JPS63107071A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS63107071A
JPS63107071A JP25300286A JP25300286A JPS63107071A JP S63107071 A JPS63107071 A JP S63107071A JP 25300286 A JP25300286 A JP 25300286A JP 25300286 A JP25300286 A JP 25300286A JP S63107071 A JPS63107071 A JP S63107071A
Authority
JP
Japan
Prior art keywords
gate
contact layer
insulative film
layer region
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25300286A
Other languages
Japanese (ja)
Inventor
Makoto Matsunoshita
松野下 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25300286A priority Critical patent/JPS63107071A/en
Publication of JPS63107071A publication Critical patent/JPS63107071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To decrease a feedback capacity without increasing a source resistance, and increase the withstand voltage of a drain, by a method wherein a insulative film is arranged on one side of the center portion of a gate on a substrate surface, the insulative film except on the sidewall of the gate is eliminated after a second insulative film is formed on the whole surface, and a contact layer region is formed by implanting an ion beam. CONSTITUTION:After a first insulative film is formed on one side of the center portion of a gate 13 on the surface of a substrate 11 on which the gate 13 is formed, a second insulative film is formed on the whole surface, and the insulative film except the insulative film on the sidewall of the gate 13 is eliminated by etching. Then a contact layer region 19 is formed by implanting an ion beam applying sidewall insulative films 16 and 17 of the gate 13 and both sides of it to masks. For example, after an active layer region 12 and the gate 13 are formed on a GaAs substrate 11, the unsymmetrical sidewalls 16 and 17 are formed in the above-mentioned manner, and the contact layer region 19 is formed by implanting silicon ion. Then, after each process of eliminating the sidewalls 16 and 17, annealing, and forming ohmic electrodes, an FET is formed wherein a source electrode 24 is formed on the side where an contact layer 21 is near to the gate 13 and a drain electrode 25 is formed in the side where the contact layer 21 is distant from the gate 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果トランジスタの製造方法忙関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing a field effect transistor.

〔従来の技術〕[Conventional technology]

従来、電界効果トランジスタのコンタクト層は、第4図
に示すように基板51に活性層領域52、ゲート53を
形成後、薄い絶縁膜を付着し、リアクティブイオンエツ
チングを行なってゲート53に側壁54を形成し、ゲー
ト53と側壁54をマスクにしてイオンビーム55を照
射することによってコンタクト層領域56を形成した後
、アニールによって活性層領域52、コンタクト層領域
456を活性化して形成していた。
Conventionally, the contact layer of a field effect transistor is formed by forming an active layer region 52 and a gate 53 on a substrate 51 as shown in FIG. After forming a contact layer region 56 by irradiating with an ion beam 55 using the gate 53 and sidewalls 54 as masks, the active layer region 52 and contact layer region 456 are activated and formed by annealing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の製造方法では、ゲートを中心としてコン
タクト層を非対称だ形成することは困難であり、ソース
抵抗を増加させずに帰還容量を低減し、ドレイン耐圧を
向上することは容易でなかった。
In the conventional manufacturing method described above, it is difficult to form a contact layer asymmetrically around the gate, and it is not easy to reduce feedback capacitance and improve drain breakdown voltage without increasing source resistance.

この発明の目的は、上記の従来方法の欠点を除去し、帰
還容量を低減し、ドレイン耐圧を向上させた電界効果ト
ランジスタの製造方法を提供である。
An object of the present invention is to provide a method for manufacturing a field effect transistor that eliminates the drawbacks of the above-mentioned conventional methods, reduces feedback capacitance, and improves drain breakdown voltage.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は、この発明の原理説明図である。まず、第1図
(alに示すように基板1に活性層領域2およびゲート
3を形成後、厚さtlの第1絶縁膜4を付着する。その
後フォトリングラフィ技術を用いて、第1図(b)の側
壁膜5のように加工した後、厚さt2の第2絶縁膜6を
付着する。
FIG. 1 is an explanatory diagram of the principle of this invention. First, as shown in FIG. 1 (al), after forming an active layer region 2 and a gate 3 on a substrate 1, a first insulating film 4 having a thickness tl is deposited. After processing like the sidewall film 5 in (b), a second insulating film 6 having a thickness of t2 is deposited.

次いで、選択性のエツチングにより第1図(C)のよう
釦側壁7及び側壁8を形成し、ゲート3、側壁7及び側
壁8をマスクとしてイオンビーム9によってコンタクト
層領域lOを形成する。コンタクト層領域10は、側壁
7と側壁8の厚さの違いにより自己整合的にゲートを中
心として非対称となる。
Next, a button sidewall 7 and a sidewall 8 are formed by selective etching as shown in FIG. 1C, and a contact layer region 1O is formed by an ion beam 9 using the gate 3, sidewall 7, and sidewall 8 as a mask. Contact layer region 10 becomes asymmetrical with respect to the gate in a self-aligned manner due to the difference in thickness between sidewalls 7 and sidewalls 8 .

〔実施例〕〔Example〕

次に本発明を実施例によって詳細に説明する。 Next, the present invention will be explained in detail by way of examples.

第2図は本発明の第1の実施例の工程を示す断面図であ
る。まず、QaAs基板11Vc活性層領域12及びゲ
ート13を形成した後、厚さ200OA程度の酸化膜1
4を付着後レジストを塗布し露光現像処理を行なって第
2図(a)のような形状のレジスト15を形成する。次
いで、フッ酸の希釈液によってレジスト15の下坂外の
酸化膜14を除去する。その後レジス)15を除去し、
厚さ100OA程度の酸化膜を付着し、全面をリアクテ
ィブイオンエツチングすることKより第2図(b)のよ
うに非対称な側壁16.17を形成した後、ゲート13
、側壁16および17をマスクとしてシリコンイオンを
注入しコンタクト層領域19を形成する。その後は側壁
16側壁17の除去、アニールオーミック電極形成の各
工程を経て、第2図(C)のようにコンタクト層21が
ゲート13に近い方をソース電極24、コンタクト層2
1がゲート13に遠い方をドレイン電極25とする電界
効果トランジスタが作成できる。
FIG. 2 is a sectional view showing the steps of the first embodiment of the present invention. First, after forming the QaAs substrate 11Vc active layer region 12 and gate 13, an oxide film 1 with a thickness of about 200 OA is formed.
4, a resist is applied and exposed and developed to form a resist 15 having a shape as shown in FIG. 2(a). Next, the oxide film 14 outside the lower slope of the resist 15 is removed using a diluted hydrofluoric acid solution. After that, remove Regis) 15,
After depositing an oxide film with a thickness of about 100 OA and performing reactive ion etching on the entire surface to form asymmetric side walls 16 and 17 as shown in FIG.
, using sidewalls 16 and 17 as masks, silicon ions are implanted to form contact layer region 19. After that, the side walls 16 and 17 are removed, and the annealed ohmic electrode is formed.As shown in FIG.
A field effect transistor can be created in which the drain electrode 25 is the one farthest from the gate 13.

このような電界効果トランジスタはドレイン側のコンタ
クト層21とゲート13の距離が従来のものより長くな
っているため帰還容量が低減し、かつドレイン耐圧が向
上する。さらに、このような工程は1つの基板内に多数
のトランジスタを均一性よく作製できる。
In such a field effect transistor, the distance between the contact layer 21 on the drain side and the gate 13 is longer than in the conventional transistor, so that the feedback capacitance is reduced and the drain breakdown voltage is improved. Furthermore, such a process allows a large number of transistors to be manufactured with good uniformity within one substrate.

第3図は本発明の@2の実施例jの工程を示す断面図で
ある。GaAs基板311C活性層領域32およびゲー
ト33を形成した後、酸化膜を付着しる。次に、ゲート
33と酸化膜34をマスクとしてシリコンイオンの注入
によシ、コンタクト層領域36を形成する。その後前述
の第1の実施例と同様に薄い酸化膜を付着し同様の工程
を経て第3図(b)のような電界効果トランジスタを作
製する。
FIG. 3 is a sectional view showing the process of Example j of @2 of the present invention. After forming the active layer region 32 and gate 33 on the GaAs substrate 311C, an oxide film is deposited. Next, a contact layer region 36 is formed by implanting silicon ions using the gate 33 and the oxide film 34 as a mask. Thereafter, a thin oxide film is deposited in the same manner as in the first embodiment described above, and a field effect transistor as shown in FIG. 3(b) is manufactured through the same steps.

この実施例では、コンタクト層38がノース電極42側
のゲート33端直下まであるため、ソース抵抗の低減が
可能でトランジスタの特性が向上するという利点がある
In this embodiment, since the contact layer 38 extends to just below the end of the gate 33 on the north electrode 42 side, there is an advantage that the source resistance can be reduced and the characteristics of the transistor are improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電界効果トランジスタの
コンタクト層をゲートを中心として自己整合的忙非対称
忙作成できることによりトランジスタの帰還容量を低減
しドレイン耐圧の向上を図った多数のトランジスタを均
一性良く作製するととができる。
As explained above, the present invention allows the contact layer of a field effect transistor to be formed in a self-aligned asymmetric manner around the gate, thereby reducing the feedback capacitance of the transistor and improving the drain breakdown voltage. When made, it forms a tong.

このような電界効果トランジスタは、ミリ波帯等の高周
波領域において広い利用が期待されるものである。
Such field effect transistors are expected to be widely used in high frequency regions such as millimeter wave bands.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図伸)〜(C)はこの発明の原理説明図、vg2図
(a)〜(C)はこの発明の第1の実施例の工程断面図
、第3図(a)〜(b)はこの発明の第2の実施例の工
程断面図、第4図は従来技術の説明図である。 図中、1.51−−−−・一基板、11.31 ・−−
−−−GaAs基板、2.12.32.52・・−・・
活性層領域、3.13.33゜53−・・・・・ゲート
、4・・・・・・第1絶縁膜、5・・・・・・#l壁膜
、6・・・・・・第2絶縁膜、7.8..16.17.
54−−−−−・側壁、9.55・・・・・・イオンビ
ーム、10.19.36.56・・・・・・コンタクト
層領域、14.34・・・・・・酸化膜、15・・・・
・・レジスト、18.35・・・・・・シリコンイオン
ビーム、20、37・・・・・・活性層、21・・・・
・・コンタクト層、22゜40・・・・・・オーミック
金属、23.41・・・・・・絶縁膜、24゜42・・
・・・・ソース電極、25.43・・・・・・ドレイン
電極、38.39・・・・・・コンタクト層。 イオンビーム yf!if図 筋2図 ↓ ↓ φ ↓ j φ 1 ψ ↓ ↓ ↓ ↓ ↓
箔3図
Figures 1) to (C) are explanatory diagrams of the principle of this invention, Figures 2 (a) to (C) are process sectional views of the first embodiment of this invention, and Figures 3 (a) to (b) 4 is a process sectional view of the second embodiment of the present invention, and FIG. 4 is an explanatory diagram of the prior art. In the figure, 1.51---- one board, 11.31---
---GaAs substrate, 2.12.32.52...
Active layer region, 3.13.33°53-...Gate, 4...First insulating film, 5...#l wall film, 6... Second insulating film, 7.8. .. 16.17.
54---- Side wall, 9.55... Ion beam, 10.19.36.56... Contact layer region, 14.34... Oxide film, 15...
...Resist, 18.35...Silicon ion beam, 20, 37...Active layer, 21...
...Contact layer, 22°40...Ohmic metal, 23.41...Insulating film, 24°42...
...Source electrode, 25.43...Drain electrode, 38.39...Contact layer. Ion beam yf! If diagram plot 2 ↓ ↓ φ ↓ j φ 1 ψ ↓ ↓ ↓ ↓ ↓
Foil figure 3

Claims (1)

【特許請求の範囲】[Claims] ゲートを形成した基板表面のゲートの中央部より片側に
第1の絶縁膜を設ける工程と、第1の絶縁膜を設けた基
板表面全面に第2の絶縁膜を設ける工程と、ゲート側壁
の絶縁膜以外の絶縁膜を選択的にエッチングして除去す
る工程と、ゲートおよびその両側の側壁絶縁膜をマスク
としてイオンビームを注入してコンタクト層領域を形成
する工程とを含む電界効果トランジスタの製造方法。
A step of providing a first insulating film on one side of the substrate surface on which the gate is formed from the center of the gate, a step of providing a second insulating film over the entire surface of the substrate on which the first insulating film is provided, and insulating the side walls of the gate. A method for manufacturing a field effect transistor, comprising the steps of selectively etching and removing an insulating film other than the film, and forming a contact layer region by implanting an ion beam using the gate and sidewall insulating films on both sides as masks. .
JP25300286A 1986-10-23 1986-10-23 Manufacture of field effect transistor Pending JPS63107071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25300286A JPS63107071A (en) 1986-10-23 1986-10-23 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25300286A JPS63107071A (en) 1986-10-23 1986-10-23 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS63107071A true JPS63107071A (en) 1988-05-12

Family

ID=17245120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25300286A Pending JPS63107071A (en) 1986-10-23 1986-10-23 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS63107071A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220030A (en) * 1988-07-07 1990-01-23 Nec Corp Manufacture of field effect transistor
US5001077A (en) * 1989-11-08 1991-03-19 Mitsubishi Denki Kabushiki Kaisha Method of producing an asymmetrically doped LDD MESFET
JPH043434A (en) * 1990-04-19 1992-01-08 Mitsubishi Electric Corp Field effect transistor and manufacture thereof
EP0598711A2 (en) * 1989-04-12 1994-05-25 Mitsubishi Denki Kabushiki Kaisha MESFET source/drain structure
US5512499A (en) * 1991-03-01 1996-04-30 Motorola, Inc, Method of making symmetrical and asymmetrical MESFETS
US11155531B2 (en) * 2016-03-14 2021-10-26 Neostrata Company, Inc. N-lipoic-amino acid or peptide, derivatives and their uses

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220030A (en) * 1988-07-07 1990-01-23 Nec Corp Manufacture of field effect transistor
EP0598711A2 (en) * 1989-04-12 1994-05-25 Mitsubishi Denki Kabushiki Kaisha MESFET source/drain structure
EP0598711A3 (en) * 1989-04-12 1994-08-24 Mitsubishi Electric Corp Mesfet source/drain structure.
US5376812A (en) * 1989-04-12 1994-12-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US5001077A (en) * 1989-11-08 1991-03-19 Mitsubishi Denki Kabushiki Kaisha Method of producing an asymmetrically doped LDD MESFET
JPH043434A (en) * 1990-04-19 1992-01-08 Mitsubishi Electric Corp Field effect transistor and manufacture thereof
US5296398A (en) * 1990-04-19 1994-03-22 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor
US5344788A (en) * 1990-04-19 1994-09-06 Mitsubishi Denki Kabushiki Kaisha Method of making field effect transistor
US5510280A (en) * 1990-04-19 1996-04-23 Mitsubishi Denki Kabushiki Kaisha Method of making an asymmetrical MESFET having a single sidewall spacer
US5512499A (en) * 1991-03-01 1996-04-30 Motorola, Inc, Method of making symmetrical and asymmetrical MESFETS
US11155531B2 (en) * 2016-03-14 2021-10-26 Neostrata Company, Inc. N-lipoic-amino acid or peptide, derivatives and their uses

Similar Documents

Publication Publication Date Title
JPS6032364A (en) Manufacture of semiconductor device
JPH1012847A (en) Manufacture of semiconductor device
JPH02271538A (en) Manufacture of semiconductor device
JPS63107071A (en) Manufacture of field effect transistor
JP2714026B2 (en) Method for forming electrode for semiconductor device
KR100244789B1 (en) Method for manufacturing semiconductor device
JPH09116150A (en) Semiconductor device with gold structure and its manufacture
JPS5935479A (en) Manufacture of semiconductor device
JPS6112079A (en) Manufacture of semiconductor element
JPH0499333A (en) Field effect transistor and its manufacture
JPH0845962A (en) Manufacture of semiconductor device
JPS62190773A (en) Field-effect transistor and manufacture thereof
JPS60198869A (en) Manufacture of semiconductor device
JP3254468B2 (en) Field effect transistor and method of manufacturing the same
JPS63293884A (en) Manufacture of semiconductor device
JPS6381866A (en) Manufacture of semiconductor device
JPS6279677A (en) Manufacture of semiconductor device
CN109148302A (en) A kind of production method of all-around-gate pole fin formula field effect transistor
JPH03286538A (en) Manufacture of semiconductor device
JPH0247839A (en) Manufacture of field effect transistor
JPH03276733A (en) Manufacture of compound semiconductor device
JPH02105540A (en) Manufacture of semiconductor device
JPH04287932A (en) Manufacture of semiconductor device
JPS62183564A (en) Manufacture of semiconductor device
JPH01218072A (en) Manufacture of semiconductor device