JPS63107034A - Detection system for outer lead for semiconductor device - Google Patents

Detection system for outer lead for semiconductor device

Info

Publication number
JPS63107034A
JPS63107034A JP25063886A JP25063886A JPS63107034A JP S63107034 A JPS63107034 A JP S63107034A JP 25063886 A JP25063886 A JP 25063886A JP 25063886 A JP25063886 A JP 25063886A JP S63107034 A JPS63107034 A JP S63107034A
Authority
JP
Japan
Prior art keywords
measured
light source
tubular light
beams
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25063886A
Other languages
Japanese (ja)
Inventor
Takaki Kanazawa
金沢 高貴
Tatsuhiko Shimoda
下田 辰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25063886A priority Critical patent/JPS63107034A/en
Publication of JPS63107034A publication Critical patent/JPS63107034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make compact a device while improving the reliability of detection by reflecting beams by an optical mirror from a tubular light source and projecting the reflected beams to CCD line sensors oppositely arranged to each outer lead row as transmitted beams. CONSTITUTION:A plurality of outer leads 5 to be measured, which are aligned in the same direction from opposed side surfaces in an approximately flat resin sealing layer 2, into which a semiconductor chip is buried, and lead out, are fixed by a positioning mechanism 8 shaped at the position 7 of measurement set to a carrying system. A single tubular light source 13 is disposed along the outer lead rows 5 to be measured. Beams from the tubular light source 13 are reflected by mirrors 15 shaped to the carrying system positioned between the outer lead rows 5 to be measured, and transmitted beams are projected to CCD line sensors 14 oppositely mounted to each row of the outer leads 5 to be measured. A straight pipe type fluorescent lamp 13 having a diameter such as approximately 10mm is arranged to a lower part between the outer leads 5, 5 as said tubular light source 13.

Description

【発明の詳細な説明】 〈発明の目的〉 (産業上の利用分野) 本発明は樹脂封止型半導体装置の外観検査に関し、特に
外部リードの曲りチェック及びピン数検出に好適する。
DETAILED DESCRIPTION OF THE INVENTION <Object of the Invention> (Industrial Field of Application) The present invention relates to the visual inspection of resin-sealed semiconductor devices, and is particularly suitable for checking the bending of external leads and detecting the number of pins.

(従来の技術) 半導体をとりまく厳しい環境にめげず生産性の高い製造
ラインの確立が求められており、その−環として半導体
ウェーハのサイズは大口径化の方向にあり半導体単結晶
の引上げはすでに200mmφ以上が可能となっている
(Conventional technology) The harsh environment surrounding semiconductors requires the establishment of highly productive manufacturing lines, and as a link to this, the size of semiconductor wafers is trending toward larger diameters, and semiconductor single crystals have already been pulled. 200mmφ or more is possible.

このような半導体ウェーハの大口径化に伴い、人手によ
るハンドリングが困難となり、この半導体ウェーハの搬
送更に製造装置へのセツティング等は必然的に自動化が
要求される。一方、超LSIに代表されるように最近の
半導体デバイスは高集積化や高性能化の進歩が著るしく
、それにつれて製造プロセスも複雑多岐にわたっており
、そのため製造ラインの清浄度が製造歩留りに与える影
響は大きく、じんあいの発生源である人体を遠ざける観
点からも自動化がすべてにわたって促進されすでに多く
の機種が実用化されている。
As semiconductor wafers become larger in diameter, it becomes difficult to handle them manually, and automation is inevitably required for the transportation and setting of semiconductor wafers in manufacturing equipment. On the other hand, recent semiconductor devices, as typified by VLSI, have made remarkable progress in becoming highly integrated and high-performance, and as a result, manufacturing processes have become more complex and diverse, and the cleanliness of the manufacturing line has an impact on manufacturing yield. The impact is significant, and from the perspective of keeping the human body, the source of dust, away, automation has been promoted across the board, and many models have already been put into practical use.

その−環として半導体装置とりわけ樹脂封止型半導体装
置の外観検査を自動的に実施する装置が開発され、すで
に実用化段階に入っている。この装置は樹脂封止型半導
体装置の外観即ち、巣、欠け、傷、リード曲り、リード
長さ等を検査するために、被検査樹脂封止型半導体装置
を工業用ITVカメラで得られる画像信号を一定のスラ
イスレベルで2値画像に変換して外観検査を実施する。
As part of this effort, an apparatus for automatically inspecting the appearance of semiconductor devices, particularly resin-sealed semiconductor devices, has been developed and has already entered the stage of practical use. This equipment uses image signals obtained from an industrial ITV camera to inspect resin-sealed semiconductor devices to be inspected for their external appearance, such as cavities, chips, scratches, lead bends, lead lengths, etc. The visual inspection is performed by converting the image into a binary image at a fixed slice level.

勿論この装置には画像処理に必要な専用プロセッサとミ
ニコンを内IQして高速で画像処理を実施する視覚セン
サ応用機器を使用する。
Of course, this device uses a dedicated processor necessary for image processing and a visual sensor application device that incorporates a minicomputer and IQ to perform image processing at high speed.

これに対してパターン認識技術を利用する手法も考えら
れるが、その誤差限界は3〜4%であるために、半導体
装置のように微小な外観不良即ち誤差限界0.1%以下
を目指すには不適当である。
For this purpose, a method using pattern recognition technology can be considered, but since the error limit is 3 to 4%, it is difficult to aim for minute appearance defects such as semiconductor devices, that is, an error limit of 0.1% or less. It's inappropriate.

〈発明が解決しようとする問題点〉 前述の被検査樹脂封止型半導体装置をITVカメラで撮
像するには適正な照明が必要となるが、被写体の表面状
態により面内で均一な明るさが得られないことが判明し
、従って2値化画像を得るのに問題となる。
<Problems to be solved by the invention> Appropriate illumination is required to image the aforementioned resin-sealed semiconductor device to be inspected with an ITV camera, but uniform brightness within the plane may not be achieved depending on the surface condition of the object. It turns out that this is not possible, and therefore there is a problem in obtaining a binarized image.

この照明手段である正反射照明とリング照明について照
明条件を一定として分布状態を調査したところ、面内に
バラツキがあるばかりでなく被写体毎に明るさのレベル
が相違する。更に、リング照明についても同様に被写体
毎に明るさのレベルが異なるが、面内でのバラツキは前
者より小さいことが判明した。
When we investigated the distribution of specular reflection lighting and ring lighting, which are the lighting means, with constant lighting conditions, we found that not only were there variations within the plane, but also the brightness levels were different for each subject. Furthermore, although the brightness level of ring illumination similarly differs depending on the subject, it has been found that the in-plane variation is smaller than the former.

従って被写体である樹脂封止型半導体装置の検査面に明
るさの異なる部分が存在した場合、一定のスライスレベ
ルで2値化して得られる画像の忠実度が損われる難点を
生じる。
Therefore, if there are portions with different brightness on the inspection surface of the resin-sealed semiconductor device that is the subject, there is a problem in that the fidelity of the image obtained by binarizing at a certain slice level is impaired.

本発明は上記難点を除去する新規な半導体外部リード検
査方式を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new semiconductor external lead inspection method that eliminates the above-mentioned difficulties.

〈発明の構成〉 (問題点を解決するための手段) 本発明は樹脂封止型半導体装置のほぼ鋪平な封止樹脂層
の相対向する側面から同一方向に整列して導出する複数
の外部リード列を測定対象物とし、この樹脂封止型半導
体装置用の搬送系に設定する測定位置付近に設ける位置
決め機構によりこの被測定外部リードを搬送系に固定す
る。この被測定外部リード列間に位置する搬送系にミラ
ーを形成すると共に、この外部リード列に沿って配置す
る単一の管状光源からの光を反射し、又この外部リード
列に対向して設置するCCDラインセンサーにこの透過
光を入射する方式を採用した。
<Structure of the Invention> (Means for Solving the Problems) The present invention provides a plurality of external parts that are aligned in the same direction and led out from opposing sides of a substantially flat encapsulating resin layer of a resin-encapsulated semiconductor device. A lead array is the object to be measured, and the external leads to be measured are fixed to the transport system by a positioning mechanism provided near a measurement position set in the transport system for the resin-sealed semiconductor device. A mirror is formed in the transport system located between the rows of external leads to be measured, and reflects the light from a single tubular light source placed along this row of external leads, and is also placed opposite to this row of external leads. We adopted a method in which this transmitted light is incident on a CCD line sensor.

(作 用) このように寿命が半永久的でありかつメンテナンスフリ
ーなCCDラインセンサーを利用し、更に周辺と中央の
画像歪が小さい利点を生かすように配慮した。と言うの
は最近の樹脂封止型半導体装置の外部リードにはいわゆ
る浸漬法によって半田層を被覆して他の機器との接続を
確実にする方式が賞用されており、このため外部リード
周面には半田層が盛上って2次曲面を形成する頻度が大
きい。この撮像には周辺と中央の画像歪が小さいCCD
ラインセンサーの利用が適当であると共に、単一の管状
光源を配置するだけで、2列の外部リードを同時に測定
可能とした。即ち、管状光源からの放射光をミラーによ
り反射しそれぞれの外部リード列に対向して配置するC
CDラインセンサーに透過光として入射する。この結果
検査の安定化をもたらしひいては信頼性を向上するもの
である。
(Function) In this way, we have used a CCD line sensor that has a semi-permanent life and is maintenance-free, and have also taken advantage of its advantage of low image distortion in the periphery and center. This is because the outer leads of recent resin-sealed semiconductor devices are coated with a solder layer using a so-called dipping method to ensure connection with other devices, and for this reason, the outer lead circumference is The solder layer often builds up on the surface to form a quadratic curved surface. For this imaging, a CCD with small image distortion in the periphery and center is used.
It is appropriate to use a line sensor, and two rows of external leads can be measured simultaneously by simply arranging a single tubular light source. In other words, the light emitted from the tubular light source is reflected by a mirror and is disposed facing each external lead row.
The light enters the CD line sensor as transmitted light. This results in stabilization of the test, which in turn improves reliability.

(実施例) 第1図乃至第4図により本発明を詳述する。(Example) The present invention will be explained in detail with reference to FIGS. 1 to 4.

樹脂封止型半導体装I!上は、第1図に示すようにほぼ
扁平な封止樹脂層2の内部にIC等の機能素子を造り込
んだ半導体ペレット(図示せず)を埋設し、その電極と
電気的に接続した外部リード3・・・をこの封止樹脂外
に導出する。その導出に当ってはマ平な封止樹脂層2の
相対向する側面4,4から同一方向に整然と折曲げて2
つの外部リード列5が平行関係をもって形成される。こ
のような樹脂封止型半導体装置上は第2図に明示した搬
送系6により所定の位置即ちこの搬送系に設定する測定
位置7に移動する。この測定位置7には搬送した樹脂封
止型半導体装rIL上の被測定外部リード列5.5を位
置決め機構且により固定する。測定位置7を構成する搬
送系6にはこの外部リード列5の先端が後述のCCDラ
インセンサーの視野からはずれるのを防ぐために薄肉部
12を設け、位置決め機構〜β−は左右の位置決めを行
うキツカー9.ストツバ−IOならびに上下の位置決め
を実施する機構11がある。これらは何れもエアシリン
ダを利用し。
Resin-encapsulated semiconductor device I! As shown in Fig. 1, a semiconductor pellet (not shown) in which functional elements such as ICs are embedded is embedded inside a nearly flat sealing resin layer 2, and an external electrode is electrically connected to the electrode. Leads 3... are guided out of this sealing resin. When deriving it, the flat sealing resin layer 2 is neatly bent in the same direction from opposite sides 4, 4.
Two external lead rows 5 are formed in parallel relationship. Such a resin-sealed semiconductor device is moved to a predetermined position, that is, a measurement position 7 set in the transport system by a transport system 6 shown in FIG. At this measurement position 7, the external lead array 5.5 to be measured on the transported resin-sealed semiconductor device rIL is fixed by a positioning mechanism. The transport system 6 constituting the measurement position 7 is provided with a thin section 12 to prevent the tips of the external lead array 5 from coming out of the field of view of the CCD line sensor, which will be described later. 9. There is a mechanism 11 that performs the stopper IO and the vertical positioning. All of these use air cylinders.

キツカー9は、その回転の軌跡を利用し、上下の位置決
め機構11は搬送系6を移動する際発生する僅かな隙間
を無くして位置決めを確実にする。この外部リード列5
,5に沿って直径10m5程度の直管式蛍光灯13を第
1図及び第2図に示すように配置し、更にCCDライン
センサー14.14を外部り−ド5,5に対向して設置
する。更に測定位置7における搬送系6の肉薄部12に
はレンズ15を固定しく第1図)この管状光源からの放
射光を反射させ、−その透過光を外部リード列5.5に
対向するCCDラインセンサー14.14に入射して検
出を行う。
The kicker 9 utilizes its rotation locus, and the upper and lower positioning mechanisms 11 eliminate slight gaps that occur when moving in the transport system 6 to ensure positioning. This external lead row 5
, 5, a straight tube fluorescent lamp 13 with a diameter of about 10 m5 is arranged as shown in Figs. do. Furthermore, a lens 15 is fixed to the thin wall portion 12 of the transport system 6 at the measurement position 7 to reflect the emitted light from this tubular light source (FIG. 1), and direct the transmitted light to the CCD line facing the external lead array 5.5. The light enters the sensor 14.14 for detection.

このレンズとCCDラインセンサー光軸間に位置する外
部リード列5,5では第3図に示すQl(1,の差及び
plp、の差を求め、これと標準値との比較により良否
判定を行う。従ってこの画像処理による判定には専用プ
ロセッサならびにミニコンを付属機器として使用する。
For the external lead rows 5 and 5 located between this lens and the optical axis of the CCD line sensor, the difference in Ql (1) and the difference in plp shown in Fig. 3 are determined, and a quality judgment is made by comparing this with a standard value. Therefore, a dedicated processor and a minicomputer are used as accessory equipment for this image processing-based determination.

尚管状光源13の設置としては外部リード列間に配置す
るのが仲々難かしいのでその下方を選定する。
Since it is difficult to place the tubular light source 13 between the external lead rows, a location below the external lead rows is selected.

〈発明の効果〉 このように本発明に係る半導体装置外部リードの検出方
法では寿命が半永久的でありメンテナンスフリーのCO
Dセンサーを適用して、この外部リード周面に盛上った
半田層による2次曲面の検出に好都合な中央と周辺の画
像歪が小さい利点を巧みに利用している。しかも被測定
物である樹脂封止型半導体装置に形成する2列の外部列
をその搬送系に設定する嘔−の測定位置で同時に測定可
能としたもので、装置のコンパクト化を図ると共に、検
出の信頼性を向上し更にインデックスも縮小される。測
定位置を単一にすることにより高速化が図られる外に測
定レベルの定量化が得られるので、半導体装置の品質を
高めることも可能となる。本願にあっては囃−の管状光
源の適用ですむので複数光源使用時に発生する諸々の障
害を゛割愛できる。
<Effects of the Invention> As described above, the method for detecting external leads of a semiconductor device according to the present invention has a semi-permanent life and is maintenance-free.
By applying the D sensor, the advantage of small image distortion in the center and periphery, which is convenient for detecting quadratic curved surfaces due to the solder layer raised on the peripheral surface of the external lead, is skillfully utilized. In addition, the two external rows formed on the resin-sealed semiconductor device, which is the object to be measured, can be measured simultaneously at the same measurement position set in the transport system, making the device more compact and capable of detecting The reliability of the index is improved and the index is also reduced. By using a single measurement position, not only the speed can be increased, but also the measurement level can be quantified, so it is also possible to improve the quality of the semiconductor device. In the present invention, since it is sufficient to use a hollow tubular light source, various problems that occur when using a plurality of light sources can be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方式の概要を示す断面図、第2図はこの
方式を適用する装置の要部を示す断面図、第3図は樹脂
封止型半導体装置の外部リード側面図、第4図は樹脂封
止型半導体装置の斜視図である。
FIG. 1 is a cross-sectional view showing an overview of the method of the present invention, FIG. 2 is a cross-sectional view showing the main parts of a device to which this method is applied, FIG. The figure is a perspective view of a resin-sealed semiconductor device.

Claims (1)

【特許請求の範囲】[Claims] 半導体チップを埋込んだほぼ扁平な樹脂封止層の相対向
する側面から同一方向に整列して導出する複数の被測定
用外部リードを、搬送系に設定する測定位置に形成する
位置決め機構により固定し、この被測定用外部リード列
に沿って単一の管状光源を配置し、前記被測定用外部リ
ード間に位置する前記搬送系に形成するミラーにより前
記管状光源からの光を反射して前記被測定用外部リード
の各列に対向して設置するCCDに透過光を入射するこ
とを特徴とする半導体外部リードの検出方式。
A plurality of external leads to be measured are aligned and led out in the same direction from opposite sides of a nearly flat resin sealing layer in which a semiconductor chip is embedded, and are fixed by a positioning mechanism formed at a measurement position set in the transport system. A single tubular light source is arranged along this row of external leads to be measured, and a mirror formed in the transport system located between the external leads to be measured reflects the light from the tubular light source. A detection method for semiconductor external leads characterized in that transmitted light is incident on a CCD placed opposite each row of external leads to be measured.
JP25063886A 1986-10-23 1986-10-23 Detection system for outer lead for semiconductor device Pending JPS63107034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25063886A JPS63107034A (en) 1986-10-23 1986-10-23 Detection system for outer lead for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25063886A JPS63107034A (en) 1986-10-23 1986-10-23 Detection system for outer lead for semiconductor device

Publications (1)

Publication Number Publication Date
JPS63107034A true JPS63107034A (en) 1988-05-12

Family

ID=17210833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25063886A Pending JPS63107034A (en) 1986-10-23 1986-10-23 Detection system for outer lead for semiconductor device

Country Status (1)

Country Link
JP (1) JPS63107034A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275937A (en) * 1987-05-07 1988-11-14 Fujitsu Ltd Optical shape inspecting apparatus
JPH0228546A (en) * 1988-07-19 1990-01-30 Matsushita Electron Corp Lead inspection device for electronic component
JPH04356939A (en) * 1991-06-03 1992-12-10 Just:Kk Inspecting apparatus for lead shape of electronic component
DE102015004104A1 (en) * 2015-03-27 2016-09-29 Laser-Laboratorium Göttingen e.V. Method for locating at least one emitter by means of a localization microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275937A (en) * 1987-05-07 1988-11-14 Fujitsu Ltd Optical shape inspecting apparatus
JPH0228546A (en) * 1988-07-19 1990-01-30 Matsushita Electron Corp Lead inspection device for electronic component
JPH04356939A (en) * 1991-06-03 1992-12-10 Just:Kk Inspecting apparatus for lead shape of electronic component
DE102015004104A1 (en) * 2015-03-27 2016-09-29 Laser-Laboratorium Göttingen e.V. Method for locating at least one emitter by means of a localization microscope
DE102015004104B4 (en) * 2015-03-27 2020-09-03 Laser-Laboratorium Göttingen e.V. Method for localizing at least one emitter by means of a localization microscope

Similar Documents

Publication Publication Date Title
US7782451B2 (en) Device for and method of inspecting surface condition having different curvatures
JP2002513470A (en) Inspection device
JP3614597B2 (en) Internal imaging device
JPS58219441A (en) Apparatus for detecting defect on surface of convex object
TWI713130B (en) Semiconductor wafer in-line inspection system and method
JP2002515123A (en) Inspection methods
TWI703657B (en) An apparatus and method for inspecting a semiconductor package
JPH1048150A (en) Seal-inspection apparatus
JPS62127617A (en) Inspecting instrument for linear body
JPS63107034A (en) Detection system for outer lead for semiconductor device
JPS62127652A (en) Surface defect inspecting device for semiconductor wafer
JP2000131037A (en) Apparatus for inspecting shape of body
JP3978507B2 (en) Bump inspection method and apparatus
JP3102850B2 (en) Crystal blank scratch inspection equipment
JPS6370535A (en) Detection system of outer lead of semiconductor device
JP2004125644A (en) Dome shape indirect illumination apparatus and pattern image pickup method
JPS63103948A (en) Detecting method for external lead of resin sealed type semiconductor device
JP3215871B2 (en) Wire bonding visual inspection device
JP3398754B2 (en) Integrated circuit chip lift inspection system
JPH0429007A (en) Optical inspection device
JPH085568A (en) Lead inspection apparatus
JP3442480B2 (en) Wafer peeling device
JPH0459149U (en)
JPH06242016A (en) Visual inspection system for bump
JPS61201106A (en) Image pick-up system of transparent film