性能は一般に次式で示
される。
When thickness deformation is the main component, vibration damping performance is generally expressed by the following equation.

である。It is.

(2)式より制振特性ζは周波数に対して最大値をとり
変化することがわかる。この場合の周波数および制振特
性の最大値は次式で示される。
From equation (2), it can be seen that the damping characteristic ζ takes a maximum value and changes with frequency. The maximum value of the frequency and damping characteristics in this case is expressed by the following equation.

ここで  ζwax:得られる制振性能の最大値fo:
制振性能が最大となる周波数 (3)式より制振特性は、被制振体に貼り付ける粘弾性
層の密度が大きい程例えば1.5g/cc以上、また損
失係数η2が大きい程良い。振動低減を行う周波数は一
般的に1OKHzまでであるので、f、は10 K H
z以下にすることが望ましい。このためには粘弾性層の
弾性率E2がzlO″dyn/cxl以下であることが
必要である。
Here, ζwax: Maximum value fo of vibration damping performance obtained:
Frequency at which the damping performance is maximized According to formula (3), the damping property is better as the density of the viscoelastic layer attached to the damped body is higher, for example, 1.5 g/cc or more, and the loss coefficient η2 is larger. Since the frequency for vibration reduction is generally up to 1 kHz, f is 10 K H
It is desirable to set it to z or less. For this purpose, it is necessary that the elastic modulus E2 of the viscoelastic layer is zlO″dyn/cxl or less.

本発明の制振体は、被制振体に貼り付けた第1の粘弾性
層および前記第1の表面に貼り付けた弾性層、前記弾性
層の表面に貼り付けた第2の粘弾性層との3層からなる
The damping body of the present invention includes a first viscoelastic layer attached to the damped body, an elastic layer attached to the first surface, and a second viscoelastic layer attached to the surface of the elastic layer. It consists of three layers.

第2の粘弾性層のヤング率は小さく、弾性層の剛性に大
きな影響を与えないため、第1の粘弾性層と弾性層との
組合せにより、ずれ変形を主体としだ制振機構が生じる
。この場合の特性は(1)式により与えられる。
Since the Young's modulus of the second viscoelastic layer is small and does not significantly affect the rigidity of the elastic layer, the combination of the first viscoelastic layer and the elastic layer creates a vibration damping mechanism mainly based on shear deformation. The characteristics in this case are given by equation (1).

第2の粘弾性層は、厚み変形を主体とした制振機構が生
じる。この場合の特性は、被制振体と第1の粘弾性層と
弾性層との三層構造を含めて1つの被制振体と考えた場
合の密度ρ、およびHlを用いて(2)式により近似で
きる。
In the second viscoelastic layer, a vibration damping mechanism mainly based on thickness deformation occurs. The characteristics in this case are calculated using the density ρ and Hl when the three-layer structure of the damped body, the first viscoelastic layer, and the elastic layer is considered as one damped body (2) It can be approximated by Eq.

よって全体の制振性能は、ずれ変形と厚み変形の制振機
構の特徴を合わせたものとなる。すなわち広い周波数範
囲で大きな制振性能が得られる。
Therefore, the overall vibration damping performance is a combination of the characteristics of the vibration damping mechanism of shear deformation and thickness deformation. In other words, great vibration damping performance can be obtained over a wide frequency range.

〔実施例〕〔Example〕

以下に本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の制振体の一実施例を示す。FIG. 1 shows an embodiment of the damping body of the present invention.

1は被制振体、2は第1の粘弾性層、3は弾性層(拘束
層)、4は第2の粘弾性層である。第1の粘弾性層2は
被制振体1に、弾性層3は第1の粘弾性層2に、第2の
粘弾性層4は弾性層3にそれぞれ貼り付けられている。
Reference numeral 1 designates a damped body, 2 a first viscoelastic layer, 3 an elastic layer (restraint layer), and 4 a second viscoelastic layer. The first viscoelastic layer 2 is attached to the damped body 1, the elastic layer 3 is attached to the first viscoelastic layer 2, and the second viscoelastic layer 4 is attached to the elastic layer 3.

被制振体1に厚み5mのアルミ板、第1の粘弾性層2に
損失係数〜1をもつ厚み3ITEI+の材料を、弾性層
3に厚み2mのアルミ板を、第2の粘弾性層4に密度2
、ヤング率5 X 10”dyn/i、損失係数〜1を
もつ厚み5mmの材料を用いた場合の制振性能を第2図
に示す。横軸は周波数、縦軸は制振性能を臨界減衰比(
%)で表わす。曲線5は、本発明の実施例の性能を、曲
線6は第2の粘弾性層4を用いない制振体の性能を、曲
線7は第2の粘弾性層4を単独に被制振体1に貼り付け
た制振体の性能をそれぞれ示す、第2図より明らかなと
おり、本発明の制振体(曲線5)は従来の制振体(曲線
6゜7)に比較して広い周波数範囲で高い制振性能を有
することがわかる。
The damped body 1 is an aluminum plate with a thickness of 5 m, the first viscoelastic layer 2 is a material with a thickness of 3ITEI+ having a loss coefficient of ~1, the elastic layer 3 is an aluminum plate with a thickness of 2 m, and the second viscoelastic layer 4 density 2
Figure 2 shows the damping performance when using a 5 mm thick material with a Young's modulus of 5 x 10" dyn/i and a loss coefficient of ~1. The horizontal axis represents the frequency, and the vertical axis represents the vibration damping performance as the critical damping. ratio(
%). Curve 5 shows the performance of the embodiment of the present invention, curve 6 shows the performance of the damping body without the second viscoelastic layer 4, and curve 7 shows the performance of the damping body using the second viscoelastic layer 4 alone. As is clear from Figure 2, which shows the performance of the vibration dampers attached to Figure 1, the vibration damper of the present invention (curve 5) has a wider frequency range than the conventional vibration damper (curves 6 and 7). It can be seen that it has high vibration damping performance in this range.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、広い周波数範囲で大きな
制振性能をもつ制振体を実現でき、微少振動をきらう機
器の制振に用いて損傷、誤動作を阻止し、あわせて騒音
による環境悪化の問題を解消できる効果を有するもので
ある。
As described above, according to the present invention, it is possible to realize a vibration damping body that has high vibration damping performance over a wide frequency range, and can be used to damp the vibrations of equipment that dislikes minute vibrations, thereby preventing damage and malfunctions, and at the same time reducing the environmental impact caused by noise. This has the effect of solving the problem of deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明制振体の一実施例を示す斜視図。 第2図は本発明制振体の制振性能と従来の制振体の制振
性能の比較を示す図である。 1・・・被制振体      2・・・第1の粘弾性層
3・・・弾性層       4・・・第2の粘弾性層
特許出願人 日本電気株式会社 〜、 弓 代理人 弁理士内原  晋・・′ 第1図
FIG. 1 is a perspective view showing an embodiment of the vibration damper of the present invention. FIG. 2 is a diagram showing a comparison between the damping performance of the damping body of the present invention and the damping performance of a conventional damping body. 1... Vibration-damped body 2... First viscoelastic layer 3... Elastic layer 4... Second viscoelastic layer Patent applicant: NEC Corporation ~, Yumi Agent: Susumu Uchihara, patent attorney ...' Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)被制振体に貼り付けられた第1の粘弾性層と、そ
の表面に貼り付けられた弾性層と、該弾性層の表面に貼
り付けられた第2の粘弾性層との積層構造を有すること
を特徴とする制振体。
(1) Lamination of a first viscoelastic layer affixed to a vibration-damped body, an elastic layer affixed to the surface of the first viscoelastic layer, and a second viscoelastic layer affixed to the surface of the elastic layer. A vibration damping body characterized by having a structure.
JP61253039A 1986-10-23 1986-10-23 Vibration damper Pending JPS63107549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253039A JPS63107549A (en) 1986-10-23 1986-10-23 Vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253039A JPS63107549A (en) 1986-10-23 1986-10-23 Vibration damper

Publications (1)

Publication Number Publication Date
JPS63107549A true JPS63107549A (en) 1988-05-12

Family

ID=17245626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253039A Pending JPS63107549A (en) 1986-10-23 1986-10-23 Vibration damper

Country Status (1)

Country Link
JP (1) JPS63107549A (en)

Similar Documents

Publication Publication Date Title
Gripp et al. Vibration and noise control using shunted piezoelectric transducers: A review
Erkorkmaz et al. High bandwidth control of ball screw drives
US5783898A (en) Piezoelectric shunts for simultaneous vibration reduction and damping of multiple vibration modes
US20040047277A1 (en) Device for supporting an optical disc driving device
JPS63107549A (en) Vibration damper
US6364064B1 (en) Piezoceramic elevator vibration attenuator
KR102111365B1 (en) Designing method of perturbation-based extra insensitive input shaper (pei-is) via impulse-time perturbation
Tantanawat et al. Application of compliant mechanisms to active vibration isolation systems
JPS6314199A (en) Vibration control body
JPH0814327A (en) Vibration proof pad
JP2000329187A (en) Vibration damper
JP2008203542A (en) Sound absorbing body
JP2016109283A (en) Dynamic vibration absorber and design method of the same
JPS62110041A (en) Vibration control body
JPH01249435A (en) Composite damping body
Iwamoto et al. Adaptive feed-forward control of flexural waves propagating in a beam using smart sensors
JPS63204580A (en) Magnetic disk device
JPH04290631A (en) Vibration-proof device
JPS6122934A (en) Vibration-damping material
KR102286883B1 (en) Multi-layer sound-absorbing materials having excellent sound absorption performance
JP2000213591A (en) Vibration damping panel
Liang et al. Vibration energy harvesting system with mechanical motion rectifier
Howard et al. Finite element analysis of active vibration isolation using vibrational power as a cost function
HOLLKAMP Multimodal passive vibration suppression with piezoelectrics
JPS59188430A (en) Multilayer structure vibration damping material