JPS62110041A - Vibration control body - Google Patents

Vibration control body

Info

Publication number
JPS62110041A
JPS62110041A JP60250087A JP25008785A JPS62110041A JP S62110041 A JPS62110041 A JP S62110041A JP 60250087 A JP60250087 A JP 60250087A JP 25008785 A JP25008785 A JP 25008785A JP S62110041 A JPS62110041 A JP S62110041A
Authority
JP
Japan
Prior art keywords
viscoelastic layer
elastic modulus
viscoelastic
vibration control
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60250087A
Other languages
Japanese (ja)
Inventor
Atsushi Fujimoto
淳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60250087A priority Critical patent/JPS62110041A/en
Publication of JPS62110041A publication Critical patent/JPS62110041A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • F16F3/087Units comprising several springs made of plastics or the like material
    • F16F3/093Units comprising several springs made of plastics or the like material the springs being of different materials, e.g. having different types of rubber

Abstract

PURPOSE:To obtain a vibration control body having high vibration control characteristic in the wide range of frequency by forming the vibration control body by two kinds of viscoelastic layers different in elastic modulus. CONSTITUTION:The first viscoelastic layer 2 having a desired elastic modulus of 10<9>dyn/cm<2> or more is stuck to a vibration controlled body 1, whereby substantially constant vibration control action is caused to the frequency by the expansion deformation of the layer. The second viscoelastic layer 3 having elastic modulus smaller than that of the viscoelastic layer 2 is stuck to the surface of the viscoelastic layer 2, whereby high vibration control action is caused by the deformation of the thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は工作機械、家電製品、プリンタなどOA@器、
船舶、自動車、音響機器、精密機器などに用いて振動・
騒音を低減させる制振体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to office automation equipment such as machine tools, home appliances, printers, etc.
Used in ships, automobiles, audio equipment, precision equipment, etc. to reduce vibration and
This invention relates to a vibration damper that reduces noise.

〔従来の技術〕[Conventional technology]

IC−LSI・光通信をはじめとする超’PN @加工
業では、工場の微少振動が製品の品質を左右するように
なっている。
In the ultra-PN @ processing industry, including IC-LSI and optical communications, minute vibrations in factories have come to affect the quality of products.

また高精度な機器を船や車に搭載して用いる機会が増え
るに従い、これら移動体の撮動による機器の損傷が問題
となりている。一方生活環境の面からは、OA機器がオ
フィスや家庭内に普及するにつれ、これら機器が発生す
る騒音による環境の悪化が問題となってきている。
Furthermore, as opportunities for using highly accurate equipment mounted on ships and cars increase, damage to the equipment due to imaging of these moving objects has become a problem. On the other hand, from the aspect of the living environment, as office automation equipment becomes more widespread in offices and homes, the deterioration of the environment due to the noise generated by these equipment has become a problem.

これら振動・騒音を抑制するためには、発生源を、なく
すことが重要であるが、その対策は容易でない場合が多
い。そこで、発生した撮動・騒音を低減させるために粘
弾性材料を用いた割振方法が必要となっている。
In order to suppress these vibrations and noises, it is important to eliminate their sources, but countermeasures are often not easy. Therefore, an allocation method using a viscoelastic material is required in order to reduce the imaging and noise generated.

従来、粘弾性材料を用いた制振方法は、いづれも粘弾性
材料の変形により振動エネルギーの低減をンするもので
あるが、被制振体に粘弾性層と拘束層を設けた拘束型と
粘弾性層のみを設けた非拘束型とが用いられていた。制
振機構は、粘弾性体の振動にともなって起る変形によプ
特徴づけられる。各割振方法で生じる制振@構は、拘束
型ではずり変形を主体とした制振機構、非拘束型では粘
弾性層の弾性率の大きさによって、伸縮変形を主体とし
九制振機構および厚み変形を主体とした制振機構である
Conventional vibration damping methods using viscoelastic materials reduce vibration energy by deforming the viscoelastic material, but there are two methods: a restraining type in which a viscoelastic layer and a restraining layer are provided on the damped body. A non-restricted type with only a viscoelastic layer was used. The vibration damping mechanism is characterized by the deformation that occurs as the viscoelastic body vibrates. The vibration damping @ structure that occurs in each vibration allocation method is a damping mechanism mainly based on shear deformation in the constrained type, and a damping mechanism mainly based on expansion and contraction deformation depending on the elastic modulus of the viscoelastic layer in the non-constrained type. It is a vibration damping mechanism that mainly uses deformation.

各制振機構によシ得られる割振特性は異なる。The allocation characteristics obtained by each damping mechanism are different.

すり変形および厚み変形を主体とした割振機構では、高
い割振性能が得られるものの、前記性能が周波数に対し
て変化するため使用可能な周波数範囲が限定され、ま九
伸縮変形を主体とした割振機構では、周波数に対して1
1ぼ一定の制振性能が得られるものの、高い割振性能が
得難い。
Allocation mechanisms based mainly on shedding deformation and thickness deformation can achieve high allocation performance, but the usable frequency range is limited because the performance changes with frequency. Then, 1 for the frequency
Although it is possible to obtain damping performance that is constant at about 1, it is difficult to obtain high damping performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の様に、従来の制振機構では、低周波から高周波ま
での広い周波数範囲で高い割振性能を得難いという欠点
があった。このため対象とする振動の周波数%注をあら
かじめ知り、前記特性に適した制振方法を選定使用しな
ければならないという厄介な問題があった。
As described above, the conventional vibration damping mechanism has the drawback that it is difficult to obtain high vibration allocation performance over a wide frequency range from low frequencies to high frequencies. For this reason, there is a troublesome problem in that it is necessary to know the frequency percentage of the target vibration in advance and select and use a vibration damping method suitable for the characteristics.

本発明は前記問題点を解決するものであり、その目的と
するところは広い周波数範囲で高い制振特性を実現する
制振体を提供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a vibration damping body that achieves high vibration damping characteristics over a wide frequency range.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、被制振体に貼りつけられた第1の粘弾性層の
表面に前記粘弾性層よりも小さな弾性率をもつ第2の粘
弾性層を貼りつけたことを特徴とする制振体である。
The present invention provides a vibration damping device characterized in that a second viscoelastic layer having a smaller elastic modulus than the viscoelastic layer is attached to the surface of the first viscoelastic layer attached to the vibration damped body. It is the body.

〔作 用〕[For production]

非拘束型の制振方法では、用いる粘弾性材料の弾性率の
大きさによりて伸縮変形を主体とした割振機構と厚み変
形を主体とし九制振機構が生じる。
In the non-restrictive damping method, depending on the magnitude of the elastic modulus of the viscoelastic material used, there are two types of vibration damping mechanisms: one mainly based on expansion/contraction deformation, and the other based on thickness deformation.

伸縮変形を主体とした場合、割振性能は一般に次式で示
される。
When expansion and contraction deformation is the main component, the allocation performance is generally expressed by the following equation.

(1)式より制振性能ζを大きくするためには1、損失
係数η2弾性定数E2、厚みh2を大きくする必要があ
る。また被制振体は、一般に鉄やアルミ材などの金属で
あるので弾性率E、は10 ” 〜10 ” dyr/
yys”の値を示す。このためある程度の制振特性(ζ
=0.1ts)を得るためには、粘弾性層の弾性率とし
て”B 10’ dyn/を一以上の材料が必要である
From equation (1), in order to increase the damping performance ζ, it is necessary to increase 1, the loss coefficient η2, the elastic constant E2, and the thickness h2. Also, since the damped body is generally made of metal such as iron or aluminum, the elastic modulus E is 10" to 10" dyr/
yys". Therefore, a certain amount of vibration damping property (ζ
= 0.1 ts), a material with an elastic modulus of "B 10'dyn/" or more is required for the viscoelastic layer.

厚み変形を主体とした場合、割振性能は一般に次式で示
される。
When the main focus is thickness deformation, the allocation performance is generally expressed by the following equation.

である。It is.

(2)式より割振特性ζは周波数に対して最大値をとり
変化することがわかる。この場合の周波数および割振特
性の最大値は次式で示される。
From equation (2), it can be seen that the allocation characteristic ζ takes a maximum value and changes with frequency. The maximum values of the frequency and allocation characteristics in this case are expressed by the following equations.

(3)式より制振特性は、被制振体に貼り付ける粘弾性
層の重量が大きい程、また損失係数η2が大きい程良い
。振動低減を行なう周波数は一般的に10kHz iで
であるので、foは10 kHz以下にすることが望ま
しい。このためには粘弾性層の弾性率E2が〜10’ 
dyn/c−以下であることが必要である。
According to equation (3), the damping characteristics are better as the weight of the viscoelastic layer attached to the damped object is larger and the loss coefficient η2 is larger. Since the frequency for vibration reduction is generally 10 kHz i, it is desirable that fo be 10 kHz or less. For this purpose, the elastic modulus E2 of the viscoelastic layer is ~10'
It is necessary that it is dyn/c- or less.

本発明の制振方法は、被制振体に貼り付けた第1の粘弾
性層と前記第1の粘弾性体表面に貼り付けた第2の粘弾
性層とからなる。
The vibration damping method of the present invention includes a first viscoelastic layer attached to a damped object and a second viscoelastic layer attached to the surface of the first viscoelastic body.

第ユの粘弾性層の弾性率は実効的に10 dyn/cy
”以上、第2の粘弾性層の弾性率は10 dyn/cf
n”以下である。この場合、第1の粘弾性層では伸縮変
形を主体とした割振機構、第2の粘弾性層では厚み変形
を主体としだ制振機構が生じる。第1の粘弾性層での制
振性能は、前記粘弾性層を単独で用いた場合と変わらず
前夫(1)で示される。
The elastic modulus of the first viscoelastic layer is effectively 10 dyn/cy.
``The elastic modulus of the second viscoelastic layer is 10 dyn/cf.
n'' or less. In this case, the first viscoelastic layer produces an allocation mechanism mainly based on expansion and contraction deformation, and the second viscoelastic layer produces a vibration damping mechanism mainly based on thickness deformation.The first viscoelastic layer The vibration damping performance is shown in (1), which is the same as when the viscoelastic layer is used alone.

これは第2の粘弾性層の弾性率が小さいため、第1の粘
弾性層の伸縮変形に影響を与えないためである。
This is because the second viscoelastic layer has a small elastic modulus and does not affect the expansion/contraction deformation of the first viscoelastic layer.

第2の粘弾性層での制振性能は、第1の粘弾性層と被制
振体とを一体として新たな被制振体と考えて(2)式に
より算出したものとなる。
The damping performance of the second viscoelastic layer is calculated using equation (2), considering the first viscoelastic layer and the damped body as a new damped body.

よって全体の割振性能は、伸縮変形を主体とした性能と
、厚み変形を主体とした性能を合わせたものとなる。す
なわち広い周波数範囲で大きな制振性能をもつものとな
る。
Therefore, the overall allocation performance is a combination of performance mainly based on expansion/contraction deformation and performance mainly based on thickness deformation. In other words, it has great damping performance over a wide frequency range.

〔実施例〕〔Example〕

以下に、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の制振体の一実施例を示す。lは被制振
体、2は第1の粘弾性体、3は第2の粘弾性体である。
FIG. 1 shows an embodiment of the damping body of the present invention. 1 is a damped body, 2 is a first viscoelastic body, and 3 is a second viscoelastic body.

第1の粘弾性層は被制振体lに貼付けられ、第2の粘弾
性層3は第1の粘弾性層に貼付けられている。弾性率は
第1の粘弾性層2〉第2の粘弾性層3である。被制振体
1に厚み10■の鉄板、第1の粘弾性層2に厚み10m
弾性率10” 〜10” dyn/ctn”の材料、第
2の粘弾性層3に厚み5Illl1弾性率lO〜10 
dyn/副2の材料を用いた場合の割損特性を第2図に
示す。横軸は周波数、縦軸は割振性能を臨界減衰比(働
で表わす。曲線4は本発明の実施例、曲線5は第1の粘
弾性層2を単独で用いた場合である。本発明の実施例の
割振性能は、広い周波数範囲で高い割振性能をもってい
る。
The first viscoelastic layer is attached to the damped body l, and the second viscoelastic layer 3 is attached to the first viscoelastic layer. The elastic modulus is first viscoelastic layer 2>second viscoelastic layer 3. The damped body 1 is a steel plate with a thickness of 10 cm, and the first viscoelastic layer 2 is a 10 m thick iron plate.
A material with an elastic modulus of 10" to 10"dyn/ctn", a thickness of the second viscoelastic layer 3 with an elastic modulus of 10 to 10
FIG. 2 shows the breakage characteristics when using a dyn/secondary material. The horizontal axis represents the frequency, and the vertical axis represents the allocation performance in terms of critical damping ratio (function).Curve 4 represents the example of the present invention, and curve 5 represents the case where the first viscoelastic layer 2 is used alone. The allocation performance of the embodiment is high over a wide frequency range.

第3図は、従来の制振方法での制振性能の比較を示す。FIG. 3 shows a comparison of damping performance with conventional damping methods.

曲fi16は拘束型制振方法で生じるずシ変形主体の割
振機構の性能を示す。粘弾性層は厚み3日で弾性率〜1
0  dyn/α1、拘束層は厚み3■で弾性高〜10
12dyn/am”のものを用いた。曲線7および8は
、非拘束型制振方法で生じる伸縮変形主体の割振機構と
厚み変形主体の制振機構の性能を示す。曲線7は厚み変
形主体のものであシ、粘弾性層は厚み5mで弾性率〜1
O7dyV′−のものを用いた。曲線8は伸縮変形主体
のものであシ、粘弾性層は厚み5mで弾性率〜10” 
dyn/−のものを用いた。
The song fi16 shows the performance of an allocation mechanism that mainly causes deformation, which does not occur with the restraint-type vibration damping method. The viscoelastic layer has an elastic modulus of ~1 at a thickness of 3 days.
0 dyn/α1, the restraining layer has a thickness of 3 cm and has high elasticity of ~10
12 dyn/am'' was used.Curves 7 and 8 show the performance of the vibration damping mechanism mainly based on expansion and contraction deformation and the vibration damping mechanism mainly based on thickness deformation, which occur in the non-constrained damping method.Curve 7 shows the performance of the vibration damping mechanism mainly based on thickness deformation. The viscoelastic layer has a thickness of 5 m and an elastic modulus of ~1
O7dyV'- was used. Curve 8 is mainly due to expansion/contraction deformation, and the viscoelastic layer has a thickness of 5 m and an elastic modulus of ~10"
dyn/- was used.

以上被制振体はすべて厚み5mmのアルミ板を用いた。All of the above vibration-damped bodies were made of aluminum plates with a thickness of 5 mm.

伸縮変形主体の曲線8は、制振性能は他に比較して小さ
いものの、周波数に対してはぼ一定値を示している。ず
り変形および厚み変形主体の曲線6,7は、制振性能は
大きいものの、周波数に対して大きく変化しているのが
わかる。
Although the damping performance of curve 8, which is mainly caused by expansion and contraction, is smaller than the others, it shows a nearly constant value with respect to frequency. It can be seen that curves 6 and 7, which are mainly caused by shear deformation and thickness deformation, have great damping performance, but change greatly with respect to frequency.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明は被制振体貼りつけられた第1の粘
弾性層の表面に、前記粘弾性層よりも小さな弾性率をも
つ第2の粘弾性層を貼シつけた構成をとることにより、
広い周波数範囲で大きな割振性能をもつ制振体を実現す
ることができる効果を有するものである。
As described above, the present invention has a structure in which a second viscoelastic layer having a smaller elastic modulus than the viscoelastic layer is pasted on the surface of the first viscoelastic layer pasted on the vibration damping object. By taking
This has the effect of making it possible to realize a vibration damping body that has great damping performance over a wide frequency range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明制振体の一実施例を示す斜視図、第2図
は本発明の制振方法の割振性能を示す図、第3図は従来
の制振方法の割振性能を示す図である。 1・・・被制振体、2・・・第1の粘弾性層、3・・・
第2の粘弾性層。
FIG. 1 is a perspective view showing an embodiment of the vibration damping body of the present invention, FIG. 2 is a diagram showing the allocation performance of the vibration damping method of the invention, and FIG. 3 is a diagram showing the allocation performance of the conventional vibration damping method. It is. DESCRIPTION OF SYMBOLS 1... Vibration-damped body, 2... First viscoelastic layer, 3...
Second viscoelastic layer.

Claims (2)

【特許請求の範囲】[Claims] (1)被制振体に貼りつけられた第1の粘弾性層の表面
に前記第1の粘弾性層よりも小さな弾性率をもつ第2の
粘弾性層を貼りつけたことを特徴とする制振体。
(1) A second viscoelastic layer having a smaller elastic modulus than the first viscoelastic layer is attached to the surface of the first viscoelastic layer attached to the vibration damping object. Vibration damping body.
(2)前記第1の粘弾性層の弾性率を10^9dyn/
cm^2以上、第2の粘弾性層の弾性率を10^9dy
n/cm^2以下に設定してなる特許請求の範囲第1項
に記載の制振体。
(2) The elastic modulus of the first viscoelastic layer is 10^9dyn/
cm^2 or more, the elastic modulus of the second viscoelastic layer is 10^9dy
The damping body according to claim 1, wherein the vibration damping body is set to n/cm^2 or less.
JP60250087A 1985-11-08 1985-11-08 Vibration control body Pending JPS62110041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60250087A JPS62110041A (en) 1985-11-08 1985-11-08 Vibration control body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60250087A JPS62110041A (en) 1985-11-08 1985-11-08 Vibration control body

Publications (1)

Publication Number Publication Date
JPS62110041A true JPS62110041A (en) 1987-05-21

Family

ID=17202612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60250087A Pending JPS62110041A (en) 1985-11-08 1985-11-08 Vibration control body

Country Status (1)

Country Link
JP (1) JPS62110041A (en)

Similar Documents

Publication Publication Date Title
Jangid Optimum multiple tuned mass dampers for base‐excited undamped system
Bakre et al. Optimum multiple tuned mass dampers for base-excited damped main system
Du et al. Control of internal resonances in vibration isolators using passive and hybrid dynamic vibration absorbers
JP2005261167A (en) Actuator and dampening method therefor
JPS62110041A (en) Vibration control body
JPS63107549A (en) Vibration damper
JPS6314199A (en) Vibration control body
JPS6217442A (en) Vibration damping structure
WO1997021046A1 (en) Vibration damping apparatus
JPH01249435A (en) Composite damping body
Mucci et al. Active vibration control of a beam subjected to AM or FM disturbances
JP4392700B2 (en) Method for suppressing vibration of plate-like body
Chesné et al. A simple hybridization of active and passive mass dampers
JPH09280310A (en) Method for controlling vibration using anti-resonance and viscous dynamic vibration absorber
RU2333545C2 (en) Vibration-and-noise damping flat-sheet gasket
Mosquera-Sánchez et al. A MIMO control strategy for the sound quality of multiharmonic disturbances transmitted into cavities
Patel et al. Vibration suppression of a slender boring bar by an impact damper
JPH04136539A (en) Vibration control method for structure
JP2003150170A (en) Sound absorbing and vibration damping material
JPH02161500A (en) Lead fiber vibration-damping material
SU779534A1 (en) Vibration-damping roof
TR2021021632A2 (en) PD RESONATOR METHOD AS AN ACTIVE DYNAMIC VIBRATION SUSPENDERS
JP2743195B2 (en) Vibration reduction method for structures
GB2618111A (en) Acoustic black hole, structural damper, structurally damped structure
GB2618108A (en) Improved acoustic black hole, structural damper, structurally damped structure