JPS631026A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPS631026A
JPS631026A JP14538786A JP14538786A JPS631026A JP S631026 A JPS631026 A JP S631026A JP 14538786 A JP14538786 A JP 14538786A JP 14538786 A JP14538786 A JP 14538786A JP S631026 A JPS631026 A JP S631026A
Authority
JP
Japan
Prior art keywords
reaction
film
gas
substrate
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14538786A
Other languages
Japanese (ja)
Inventor
Kaneo Watanabe
渡邉 金雄
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14538786A priority Critical patent/JPS631026A/en
Publication of JPS631026A publication Critical patent/JPS631026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the quality of a film remarkably by using optical energy to replenish reaction energy on a substrate surface. CONSTITUTION:SiH2, Si2H6 or a gas containing one of these materials is introduced into a reaction chamber 1 of high vacuum, a high-frequency power 3 is applied to upper and lower electrodes 2u and 2d to decompose the material gas, and a film is formed on a substrate S by a vapor-phase chemical reaction of a product of decomposition. On the occasion, light of wavelength 230-450 nm is generated from a light source 4. For this source, a low-pressure Hg lamp (254 nm), excima laser such as KrF (249 nm), XeCl laser (308 nm) or XeF (251 nm) or N2 gas laser (337 nm) is employed. According to this construction, a reaction energy on the surface of the substrate is increased to facilitate reaction even when the reduction of an impressed voltage and the separation of a discharge chamber from a deposition chamber are made to protect the film from high-energy particles, and therefore the quality of the film can be improved remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非晶質半導体又は微結晶半導体等の半導体製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing semiconductors such as amorphous semiconductors or microcrystalline semiconductors.

〔従来技術〕[Prior art]

平行平板型のグロー放電電極を用いた半導体の創造方法
としては従来第5図に示す如きものが知られている(J
apanese Journal of Applia
d PhysicsSupplement 20−2 
(1980) 163頁)。
As a method for creating semiconductors using parallel plate type glow discharge electrodes, the method shown in Figure 5 is conventionally known (J
apanese Journal of Applia
d Physics Supplement 20-2
(1980) p. 163).

第5図は従来の平行平板型のグロー放電電1函を用いた
半導体の製造方法を示す模式図であり、図中1は高真空
の反応室を示している。該反応室1内には上、下に平行
に一対の電極2u、2dを配設し、下部電極2d上に基
板Sを配置し、上、下部型tf+ 2.4 。
FIG. 5 is a schematic diagram showing a semiconductor manufacturing method using a conventional parallel plate type glow discharge box, and 1 in the figure indicates a high vacuum reaction chamber. In the reaction chamber 1, a pair of electrodes 2u and 2d are disposed in parallel on the upper and lower sides, a substrate S is disposed on the lower electrode 2d, and upper and lower types tf+ 2.4 are formed.

2d間に高周波電源3にて高周波電圧を印加し、プラズ
マ放電を発生させ、反応室1内に導入した原料ガスを分
解し、その分解生成物の気相1ヒ学反応に基づき基Is
裏表面成膜を施すようになっている。
A high-frequency voltage is applied by the high-frequency power source 3 during the 2d period to generate plasma discharge, decompose the raw material gas introduced into the reaction chamber 1, and based on the gas-phase 1hichemical reaction of the decomposition product, the group Is
Film formation is applied to the back surface.

ところで上述した方法ではプラズマ中の高エネルギー粒
子が膜にfJi突してこれに損1ハを与えるため、膜質
向上のためには印加パワーを低下し、或いは反応室圧力
を高めることを余/7Jlなくされるなど、成膜条件に
制限があり、基板面の反応エネルギーが不足し膜特性の
向上にも限界があった。
By the way, in the method described above, high-energy particles in the plasma impinge on the film and cause damage to it, so in order to improve the film quality, it is necessary to reduce the applied power or increase the reaction chamber pressure. There were limitations to the film formation conditions, such as the lack of oxidation, and there was a lack of reaction energy on the substrate surface, limiting the ability to improve film properties.

これを解決する手段として反応室1を2領域に分離し、
高エネルギー粒子を生ずる放電は放電領域内で行なわせ
、基板は堆積領域内に配置する構成とした第6図に示す
如き方法が提案されている。
As a means to solve this problem, the reaction chamber 1 is separated into two regions,
A method has been proposed, as shown in FIG. 6, in which the discharge producing high-energy particles is carried out within the discharge region, and the substrate is disposed within the deposition region.

第6図は従来装置の模式図であり、連通路21aにて相
互に連らなった放電室21と堆積室22とを具備し、放
電は堆積室22から分離された放電室21内で行なわせ
、堆積室22中の基板Sに高エネルギー粒子の影響が及
ばない構成としである(第31回応用物理学関係連合講
演会講演予稿集: 1984年、31a−R−7)。
FIG. 6 is a schematic diagram of a conventional device, which includes a discharge chamber 21 and a deposition chamber 22 that are connected to each other by a communication path 21a, and discharge is performed in the discharge chamber 21 separated from the deposition chamber 22. In addition, the structure is such that the substrate S in the deposition chamber 22 is not affected by high-energy particles (Proceedings of the 31st Applied Physics Conference, 1984, 31a-R-7).

この方法にあっては反応室21内で、Ar、82等の非
堆積ガスに放電を生起させ、Ar’、H″′等の活性種
を生成し、これら活性種により堆&ff室22内に供給
された5il14 + Si2116等の原料ガスを分
解し、気相化学反応に基づき基板Sに成膜を行なわせる
ようになっている。
In this method, a discharge is caused in a non-deposition gas such as Ar, 82, etc. in the reaction chamber 21 to generate active species such as Ar', H'', etc., and these active species cause a discharge in the deposition &ff chamber 22. The supplied raw material gas such as 5il14 + Si2116 is decomposed and a film is formed on the substrate S based on a gas phase chemical reaction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上述の如き放電室21と堆積室22とに分離す
る構成とすると、高エネルギー粒子の影響は極めて少な
い反面、膜質向上を図るうえで必要とされる基板面での
反応エネルギーが低くなりがちで膜質向上を図るうえで
大きな障害となっていた。
However, if the discharge chamber 21 and the deposition chamber 22 are separated as described above, the influence of high-energy particles is extremely small, but the reaction energy on the substrate surface, which is required to improve film quality, tends to be low. This was a major obstacle in efforts to improve film quality.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは光エネルギーを用い基板面に反応エ
ネルギーを補充し、膜品質の格段の向上を図れるように
した半導体型造方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a semiconductor molding method that uses light energy to replenish reaction energy on the substrate surface, thereby making it possible to significantly improve film quality. There is something to do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法にあっては原料ガスとしてモノシラン、ジシ
ラン又は少なくともこれらのいずれかを含む混合ガスを
用いる場合において、波fW230〜450 nlの光
を基板面に投射する。
In the method of the present invention, when monosilane, disilane, or a mixed gas containing at least one of these is used as the source gas, light with a wave fW of 230 to 450 nl is projected onto the substrate surface.

〔作用〕[Effect]

本発明方法にあっては、これによって高エネルギー粒子
の影響を低減すべく印加電圧を低下させ、また放電を基
板を配する堆積室から分離した放電室内で行なわせる場
合においても低下しがちな基板表面の反応エネルギーを
補充することが出来て、高エネルギー粒子の影響を受け
ることなく、反応を促進して得て膜質の向上を図れる。
In the method of the present invention, the applied voltage is thereby reduced in order to reduce the influence of high-energy particles, and even when the discharge is performed in a discharge chamber separated from the deposition chamber in which the substrate is arranged, the substrate voltage tends to be lowered. It is possible to replenish the reaction energy on the surface, promote the reaction without being affected by high-energy particles, and improve the film quality.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて具体的に
説明する。第1図は本発明方法を適用した平行平板型の
電極を用いたグロー放電法の実施状態を示す模式図であ
り、図中1は反応室、2u。
The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 1 is a schematic diagram showing the implementation state of the glow discharge method using parallel plate type electrodes to which the method of the present invention is applied, and in the figure, 1 is a reaction chamber, and 2u is a reaction chamber.

2dは電極、3は高周波電源、4は光源を示している。2d is an electrode, 3 is a high frequency power source, and 4 is a light source.

反応室1内の上下に上、下型+i2u、 2dを配設し
、左、右の(II+璧に光源4.4を配設してあり、高
真空に設定した反応室1内にガス供給装置から原料ガス
を供給し、上、下電極2u、 2dに高周波電源3によ
り所要の高周波を印加し原料ガスを分解し、分解生成物
の気相化学反応により、基ffj S表面に成膜を行う
ようになっている。
Upper and lower molds +i2u and 2d are placed above and below inside the reaction chamber 1, and a light source 4.4 is placed on the left and right sides (II+), and gas is supplied into the reaction chamber 1 set at high vacuum. A raw material gas is supplied from the device, and a required high frequency is applied to the upper and lower electrodes 2u and 2d by a high frequency power source 3 to decompose the raw material gas, and a film is formed on the surface of the group ffj S by a gas phase chemical reaction of the decomposition products. It is supposed to be done.

原料ガスとしては、SiH4、Si2 Hs又は少なく
ともこれらの1つを含む混合ガスが用いられる。
As the raw material gas, SiH4, Si2 Hs, or a mixed gas containing at least one of these is used.

また光源4.4としては、原料ガスとして5il14 
In addition, as the light source 4.4, 5il14 is used as the raw material gas.
.

Si2 )16ガス、また少なくともこれらの1つを含
む混合ガスを用いる場合、波長が230〜450nmの
範囲の光を発する光源、例えば低圧水銀ランプ(波長:
 254nm ) + KrFレーザ(波W : 24
9nm ) 。
When using Si2)16 gas or a mixed gas containing at least one of these, a light source that emits light with a wavelength in the range of 230 to 450 nm, such as a low-pressure mercury lamp (wavelength:
254nm) + KrF laser (wave W: 24
9nm).

XeCj!レーザ(波長: 308nm ) 、XeF
 レーザ(波長251nm )等のエキシマレーザ、或
いはN2ガスレーザ(eL長: 337 r++n)を
用いる。
XeCj! Laser (wavelength: 308nm), XeF
An excimer laser such as a laser (wavelength: 251 nm) or an N2 gas laser (eL length: 337 r++n) is used.

なお波長が230nm未満の紫外光の場合には原料ガス
分子が紫外光を吸収し、ガス分子の分解、7励起が引起
され、プラズマ状態が光によって乱されや可能性があり
、しかも通常SiLガスは波長150nm以上の光を、
またSi2 It 6ガスは波L 210 n m以上
の光を殆ど吸収することがなく、それだけ表面反応エネ
ルギーとして有効利用し得ることによる。
In the case of ultraviolet light with a wavelength of less than 230 nm, the source gas molecules absorb the ultraviolet light, causing decomposition and excitation of the gas molecules, and the plasma state may be disturbed by the light. is light with a wavelength of 150 nm or more,
Further, Si2It6 gas hardly absorbs light having a wavelength of L210 nm or more, and this is because the Si2It6 gas can be effectively used as surface reaction energy.

また、波ffi450nm以下としたのは、これを越え
る領域の光では欣表面、或いは膜中で振動励起が生じ、
基板温度が上昇するのと同様の結果を招き、しかもエネ
ルギーを必要とする基板表面のみならず、既に形成され
た膜中にも達してアモルファスシリコン膜(a−5i 
: H)では水素の!1iIt脱或いはキャリアの発生
、再結合が生じて欠陥となるなどの問題を生じてしまう
ことによる。
In addition, the reason why the wave ffi is set to be 450 nm or less is that light in a region exceeding this causes vibrational excitation on the surface of the core or in the film.
The result is similar to that of an increase in substrate temperature, and energy is not only applied to the substrate surface, but also reaches into the already formed film, resulting in an increase in the amorphous silicon film (a-5i).
:H) Now for hydrogen! This is because problems such as 1iIt desorption or carrier generation and recombination occur, resulting in defects.

具体的な反応条件の一例を示すと表1の如くである。An example of specific reaction conditions is shown in Table 1.

(以 下 余 白) なお実験では従来の平行平板型のグロー放電法とこれに
紫外光源を適用した本発明方法とによって夫々アモルフ
ァスシリコンの成膜を行い、得られた膜に対し、低圧水
銀ランプにより波長253.7nmの紫外光(約10f
flW/cffi2)を照射したときのその赤外線吸収
スペクトルを調べた結果は第2図(イ)、(ロ)に示す
とおりである。
(Margins below) In the experiment, amorphous silicon films were formed using the conventional parallel plate glow discharge method and the method of the present invention, which uses an ultraviolet light source. UV light with a wavelength of 253.7 nm (approximately 10 f
The results of examining the infrared absorption spectrum when irradiated with flW/cffi2) are shown in Figures 2 (a) and (b).

第2図(イ)(ロ)は上述の本発明方法と従来方法との
比較試験結果を示すグラフであり、横軸に波数(1/波
長)(ω−1)を、また縦軸に吸収量(任意単位)をと
って示しである。第2図(イ)は本発明方法の、また第
2図(ロ)は従来方法の結果である。
Figures 2 (a) and 2 (b) are graphs showing the results of comparative tests between the method of the present invention and the conventional method, in which the horizontal axis represents the wave number (1/wavelength) (ω-1), and the vertical axis represents absorption. It is expressed in terms of quantity (arbitrary unit). FIG. 2(a) shows the results of the method of the present invention, and FIG. 2(b) shows the results of the conventional method.

このグラフから明らかなように膜質が良好な場合にみら
れる波数2000cm−付近でのS i −Itバンド
による吸収が本発明では認められるが、従来方法に依っ
て得た場合には5i−H2バンドによる吸収のみが認め
られ、S i −II−バンドによる吸収は全く得られ
ておらず本発明方法は絞品質の向上を図れることが解る
As is clear from this graph, absorption by the Si-It band at a wave number of around 2000 cm, which is observed when the film quality is good, is observed in the present invention, but absorption in the 5i-H2 band when obtained by the conventional method is observed. Only the absorption by the Si-II-band was observed, and no absorption by the Si-II-band was observed, indicating that the method of the present invention can improve the drawing quality.

第3.4図は本発明の他の実施状態を示す模式図であり
、いずれも真空室を放電領域と増粘領域22とに分離し
て構成した場合を示してあり、堆、fi′I領域22の
左、右側壁に紫外光源24.24を配設し、また第4図
に示す実施例では、紫外光源25.25は真空室の外部
であって左右側壁に設けた紫外線透過光用のガラス窓2
2a、 22aに対向して配置する溝底としである。
FIG. 3.4 is a schematic diagram showing another state of implementation of the present invention, in which the vacuum chamber is separated into a discharge region and a thickening region 22. Ultraviolet light sources 24.24 are provided on the left and right side walls of the area 22, and in the embodiment shown in FIG. glass window 2
2a and 22a are arranged at the bottom of the groove.

而して、このような本発明方法にあっては、真空室内を
所定の真空度に設定した後、原料ガスを注入し、基板S
を加熱しつつ放電領域でプラズマを生成させると同時に
紫外光源から波長230〜450nmの光を照射して成
膜を施す。具体的な反応条件は表2に示すとおりである
In the method of the present invention, after setting the vacuum chamber to a predetermined degree of vacuum, raw material gas is injected, and the substrate S
A film is formed by heating the substrate to generate plasma in the discharge region and simultaneously irradiating it with light having a wavelength of 230 to 450 nm from an ultraviolet light source. Specific reaction conditions are as shown in Table 2.

なお、上述の実施例は主として半導体を構成するアモル
ファスシリコン膜の形成を行う場合につき説明したが、
何らこれに限るものではなく、例えば微結晶半導体を製
造する場合についても適用し得ることは勿論である。
It should be noted that although the above-mentioned embodiments were mainly explained in the case of forming an amorphous silicon film constituting a semiconductor,
It goes without saying that the present invention is not limited to this, and can be applied, for example, to the production of microcrystalline semiconductors.

(以 下 余 白) 表2 〔効果〕 以上の如く本発明方法にあっては、半導体成膜のための
原料ガスとして、モノシランガス、ジシランガス又は少
な(ともこれらの1つを含む混合ガスを用いる場合、波
長230〜450 nmの光を基板面に照射することと
しているから、高エネルギー粒子から膜を保護すべく印
加電圧を低減し、また堆猜領域を放電領域から分離した
反応室を用いる場合においても基板面の反応エネルギー
を増大せしめて反応を促進し、膜品質の大幅な向上を図
れるなど本発明は優れた効果を奏するものである。
(Margins below) Table 2 [Effects] As described above, in the method of the present invention, monosilane gas, disilane gas, or a small amount of a mixed gas containing one of these gases is used as the raw material gas for semiconductor film formation. Since the substrate surface is irradiated with light with a wavelength of 230 to 450 nm, it is necessary to reduce the applied voltage to protect the film from high-energy particles and to use a reaction chamber in which the deposition region is separated from the discharge region. The present invention has excellent effects, such as increasing the reaction energy on the substrate surface to promote the reaction and significantly improving the film quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式図、第2図(
イ)、(ロ)は本発明方法と従来方法とによって得た膜
品質の比較試験結果を示すグラフ、第3.4図は本発明
の各別異の実施状態を示す模式図、第5.6図はいずれ
も従来方法の実施状態を示す模式図である。 S・・・基板 1・・・反応室 2u、 2d・・・上
、下電極3・・・高周波電源 4・・・光源 21・・
・放電室 22・・・堆積室 23・・・供給口 特 許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 第4図 逼 数 (Cぜ) 逼 数((C) 第2図 阜30 第4■ 隼5図 場ら図
Figure 1 is a schematic diagram showing the implementation state of the method of the present invention, Figure 2 (
(a) and (b) are graphs showing the comparative test results of film quality obtained by the method of the present invention and the conventional method; Fig. 3.4 is a schematic diagram showing the state of implementation of each variant of the present invention; Fig. 5. 6 are schematic diagrams showing the state of implementation of the conventional method. S... Substrate 1... Reaction chamber 2u, 2d... Upper and lower electrodes 3... High frequency power supply 4... Light source 21...
・Discharge chamber 22... Deposition chamber 23... Supply port patent Applicant Sanyo Electric Co., Ltd. Agent Patent attorney Noboru Kono Figure 4 (C) Figure 2 30 Chapter 4 ■ Hayabusa 5 Zuba et al.

Claims (1)

【特許請求の範囲】 1、モノシランガス若しくはジシランガス、又は少なく
ともこれらのいずれかを含む混合ガスを原料ガスに用い
、プラズマ放電にてこれを分解して基板上に半導体を形
成する過程で、基板表面に波長230〜450°nmの
光を照射することを特徴とする半導体製造方法。 2、前記半導体は非晶質又は微結晶半導体である特許請
求の範囲第1項記載の半導体製造方法。 3、前記照射光は波長253.7nmの低圧水銀ランプ
の光である特許請求の範囲第1項記載の半導体製造方法
。 4、前記照射光はK_2F、XeCl等の波長230n
m以上のエキシマレーザ光、又はN_2レーザ光である
特許請求の範囲第1項記載の半導体製造方法。
[Claims] 1. In the process of forming a semiconductor on a substrate by using monosilane gas, disilane gas, or a mixed gas containing at least one of them as a raw material gas and decomposing it with plasma discharge, A semiconductor manufacturing method characterized by irradiating light with a wavelength of 230 to 450 nm. 2. The semiconductor manufacturing method according to claim 1, wherein the semiconductor is an amorphous or microcrystalline semiconductor. 3. The semiconductor manufacturing method according to claim 1, wherein the irradiation light is light from a low-pressure mercury lamp having a wavelength of 253.7 nm. 4. The irradiation light has a wavelength of 230n such as K_2F, XeCl, etc.
2. The semiconductor manufacturing method according to claim 1, wherein the excimer laser beam is an excimer laser beam of m or more, or an N_2 laser beam.
JP14538786A 1986-06-20 1986-06-20 Manufacture of semiconductor Pending JPS631026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14538786A JPS631026A (en) 1986-06-20 1986-06-20 Manufacture of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14538786A JPS631026A (en) 1986-06-20 1986-06-20 Manufacture of semiconductor

Publications (1)

Publication Number Publication Date
JPS631026A true JPS631026A (en) 1988-01-06

Family

ID=15384070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14538786A Pending JPS631026A (en) 1986-06-20 1986-06-20 Manufacture of semiconductor

Country Status (1)

Country Link
JP (1) JPS631026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278012A (en) * 1988-04-30 1989-11-08 Sony Corp Formation of semiconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278012A (en) * 1988-04-30 1989-11-08 Sony Corp Formation of semiconductor thin film

Similar Documents

Publication Publication Date Title
KR960000190B1 (en) Semiconductor manufacturing method and apparatus thereof
Hanabusa Photoinduced deposition of thin films
JPH01244623A (en) Manufacture of oxide film
JPS631026A (en) Manufacture of semiconductor
CN1027549C (en) Microwave enhanced CVD system under magnetic field
US5112647A (en) Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process
JPH0697075A (en) Plasma cleaning of thin film deposition chamber
JPS5940525A (en) Growth of film
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP2608456B2 (en) Thin film forming equipment
JPS63258016A (en) Manufacture of amorphous thin film
JPS60202928A (en) Optical pumping reaction device
JP2629773B2 (en) Method of forming multilayer thin film
JP3397558B2 (en) Method for producing silicon thin film
JPS61230326A (en) Vapor growth apparatus
JPS6216512A (en) Manufacture of semiconductor thin film
JPS6118122A (en) Semiconductor manufacturing apparatus
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JPS63258017A (en) Semiconductor manufacturing apparatus
JPH0459769B2 (en)
JPH01730A (en) Method of forming multilayer thin film
JPH07105346B2 (en) Radical beam photo CVD equipment
JPH03229871A (en) Production of insulating film and production of semiconductor device using this insulating film
JPS60178622A (en) Manufacture of semiconductor device