JPS6226733Y2 - - Google Patents

Info

Publication number
JPS6226733Y2
JPS6226733Y2 JP4426177U JP4426177U JPS6226733Y2 JP S6226733 Y2 JPS6226733 Y2 JP S6226733Y2 JP 4426177 U JP4426177 U JP 4426177U JP 4426177 U JP4426177 U JP 4426177U JP S6226733 Y2 JPS6226733 Y2 JP S6226733Y2
Authority
JP
Japan
Prior art keywords
light beam
focusing
focusing device
scanning
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4426177U
Other languages
Japanese (ja)
Other versions
JPS53138854U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4426177U priority Critical patent/JPS6226733Y2/ja
Publication of JPS53138854U publication Critical patent/JPS53138854U/ja
Application granted granted Critical
Publication of JPS6226733Y2 publication Critical patent/JPS6226733Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【考案の詳細な説明】 この考案は光学的走査装置に関し、特に走査ビ
ームを反射するために回転多面鏡等を用いた光ビ
ーム走査装置における回転多面鏡の回転軸の偏心
や軸心に対する鏡面の平行度誤差に起因する走査
線の偏位を光学的に補正する手段を備えた光ビー
ム走査装置に関する。
[Detailed Description of the Invention] This invention relates to an optical scanning device, and in particular, in an optical beam scanning device that uses a rotating polygonal mirror or the like to reflect a scanning beam, the eccentricity of the rotational axis of the rotating polygonal mirror and the shift of the mirror surface relative to the axis center. The present invention relates to a light beam scanning device including means for optically correcting deviation of a scanning line due to parallelism error.

回転多面鏡等を用いた光ビーム走査装置は、走
査ビームの分解能力が高く、比較的高速の走査速
度が得られること等から、フイルム録画装置、レ
ーザプリンタ,テレビジヨン画像表示装置,フア
クシミリ装置などの種々の公知の装置に広く用い
られている。
Optical beam scanning devices using rotating polygon mirrors have a high scanning beam resolution ability and can obtain relatively high scanning speeds, so they are used in film recording devices, laser printers, television image display devices, facsimile devices, etc. It is widely used in various known devices.

かかる光ビーム走査装置においては、画像の品
位から走査線に垂直な方向のスポツト運動は、走
査線ピツチの±5%〜±10%程度であることが必
要とされる。このため、回転多面鏡の軸心に対す
る鏡面の平行度誤差および回転軸の偏心誤差の合
計が±数秒以下であることが要請される。±数秒
の平行度誤差は多面鏡の現在の加工技術の限界値
であり、非常に高価な多面鏡となる上、多面鏡の
回転軸の偏心誤差を加算すると許容誤差を越えて
しまう。この様な困難を排除するために、いくつ
かの補正装置が提案されている。それらのうち、
光学的に補正を行なう方法は例えば、特開昭48−
49315及び特開昭48−98844に見られるが、これら
に開示された装置においては、補正用の円筒レン
ズに入射する光ビームは光軸にほぼ平行でなけれ
ばならないという制約がある。これは、円筒レン
ズに光ビームが光軸に対して斜入射すると光ビー
ムによる円筒レンズの切線は円ではなく橢円とな
るために非点収差を生じ、結果として円筒レンズ
の像面の彎曲が生じ集束レンズの像面と一致しな
くなり、したがつて所望の集束径が得られなくな
るためである。このため回転多面鏡の反射ビーム
が直接に円筒レンズに入射する構成の場合は、回
転多面鏡の反射ビームの振れ角は非常に小さくな
り、したがつて走査線長を長くとれないという欠
点があつた。又、回転多面鏡の反射ビームを集束
レンズを介して円筒レンズに入射する構成の場合
は、集束レンズの出射光は光軸にほぼ平行でなく
てはならず、したがつて走査線長を長くしようと
すれば集束レンズ及び円筒レンズの口径を走査線
長程度に大きくしなければならない。この様な大
口径の集束レンズは非常に高価であり実質的に製
造は困難であるという欠点があつた。
In such a light beam scanning device, the spot movement in the direction perpendicular to the scanning line is required to be approximately ±5% to ±10% of the scanning line pitch in view of image quality. For this reason, it is required that the sum of the parallelism error of the mirror surface and the eccentricity error of the rotating shaft with respect to the axis of the rotating polygon mirror is within ±several seconds. A parallelism error of ±several seconds is the limit of current processing technology for polygon mirrors, which results in a very expensive polygon mirror, and if you add in the eccentricity error of the rotation axis of the polygon mirror, it exceeds the allowable error. Several correction devices have been proposed to eliminate such difficulties. Among them,
For example, a method of optically correcting
No. 49315 and Japanese Unexamined Patent Publication No. 48-98844, the devices disclosed in these documents have a restriction that the light beam incident on the correction cylindrical lens must be substantially parallel to the optical axis. This is because when a light beam is incident on a cylindrical lens obliquely with respect to the optical axis, the tangential line of the cylindrical lens by the light beam becomes an elongated circle instead of a circle, resulting in astigmatism, resulting in the curvature of the image plane of the cylindrical lens. This is because the image plane of the condensing lens does not coincide with the image plane of the condensing lens, and therefore the desired converging diameter cannot be obtained. For this reason, in the case of a configuration in which the reflected beam from the rotating polygon mirror is directly incident on the cylindrical lens, the deflection angle of the reflected beam from the rotating polygon mirror becomes extremely small, which has the disadvantage that the scanning line length cannot be made long. Ta. In addition, in the case of a configuration in which the reflected beam from a rotating polygon mirror is incident on a cylindrical lens via a focusing lens, the output light from the focusing lens must be approximately parallel to the optical axis, so the scanning line length must be made long. If this is to be done, the apertures of the focusing lens and cylindrical lens must be made as large as the scanning line length. Such a large-diameter focusing lens has the drawback of being very expensive and practically difficult to manufacture.

この考案の目的は、上述の従来装置の欠点を除
去した、通常容易に得られる安価なレンズの組合
わせで走査線の偏位を光学的に補正する手段を備
え、長尺の走査線長を達成する光ビーム走査装置
を提供することにある。
The purpose of this invention is to provide a means for optically correcting the deviation of the scanning line using a combination of inexpensive lenses that are usually easily obtained, and to eliminate the drawbacks of the conventional device described above. An object of the present invention is to provide a light beam scanning device that achieves the above goals.

この考案によれば、光ビーム発生装置と、入射
する光ビームを受取つて反射する光ビームを走査
的に移動せしめる反射装置と、上記光ビーム発生
装置から入射する光ビームを上記反射装置の反射
点上において上記反射装置の光ビーム走査方向と
垂直な方向には集束し上記反射装置の光ビーム走
査方向にはコリメートする第一の集束装置と、上
記反射装置の反射点をほぼ入射側焦点位置として
上記反射装置から入射する光ビームに対してリレ
ー系を構成する第二及び第三の集束装置と、入射
する光ビームを上記反射装置の光ビーム走査方向
と垂直な方向に集束する一方向集束性を有する第
四の集束装置と、入射する光ビームを入射角θに
対して、走査面上でK・θ(Kは定数)の像高の
位置に集束する第五の集束装置とを含み、上記第
四の集束装置を上記第四の集束装置の光ビーム集
束位置が上記第二の集束装置の光ビーム集束位置
と同一位置になる様に配置し、上記反射装置で反
射された光ビームを前記の様に配置された第二の
集束装置と、第四の集束装置と、第三の集束装置
と、第五の集束装置を通過せしめて走査面に集束
させることを特徴とする光ビーム走査装置が得ら
れる。
According to this invention, there is provided a light beam generating device, a reflecting device that receives an incident light beam and moves the reflected light beam in a scanning manner, and a reflecting device that directs the incident light beam from the light beam generating device to a reflection point of the reflecting device. a first focusing device that focuses in a direction perpendicular to the scanning direction of the light beam of the reflecting device and collimates in the scanning direction of the light beam of the reflecting device; second and third focusing devices forming a relay system for the light beam incident from the reflecting device; and unidirectional focusing for focusing the incident light beam in a direction perpendicular to the light beam scanning direction of the reflecting device. and a fifth focusing device that focuses the incident light beam at an image height of K·θ (K is a constant) on the scanning plane with respect to the incident angle θ, The fourth focusing device is arranged so that the light beam focusing position of the fourth focusing device is the same as the light beam focusing position of the second focusing device, and the light beam reflected by the reflecting device is A light beam scan characterized in that the light beam passes through a second focusing device, a fourth focusing device, a third focusing device, and a fifth focusing device arranged as described above and is focused on a scanning surface. A device is obtained.

この考案によつて、小口径のレンズの組み合せ
で、走査線の垂直方向の偏位を補正する機能を有
し、かつ長尺の走査線長を走査できる光ビーム走
査装置が得られる。
With this invention, a light beam scanning device can be obtained which has a function of correcting the vertical deviation of the scanning line and can scan a long scanning line length by using a combination of small-diameter lenses.

次に、図面を参照してこの考案を詳細に説明す
る。
Next, this invention will be explained in detail with reference to the drawings.

図a及びbは各々この考案の光ビーム走査装置
の第一の実施例を示す平面図及び正面図である。
図において、光ビーム発生装置1の発生する光ビ
ームは、第一の集束装置2によつて回転多面鏡3
の反射点上に、回転多面鏡3の光ビーム走査方向
にはコリメートし、回転多面鏡3の光ビーム走査
方向に垂直な方向には集束して入射し反射され
る。回転多面鏡3により走査的に反射された光ビ
ームは、回転多面鏡3の反射点に対して、第三の
集束装置5と共にリレー系を構成する第二の集束
装置4に入射し、続いて第二の集束装置4の焦点
面と同一位置に焦点面を有し、回転多面鏡3の光
ビーム走査方向と垂直な方向に一方向の集束性を
有する第四の集束装置6を通過し、次いで、第三
の集束装置5によりコリメートされ、第五の集束
装置7により、走査面8上に集束し、回転多面鏡
3の回転に伴い走査面8上を走査する。本考案の
光ビーム走査装置においては、第二の集束装置4
と第三の集束装置5とがリレー系を構成している
ので、一方向集束性を有する、例えば円筒レンズ
である第四の集束装置6に入射する光ビームは、
光軸に平行であり、像面の彎曲は生じない。又、
本考案においては、第五の集束装置7は入射する
光ビームを入射角θに対してK・θ(Kは定数)
の像高の位置に集束する、いわゆるf−θレンズ
であるが、テレセントリツクな特性を有する必要
がないためこの様な場合は入射位置をf−θレン
ズ入口に接近させ、又f−θレンズの最大画角の
出射ビームと光軸のなす角を大きくとることによ
りf−θレンズの口径を小さく設計できることが
当業者には知られており、f−θレンズを小口径
なものにできる。又、リレー系を構成する第二の
集束装置4及び第三の集束装置5の焦点距離を適
当に短かくすることにより、第四の集束装置6の
口径を小さくできる。図bの正面図には、光ビー
ム発生装置1及び第一の集束装置2は省略してあ
る。図bの正面図には、走査線の偏位の補正を説
明するために、回転多面鏡3の反射面が回転軸に
対して傾いた場合の光ビームの光路を点線で、
又、第二の集束装置4、第三の集束装置5及び第
四の集束装置6及び第五の集束装置7の位置関係
を説明するために間隔を記入してある。
Figures a and b are a plan view and a front view, respectively, showing a first embodiment of the optical beam scanning device of this invention.
In the figure, a light beam generated by a light beam generator 1 is passed through a rotating polygon mirror 3 by a first focusing device 2.
The light is collimated in the light beam scanning direction of the rotating polygon mirror 3, and is focused and reflected in the direction perpendicular to the light beam scanning direction of the rotating polygon mirror 3, on the reflection point of the rotating polygon mirror 3. The light beam reflected in a scanning manner by the rotating polygon mirror 3 is incident on the reflection point of the rotating polygon mirror 3 into a second focusing device 4 that constitutes a relay system together with a third focusing device 5, and then passing through a fourth focusing device 6 having a focal plane at the same position as the focal plane of the second focusing device 4 and having unidirectional focusing in a direction perpendicular to the light beam scanning direction of the rotating polygon mirror 3; Next, it is collimated by the third focusing device 5, focused on the scanning surface 8 by the fifth focusing device 7, and scanned on the scanning surface 8 as the rotating polygon mirror 3 rotates. In the light beam scanning device of the present invention, the second focusing device 4
and the third focusing device 5 constitute a relay system, so that the light beam incident on the fourth focusing device 6, which is a cylindrical lens, for example, has a unidirectional focusing property.
It is parallel to the optical axis, and there is no curvature of the image plane. or,
In the present invention, the fifth focusing device 7 adjusts the incident light beam to K·θ (K is a constant) with respect to the incident angle θ.
This is a so-called f-theta lens, which focuses the image at a position with an image height of It is known to those skilled in the art that the aperture of the f-theta lens can be designed to be small by increasing the angle formed between the output beam with the maximum angle of view and the optical axis, and the f-theta lens can be made small in aperture. Further, by appropriately shortening the focal lengths of the second focusing device 4 and the third focusing device 5 that constitute the relay system, the aperture of the fourth focusing device 6 can be made small. In the front view of FIG. b, the light beam generator 1 and the first focusing device 2 are omitted. In the front view of FIG. b, in order to explain the correction of the deviation of the scanning line, the optical path of the light beam when the reflective surface of the rotating polygon mirror 3 is tilted with respect to the rotation axis is shown as a dotted line.
Also, intervals are shown to explain the positional relationship between the second focusing device 4, the third focusing device 5, the fourth focusing device 6, and the fifth focusing device 7.

図において、f2,f3,f4は各々第二の集束装置
4の焦点距離、第三の集束装置5の焦点距離及び
第四の集束装置6の焦点距離を表わす。図bで明
らかな様に、回転多面鏡3の反射ビームは、回転
多面鏡3の反射面の傾きによらず、第五の集束装
置7に対して光軸に平行に入射するので、走査面
8上には走査線の偏位は生じない。
In the figure, f 2 , f 3 and f 4 represent the focal length of the second focusing device 4, the third focusing device 5 and the fourth focusing device 6, respectively. As is clear from FIG. b, the reflected beam from the rotating polygon mirror 3 is incident on the fifth focusing device 7 parallel to the optical axis, regardless of the inclination of the reflecting surface of the rotating polygon mirror 3, so that the scanning surface No deviation of the scan line occurs on 8.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは各々この考案の第一の実施例を
示す平面図及び正面図である。図において、1は
光ビーム発生装置、2は第一の集束装置、3は回
転多面鏡、4は第二の集束装置、5は第三の集束
装置、6は第四の集束装置、7は第五の集束装
置、8は走査面を各々表わす。
Figures 1a and 1b are a plan view and a front view, respectively, showing a first embodiment of this invention. In the figure, 1 is a light beam generator, 2 is a first focusing device, 3 is a rotating polygon mirror, 4 is a second focusing device, 5 is a third focusing device, 6 is a fourth focusing device, and 7 is a rotating polygon mirror. The fifth focusing device, 8, each represents a scanning plane.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光ビーム発生装置と、入射する光ビームを受取
つて反射する光ビームを走査的に移動せしめる反
射装置と、上記光ビーム発生装置から入射する光
ビームを上記反射装置の反射点上において上記反
射装置の光ビーム走査方向と垂直な方向には集束
し上記反射装置の光ビーム走査方向にはコリメー
トする第一の集束装置と、上記反射装置の反射点
をほぼ入射側焦点位置として上記反射装置から入
射する光ビームに対してリレー系を構成する第二
及び第三の集束装置と、入射する光ビームを上記
反射装置の光ビーム走査方向と垂直な方向に集束
する一方向集束性を有する第四の集束装置と、入
射する光ビームを入射角θに対して走査面上で
K・θ(Kは定数)の像高の位置に集束する第五
の集束装置とを含み、上記第四の集束装置をその
光ビーム集束位置が上記第二の集束装置の光ビー
ム集束位置と同一位置になる様に配置し、上記反
射装置で反射された光ビームを前記の様に配置さ
れた第二の集束装置と、第四の集束装置と、第三
の集束装置と、第五の集束装置を通過せしめて走
査面に集束させることを特徴とする光ビーム走査
装置。
a light beam generator; a reflector that receives an incident light beam and moves the reflected light beam in a scanning manner; and a reflector that directs the incident light beam from the light beam generator onto a reflection point of the reflector. a first focusing device that focuses in a direction perpendicular to the light beam scanning direction and collimates in the light beam scanning direction of the reflecting device; second and third focusing devices forming a relay system for the light beam; and a fourth focusing device having unidirectional focusing ability to focus the incident light beam in a direction perpendicular to the light beam scanning direction of the reflecting device. and a fifth focusing device that focuses the incident light beam at an image height of K·θ (K is a constant) on the scanning plane with respect to the incident angle θ, and the fourth focusing device The light beam focusing position is arranged to be the same as the light beam focusing position of the second focusing device, and the light beam reflected by the reflecting device is transferred to the second focusing device arranged as described above. , a fourth focusing device, a third focusing device, and a fifth focusing device, and the light beam is focused on a scanning surface.
JP4426177U 1977-04-08 1977-04-08 Expired JPS6226733Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4426177U JPS6226733Y2 (en) 1977-04-08 1977-04-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4426177U JPS6226733Y2 (en) 1977-04-08 1977-04-08

Publications (2)

Publication Number Publication Date
JPS53138854U JPS53138854U (en) 1978-11-02
JPS6226733Y2 true JPS6226733Y2 (en) 1987-07-09

Family

ID=28920238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4426177U Expired JPS6226733Y2 (en) 1977-04-08 1977-04-08

Country Status (1)

Country Link
JP (1) JPS6226733Y2 (en)

Also Published As

Publication number Publication date
JPS53138854U (en) 1978-11-02

Similar Documents

Publication Publication Date Title
JP2969407B2 (en) Post-objective scanning optical system and image forming apparatus
US4123135A (en) Optical system for rotating mirror line scanning apparatus
JP3073801B2 (en) Optical scanning lens and optical scanning device
JPS6226733Y2 (en)
JPS6230006Y2 (en)
JP2971005B2 (en) Optical scanning device
JPS6230007Y2 (en)
JPS628015Y2 (en)
JPS628016Y2 (en)
JP2643224B2 (en) Light beam scanning optical system
JPH04242215A (en) Optical scanner
JP3126137B2 (en) Post objective type scanning optical system and image forming apparatus
JP2618889B2 (en) Optical scanning device
JPH1164759A (en) Light scanning optical device
JPS62278521A (en) Light beam scanning device
JP3132047B2 (en) Light beam scanning optical system
JPS61126528A (en) Photoscanning device
JPH07174996A (en) Raster-output-scanner image system
JPH01200220A (en) Light beam scanning optical system
JPH1020235A (en) Optical scanner
JPH01300218A (en) Light beam scanning optical system
JPH04110818A (en) Light beam scanning optical system
JP3432178B2 (en) Optical scanning optical system and image forming apparatus using the same
JP2817454B2 (en) Scanning optical device
JP2633560B2 (en) Optical scanning device