JPS63104013A - Laser beam scanning device - Google Patents

Laser beam scanning device

Info

Publication number
JPS63104013A
JPS63104013A JP25009886A JP25009886A JPS63104013A JP S63104013 A JPS63104013 A JP S63104013A JP 25009886 A JP25009886 A JP 25009886A JP 25009886 A JP25009886 A JP 25009886A JP S63104013 A JPS63104013 A JP S63104013A
Authority
JP
Japan
Prior art keywords
scanning
light quantity
quantity distribution
laser beam
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25009886A
Other languages
Japanese (ja)
Inventor
Koichiro Shinohara
篠原 浩一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP25009886A priority Critical patent/JPS63104013A/en
Publication of JPS63104013A publication Critical patent/JPS63104013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To form a light quantity distribution on the scanning surface of a photosensitive drum, etc., to a real circle by a simple constitution, by providing a concave cylindrical surface mirror for moving along the optical axis direction, and adjusting the light quantity distribution in the sub-scanning direction by the concave cylindrical surface mirror, while keeping the light quantity distribution in the main scanning line direction at constant as it is. CONSTITUTION:A concave cylindrical surface mirror 6 for moving along the optical axis direction is provided between a polygon mirror 2 and the scanning surface of a photosensitive drum 7, etc., so that a light quantity distribution in the sub-scanning direction can be adjusted by the concave cylindrical surface mirror 6 while keeping the light quantity distribution in the main scanning line direction at constant as it is. Accordingly, it can be suppressed that in a still state, the light quantity distribution of a true circle becomes a light quantity distribution of an ellipse in which the diameter in the main scanning direction is large, since an image forming position on the scanning surface of the photosensitive drum 7, etc., moves in the main scanning direction. In this way, the light quantity distribution on the scanning surface of the photosensitive drum, etc., can be formed to the real circle by a simple constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は簡潔な構成によって感光体ドラム等の走査面上
の光量分布を真円にできるようにしたレーザ光走査装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser beam scanning device that has a simple configuration and can make the light intensity distribution on a scanning surface of a photoreceptor drum or the like perfectly circular.

〔従来の技術〕[Conventional technology]

従来のレーザ光走査装置として、例えば、特開昭58−
179054号公報に示すものがある。第6図はこのレ
ーザ光走査装置を示すものであり、レーザ光源10から
のレーザ光を集束する集束レンズ20と、集束されたレ
ーザ光を所定の主走査線上へ偏向するポリゴンミラー3
0と、ポリゴンミラー30により偏向されたレーザ光に
よって露光される感光体ドラム40と、集束レンズ20
とポリゴンミラー30の間に配置され、モータ73.7
6の回転によりその傾斜角を変えるスリット板72,7
5 (開ロア1゜74を有する)と、スリット板72.
75の開ロア1゜74の実効径を制御する制御部70か
らなる。
As a conventional laser beam scanning device, for example, JP-A-58-
There is one shown in Publication No. 179054. FIG. 6 shows this laser beam scanning device, which includes a focusing lens 20 that focuses the laser beam from the laser light source 10, and a polygon mirror 3 that deflects the focused laser beam onto a predetermined main scanning line.
0, a photosensitive drum 40 exposed to laser light deflected by a polygon mirror 30, and a focusing lens 20.
and the polygon mirror 30, and the motor 73.7
Slit plates 72, 7 whose inclination angles are changed by rotation of 6.
5 (having an open lower 1° 74), and a slit plate 72.
It consists of a control section 70 that controls the effective diameter of the open lower 1° 74 of the 75.

以上の構成において、レーザ光源10よりレーザ光が出
射されると、集束レンズ20で集束されたレーザ光はス
リット板72.75の開ロア1゜74を通過し、回転し
ているポリゴンミラー30の反射面で反射されて感光体
ドラム40の主走査線に沿って飛点走査される。このと
き、制1卸部70はモータ73,76の回転角θX、θ
yを制御し、開ロア1.74の実効径を調整することに
および副走査方向のビーム形状を解像度に応じた形状に
することができる。
In the above configuration, when a laser beam is emitted from the laser light source 10, the laser beam focused by the focusing lens 20 passes through the open lower 1° 74 of the slit plate 72, 75, and is reflected by the rotating polygon mirror 30. The light is reflected by the reflective surface and is scanned along the main scanning line of the photoreceptor drum 40. At this time, the control 1 wholesaler 70 controls the rotation angles θX and θ of the motors 73 and 76.
By controlling y and adjusting the effective diameter of the open lower portion 1.74, the beam shape in the sub-scanning direction can be made into a shape according to the resolution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のレーザ光走査装置によれば、スリット板
72.75をモータ73.76の回転によって個々に制
御しているため、構成が複雑化し、かつ、制御が困難で
あるという不都合がある。
However, according to the conventional laser beam scanning device, since the slit plates 72, 75 are individually controlled by the rotation of the motors 73, 76, there are disadvantages in that the configuration is complicated and control is difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、簡潔な構成
によって感光体ドラム等の走査面上の光量分布(ビーム
形状)を真円にするため、ポリゴンミラーと感光体ドラ
ム等の走査面の間に光軸方向に沿って移動する凹円筒面
鏡を設け、主走査線方向の光量分布を一定にしたまま凹
円筒面鏡によって副走査方向の光量分布を調整するよう
にしたレーザ光走査装置を提供するものである。
The present invention has been made in view of the above, and in order to make the light intensity distribution (beam shape) on the scanning surface of the photoreceptor drum, etc., a perfect circle with a simple configuration, the present invention uses a polygon mirror and the scanning surface of the photoreceptor drum, etc. A laser beam scanning device in which a concave cylindrical mirror that moves along the optical axis is provided in between, and the concave cylindrical mirror adjusts the light intensity distribution in the sub-scanning direction while keeping the light intensity distribution in the main scanning direction constant. It provides:

これによって、静止状態において真円の光量分布が感光
体ドラム等の走査面上の結像位置が主走査方向に移動す
るために主走査方向の径が大きい長円の光量分布となる
のを抑制することができる。
This prevents a perfectly circular light intensity distribution in a stationary state from becoming an oval light intensity distribution with a large diameter in the main scanning direction due to the image formation position on the scanning surface of the photoreceptor drum moving in the main scanning direction. can do.

以下、本発明のレーザ光走査装置について詳細に説明す
る。
Hereinafter, the laser beam scanning device of the present invention will be explained in detail.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示“し、半導体レーザ
光源10から出射された画像信号に応じて変調されたレ
ーザ光(波長790nm)を副走査方向に絞り込むシリ
ンダーレンズ1と、その焦点の近傍に偏向面をもつポリ
ゴンミラー2と、ポリゴンミラー2によって偏向された
レーザ光を結像するための結像レンズ3と、光路を折り
返し、かつ、光軸方向に一体的に移動することによって
感光体ドラム7上の結像面5の副走査方向のスポット径
を調整する平面鏡4および凹円筒面鏡6から成る。
FIG. 1 shows a first embodiment of the present invention, which includes a cylinder lens 1 that focuses laser light (wavelength 790 nm) modulated according to an image signal emitted from a semiconductor laser light source 10 in the sub-scanning direction; A polygon mirror 2 having a deflection surface near its focal point and an imaging lens 3 for forming an image of the laser beam deflected by the polygon mirror 2 return the optical path and move integrally in the optical axis direction. It consists of a plane mirror 4 and a concave cylindrical mirror 6, which adjust the spot diameter in the sub-scanning direction on the imaging surface 5 on the photoreceptor drum 7.

第2図(a)、  (b)は第1図の光路図を示し、解
像度に応じて移動する平面鏡4および凹円筒面′鏡6を
示している。平面鏡4および凹円筒面鏡6の間隔は一定
に保たれており、走査間隔は高解像時において25μm
、低解像時において50μmである。感光体ドラム7の
結像面5におけるビーム径は光強度が最大値の1 / 
e 2になるビーム径に設定されており、ポリゴンミラ
ー2を静止させたとき、高解像時(第2図(a))は主
走査方向において40μm1副走査方向、において11
00Iiになっている。副走査方向における光量分布の
調整は凹円筒面鏡6の位置に基づいて行われる。第2図
(a)、  (b)において平面鏡4および凹円筒面鏡
6の移動距離は約7mmであ る。
2(a) and 2(b) show the optical path diagram of FIG. 1, showing a plane mirror 4 and a concave cylindrical mirror 6 that move according to the resolution. The interval between the plane mirror 4 and the concave cylindrical mirror 6 is kept constant, and the scanning interval is 25 μm at high resolution.
, 50 μm at low resolution. The beam diameter at the imaging surface 5 of the photoreceptor drum 7 is 1/1 when the light intensity is at its maximum value.
e 2, and when the polygon mirror 2 is stationary, the beam diameter is 40 μm in the main scanning direction and 11 μm in the sub-scanning direction at high resolution (Fig. 2 (a)).
It has become 00Ii. Adjustment of the light amount distribution in the sub-scanning direction is performed based on the position of the concave cylindrical mirror 6. In FIGS. 2(a) and 2(b), the moving distance of the plane mirror 4 and the concave cylindrical mirror 6 is about 7 mm.

以上の構成において、操作を説明すると次の通りである
。レーザ光源10から画像信号に応じて変調されたレー
ザ光を出射すると、所定の速度で回転しているポリゴン
ミラー2で偏向し、凹円筒面鏡6および平面鏡4で反射
して感光体ドラム7の結像面5を走査する。
In the above configuration, the operation will be explained as follows. When a laser beam modulated according to an image signal is emitted from the laser light source 10, it is deflected by the polygon mirror 2 rotating at a predetermined speed, reflected by the concave cylindrical mirror 6 and the plane mirror 4, and is emitted from the photoreceptor drum 7. The imaging plane 5 is scanned.

このとき、結像位置がポリゴンミラー2による走査速度
に応じて主走査方向に移動するため、結像面5のビーム
形状は静止時に比較して主走査方向において長くなり、
高解像時は主走査方向および副走査方向ともに50μm
となり (第3図(a)) 、低解像時は主走査方向が
90μm、副走査方向は100μmとなる。
At this time, since the imaging position moves in the main scanning direction according to the scanning speed of the polygon mirror 2, the beam shape of the imaging surface 5 becomes longer in the main scanning direction compared to when it is stationary.
50μm in both main scanning and sub-scanning directions at high resolution
Therefore, at low resolution, the main scanning direction is 90 μm and the sub-scanning direction is 100 μm (FIG. 3(a)).

このようにして、真円あるいはほぼ真円に近い光量分布
の露光が行われる。この後、現像、転写、定着の各操作
により画像の記録が行われる。
In this way, exposure with a perfect circular or nearly perfect circular light amount distribution is performed. Thereafter, the image is recorded by developing, transferring, and fixing operations.

面、一般にレーザ光によって感光体上を飛点走査する場
合、感光体上での光量分布はガウス分布若しくはそれに
充分近いものと考えて差し支えない。この時、感光体上
のビーム径を光強度が最大値の1/e2になるような外
径に設定すると、副走査方向の最適のビーム径は走査線
間隔に比例して決定される(比例定数は現像方式等によ
って決まる)。又、走査方向のビーム径は変調方法によ
り宕干異なるが、副走査方向の0.8倍以下であれば通
常問題はない。前述の実施例では2段階の解像度につい
て説明したが、これに限定するものではない。
In general, when a laser beam is used to scan a photoreceptor over a photoreceptor, the light intensity distribution on the photoreceptor can be considered to be a Gaussian distribution or sufficiently close to it. At this time, if the beam diameter on the photoreceptor is set to an outer diameter such that the light intensity is 1/e2 of the maximum value, the optimal beam diameter in the sub-scanning direction is determined in proportion to the scanning line interval (proportional (The constant is determined by the development method, etc.) Furthermore, although the beam diameter in the scanning direction varies depending on the modulation method, there is usually no problem if it is 0.8 times or less the diameter in the sub-scanning direction. In the above embodiment, two levels of resolution have been described, but the invention is not limited to this.

前述したように、高解像時と低解像時では、凹円筒面鏡
6を光軸に沿って約7mm移動させたが、これは深度ズ
レを起こさせてビーム径を変化させたことになる。
As mentioned above, the concave cylindrical mirror 6 was moved about 7 mm along the optical axis between high resolution and low resolution, but this caused a depth shift and changed the beam diameter. Become.

第5図(a)、(b)は本発明の第2の実施例を示し、
平面鏡4を折返用プリズム8に置き換え、凹円筒面鏡6
を折返用プリズム8の反射光路の位置に配置した構成に
おいて異なるだけで他は第1の実施例と同様であり、第
5図(a)は高解像時、第5図(b)は低解像時である
FIGS. 5(a) and 5(b) show a second embodiment of the present invention,
The plane mirror 4 is replaced with a folding prism 8, and the concave cylindrical mirror 6
The only difference is that the configuration is arranged at the position of the reflection optical path of the folding prism 8, but the rest is the same as the first embodiment. At the time of resolution.

尚、以上の実施例は、レーザ光源を画像信号に応じて直
接変調したが、音響光学変調素子等を用いた間接変調方
式にも適用することができる。
In the above embodiments, the laser light source was directly modulated according to the image signal, but it is also possible to apply an indirect modulation method using an acousto-optic modulation element or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明のレーザ光走査装置によれば
、ポリゴンミラーと感光体ドラム等の走査面の間に光軸
方向に沿って移動する凹円筒面鏡を設け、主走査線方向
の光量分布を一定にしたまま凹円筒面鏡によって副走査
方向の光量分布を調整するようにしたため、簡潔な構成
によって感光体ドラム等の走査面上の光量分布(ビーム
形状)を真円にすることがでる。
As explained above, according to the laser beam scanning device of the present invention, a concave cylindrical mirror that moves along the optical axis direction is provided between the polygon mirror and the scanning surface of the photoreceptor drum, etc., and the amount of light in the main scanning line direction is Since the light intensity distribution in the sub-scanning direction is adjusted using a concave cylindrical mirror while keeping the distribution constant, the light intensity distribution (beam shape) on the scanning surface of the photoreceptor drum etc. can be made perfectly circular with a simple configuration. Out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す説明図、第2図(
a)、(b)は第1の実施例の高解像時および低解像時
の説明図、第3図(a)、(b)は高解像時の回転多面
鏡の静止および偏向時のビーム形状を示す説明図、第4
図(a)、(b)は第3図(a)、(b)に対応し低解
像時のビーム形状を示す説明図、第5図(a)、(b)
は本発明の第2の実施例の高解像時および低解像時の説
明図、第6図は従来のレーザ光走査装置を示す説明図。 符号の説明 ■・−・−・・シリンダーレンズ 2−1・・−・−ポリゴンミラー 3・・−−−−一結像レンズ   4・−・一平面鏡5
−・−・−結像面(主走査線) 6−・−・凹円筒面鏡   7・・・・−・・感光体ド
ラム10・・・−・−・レーザ光源 特 許 出 願 人  冨士ゼロックス株式会社代理人
 弁理士   平  1)忠 離溶1vA l ″/リンタルンス1 2回l云珍面噌え 3 糸色4東1feルンズ゛ 4 竹fLt用ミクー 5 イ1−; 面 6 シリンダミフー 第2図 (a) 8N 医用アリス゛ム 第 3FI (a)               (b)第4図 rσノ                  (b)静
止8呼          ボワコ゛ン巧−回 転 田
) 第5図
FIG. 1 is an explanatory diagram showing the first embodiment of the present invention, and FIG. 2 (
a) and (b) are explanatory diagrams of the first embodiment at high resolution and low resolution, and Fig. 3 (a) and (b) are illustrations of the rotating polygon mirror at rest and deflection at high resolution. Explanatory diagram showing the beam shape of
Figures (a) and (b) correspond to Figures 3 (a) and (b) and are explanatory diagrams showing beam shapes at low resolution, Figures 5 (a) and (b)
FIG. 6 is an explanatory diagram of a second embodiment of the present invention at high resolution and low resolution, and FIG. 6 is an explanatory diagram showing a conventional laser beam scanning device. Explanation of symbols■・−・−・Cylinder lens 2-1・・−・−Polygon mirror 3・・−−−One imaging lens 4・−・One plane mirror 5
−・−・−Imaging surface (main scanning line) 6−・−・Concave cylindrical mirror 7・・・・−・Photosensitive drum 10・・・−・−・Laser light source patent applicant Fuji Xerox Co., Ltd. agent patent attorney Taira 1) Tadashi separation 1vA l'' / Rintarunsu 1 2 times l Yunchinmensoe 3 Itoiro 4 East 1feruns 4 Miku for bamboo fLt 5 I1-; Surface 6 Cylinder Mifu Fig. 2 (a) 8N medical arithmetic 3rd FI (a) (b) Fig. 4 rσ (b) Stationary 8-call bowcon technique - rotating field) Fig. 5

Claims (1)

【特許請求の範囲】 レーザ光をポリゴンミラーで偏向して走査 面上の主走査線に沿って飛点走査するレーザ光走査装置
において、 前記ポリゴンミラーと前記走査面の間に位 置し、光軸方向の移動に基づいてレーザ光の副走査方向
の光量分布を調整する凹円筒面鏡を有した光量分布調整
手段を設けたことを特徴とするレーザ光走査装置。
[Scope of Claims] A laser beam scanning device that deflects a laser beam with a polygon mirror to scan a flying spot along a main scanning line on a scanning surface, wherein the laser beam is located between the polygon mirror and the scanning surface, and has an optical axis. 1. A laser beam scanning device comprising a light amount distribution adjusting means having a concave cylindrical mirror that adjusts the light amount distribution of the laser beam in the sub-scanning direction based on the movement in the direction.
JP25009886A 1986-10-21 1986-10-21 Laser beam scanning device Pending JPS63104013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25009886A JPS63104013A (en) 1986-10-21 1986-10-21 Laser beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25009886A JPS63104013A (en) 1986-10-21 1986-10-21 Laser beam scanning device

Publications (1)

Publication Number Publication Date
JPS63104013A true JPS63104013A (en) 1988-05-09

Family

ID=17202784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25009886A Pending JPS63104013A (en) 1986-10-21 1986-10-21 Laser beam scanning device

Country Status (1)

Country Link
JP (1) JPS63104013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198563B1 (en) * 1996-05-17 2001-03-06 Ricoh Company, Ltd. Optical scanning apparatus with improved design flexibility
JP2009069504A (en) * 2007-09-13 2009-04-02 Ricoh Co Ltd Optical scanner, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198563B1 (en) * 1996-05-17 2001-03-06 Ricoh Company, Ltd. Optical scanning apparatus with improved design flexibility
JP2009069504A (en) * 2007-09-13 2009-04-02 Ricoh Co Ltd Optical scanner, and image forming apparatus

Similar Documents

Publication Publication Date Title
US4993792A (en) Scanning optical system in which a ghost image is eliminated
JP3627453B2 (en) Optical scanning device
JPS63104013A (en) Laser beam scanning device
JPH07270699A (en) Optical scanner
JP3348551B2 (en) Optical scanning device
JPH04104216A (en) Photoscanner
JP2618889B2 (en) Optical scanning device
JPH0618802A (en) Optical scanning device
JPH04242215A (en) Optical scanner
JP3198752B2 (en) Optical recording device
JPS61126528A (en) Photoscanning device
JPH0772402A (en) Optical scanner
JP2817454B2 (en) Scanning optical device
JP3334488B2 (en) Optical scanning device
JPH0658464B2 (en) Beam optical scanning optical device
JPS59116715A (en) Photoscanner
JPS6226733Y2 (en)
JPS63217318A (en) Optical scanner
JPH11264952A (en) Optical scanning device
JPS6167817A (en) Semiconductor laser light scanner
JP2002131675A (en) Exposure recording apparatus
JP2633560B2 (en) Optical scanning device
JP3093877B2 (en) Disk for light beam recording device and light beam recording device
JP2002287067A (en) Optical scanner
JPS63240514A (en) Rotary polygon mirror type scanner