JPS6310224B2 - - Google Patents

Info

Publication number
JPS6310224B2
JPS6310224B2 JP19646085A JP19646085A JPS6310224B2 JP S6310224 B2 JPS6310224 B2 JP S6310224B2 JP 19646085 A JP19646085 A JP 19646085A JP 19646085 A JP19646085 A JP 19646085A JP S6310224 B2 JPS6310224 B2 JP S6310224B2
Authority
JP
Japan
Prior art keywords
alloy
linear expansion
coefficient
extrusion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19646085A
Other languages
Japanese (ja)
Other versions
JPS6256550A (en
Inventor
Tosha Amakasu
Shoichi Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19646085A priority Critical patent/JPS6256550A/en
Publication of JPS6256550A publication Critical patent/JPS6256550A/en
Publication of JPS6310224B2 publication Critical patent/JPS6310224B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、低線膨張係数の鋼系材料や鋳鉄系材
料と組合せて用いるのに好適な線膨張係数の低い
Al合金材に関する。 (従来の技術) 良好なエンジンの運転を保持するために、シリ
ンダブロツクの温度低下を企図して、鋳鉄製シリ
ンダブロツクのピストン摺動面にアルミ合金製の
シリンダライナを装着したものが用いられてお
り、かかるシリンダ構造を有するエンジンでは、
実際にシリンダブロツク壁面の温度が20〜30℃低
下することが報告されている。 (発明が解決しようとする問題点) しかしながら、シリンダライナとシリンダブロ
ツク本体との材質の線膨張係数の相違に基づき、
エンジンの運転中にシリンダブロツク本体に大き
な引張応力が発生し、その大きさが著しい場合に
は、両者の境界に空隙が生じたりして、エンジン
の運転性能に重大な悪影響を及ぼすことになる。 このように、アルミ合金材料を鋼系材料や鋳鉄
系材料と組合して熱負荷のかかる複合部材の要素
として用いると、線膨張係数の差違に基づいて、
界面に高い熱応力が発生し、空隙やすべりを招来
する場合もあり、複合部材としての機能を著しく
損う場合が生じる。 ちなみに、鋳鉄の線膨張係数は0〜100℃で10
〜11×10-6/℃であり、アルミニウムは20〜100
℃で23.9×10-6/℃であり、シリンダ部材として
用いられているJIS−H4140規定の2218鋳造用耐
熱Al合金では25〜100℃で19.68×10-6/℃となつ
ており、アルミニウムは鋳鉄の2.28倍、JIS2218
材では1.87倍の線膨張係数を有している。 本発明はかかる問題点に鑑みなされたもので、
従来の鍛造用耐熱アルミニウム合金程度の強度を
有し、かつ線膨張係数の低いアルミニウム合金材
料を提供することを目的とする。 (問題点を解決するための手段) 叙上の目的を達成するために講じられた本発明
の低線膨張係数を有するAl合金材料の特徴とす
るところは、化学組成が重量%で、 Si:15〜25%、Cr:2〜10% および残部実質的にAlからなるAl合金急冷凝固
粉末の押出材もしくは鍛造材であつて、Al基地
中にSiおよびCrが過飽和に固溶されたAl固溶体
に主として細粒状の共晶Siが均一に分散してなる
点にある。 (実施例) 本発明のAl合金材の原材料としては特定のAl
合金溶湯を空気アトマイズ法や水アトマイズ法等
により急冷凝固して得られたものを用い、その組
成は、重量%で、 Si:15〜25%、Cr:2〜10% 残部実質的にAlからなる。まず、上記組成限定
理由について説明する。 Siは合金の膨張率を低下させると共に、耐摩耗
性を付与するために積極的に添加する。15%未満
ではかかる効果が少なく、一方25%を越えると、
後述のように急冷凝固しても粗大でもろい初晶Si
の晶出を抑えることができず、靭性劣化の原因と
なり、また局部摩耗の原因ともなり好ましくな
い。 Crは基地を著しく固溶体硬化させ、基地の強
化および転位の阻止による線膨張係数の低下を図
ると共に初晶Siの晶出を抑え、耐熱性を高めるた
めに添加される。2%未満ではかかる効果が過少
であり、一方10%を越えると溶解困難となり生産
面で問題となる。 前記組成の溶湯を空気アトマイズ法等により急
冷凝固したものは、靭性や強度劣化の原因となる
初晶Siの晶出がほとんど見られず、Al基地中に
SiおよびCrを過飽和に含みCrによつて固溶体硬
化されたAl−Si−Crの固溶体中に微細な共晶状
Siが晶出したものとなり、機械的性質が良好で線
膨張率の低いAl合金粉末が得られる。 尚、上記の粉末合金の組織を得るには、102
℃/秒以上の冷却速度で急冷凝固させる必要があ
る。これ未満の速度では、初晶Siの多量の晶出や
Al−Si−Cr金属間化合物の生成が起り、機械的
性質の劣化を招来する。もつとも、工業的生産面
から現実には上限が定まり、106℃/秒が限度で
あろう。 かかるAl合金急冷凝固粉末は、多量の粉末を
一体化すべく押出し加工に供される。すなわち、
粉末は押出し加工により強度のせん断作用を受
け、粉末の外表面に形成されている数Å程度の不
活性、安定なAl2O3被膜を分断破壊すると共に、
基地中の共晶Siをも更に細粒状に分断して、これ
らを高強度のAl固溶体中に均一に分散ならしめ、
高強度の促進と基地の拡散接合よる一体化を同時
に行うのである。 押出し加工方法としては、Al合金粉末を冷間
静水圧加圧(CIP)により等方向圧縮した後、圧
縮材を封缶脱ガス処理をして長時間の熱間静水圧
加圧(HIP)により加圧焼結し、該焼結材を押出
す方法、およびAl合金粉末に真空ホツトプレス
や冷間−軸圧縮を行い、圧縮材を押出す方法があ
る。 押出に際して、Al合金粉末表面のAl2O3被膜や
Al固溶体中の共晶Siの分断、分散を十分行うた
めに、押出比は5〜20とするのがよく、また押出
荷重の軽減および基地の拡散接合のために、押出
温度は250〜450℃とするのがよい。 本発明の合金材は、押出し加工のほか鍛造加工
により押出し加工時と同等の作用がなされ、所期
の合金組織を得ることができる。この際、鍛造温
度は260〜510℃とするのがよい。 以上のようにして得られた押出材もしくは鍛造
材は、適宜、鍛造加工、切削加工等により目的と
する製品形状に加工される。本発明の合金材は、
耐熱性、耐摩耗性、および強度に優れ、かつ熱膨
張率が小さいので、これらの諸特性が要求される
高精度部品に適用できる。例えば、ピストン、ピ
ストンリング、シリンダライナ、ピストンピン、
コンロツド、VTR用シリンダ、オイルポンプブ
ツシユ等の用途に好適である。尚、シリンダライ
ナ等、製品形状が円筒状のものに対しては、押出
し段階で円筒状に押出せばよい。 次に具体的実施例について説明する。 (1) 重量%で、Si17.8%、Cr5.2%残部実質的に
AlのAl合金を溶製し、空気アトマイズ法によ
り103〜104℃/秒の冷却速度で急冷凝固粉末を
製造した。 (2) 得られた粉末を分級し、44μm以下のものを
ゴム容器に詰めて、3000Kgf/cm2で1分間加圧
しφ140mmの棒材を得た。これを、厚さ3mmの
JIS5052材の缶体に挿入し、10-2〜10-3Torrの
圧力の下で脱ガスを十分行い、電子ビーム溶接
で封缶を行つて、HIP処理を施した。HIP処理
は、350℃、1500Kgf/cm2で1Hr行われた。得
られた焼結材を、350℃で約30分間十分加熱し
た後、押出比10.6、押出速度25mm/分でφ43mm
に押出した。 (3) 該押出材より、φ10×25の試験片を押出し
方向に沿つて採取し、下記の調査に供した。
尚、比較のため、JIS2218材についても同様の
調査を行つた。JIS2218材は、Cr4.1%、Mg1.4
%、Ni2.1%残部実質的にAlの組成を有し、
T61処理(510℃溶体化処理後、熱湯焼入れし、
その後170℃×10Hr時効処理)を行つたもので
ある。 (4) 機械的性質を調べた結果を第1表に示す。
(Field of Industrial Application) The present invention is a material with a low coefficient of linear expansion suitable for use in combination with a steel material or a cast iron material with a low coefficient of linear expansion.
Regarding Al alloy materials. (Prior art) In order to maintain good engine operation, an aluminum alloy cylinder liner is used on the piston sliding surface of a cast iron cylinder block in order to reduce the temperature of the cylinder block. Therefore, in an engine having such a cylinder structure,
It has been reported that the temperature of the cylinder block wall actually decreases by 20 to 30°C. (Problems to be Solved by the Invention) However, due to the difference in linear expansion coefficient of the materials of the cylinder liner and the cylinder block body,
A large tensile stress is generated in the cylinder block body during engine operation, and if the stress is significant, a gap may be formed at the boundary between the two, which will have a serious adverse effect on the operating performance of the engine. In this way, when an aluminum alloy material is used in combination with a steel material or a cast iron material as an element of a composite member that is subjected to a thermal load, due to the difference in linear expansion coefficient,
High thermal stress may occur at the interface, leading to voids and slippage, which may significantly impair the function of the composite member. By the way, the coefficient of linear expansion of cast iron is 10 from 0 to 100℃.
~11×10 -6 /℃, aluminum is 20~100
It is 23.9×10 -6 /℃ at 25 to 100℃, and 19.68×10 -6 /℃ at 25 to 100℃ for the 2218 heat-resistant Al alloy for casting specified in JIS-H4140, which is used as a cylinder member. 2.28 times that of cast iron, JIS2218
It has a coefficient of linear expansion of 1.87 times. The present invention was made in view of such problems,
The object of the present invention is to provide an aluminum alloy material that has strength comparable to conventional heat-resistant aluminum alloys for forging and has a low coefficient of linear expansion. (Means for Solving the Problems) The Al alloy material having a low coefficient of linear expansion of the present invention, which was taken to achieve the above object, is characterized by a chemical composition in weight% of Si: An extruded material or forged material of rapidly solidified Al alloy powder consisting of 15 to 25% Cr, 2 to 10% Cr, and the balance substantially Al, which is an Al solid solution in which Si and Cr are supersaturated as a solid solution in the Al base. The main reason for this is that fine-grained eutectic Si is uniformly dispersed. (Example) As a raw material for the Al alloy material of the present invention, a specific Al
The alloy obtained by rapidly solidifying the molten alloy by air atomization or water atomization is used, and its composition is, in weight percent, Si: 15 to 25%, Cr: 2 to 10%, and the remainder substantially Al. Become. First, the reason for the above composition limitation will be explained. Si is actively added to reduce the expansion coefficient of the alloy and to impart wear resistance. If it is less than 15%, this effect will be small, while if it exceeds 25%,
As described below, primary Si remains coarse and brittle even after rapid solidification.
crystallization cannot be suppressed, causing deterioration of toughness and local wear, which is undesirable. Cr is added to significantly solid solution harden the base, strengthen the base and prevent dislocations to lower the coefficient of linear expansion, suppress crystallization of primary Si, and increase heat resistance. If it is less than 2%, this effect will be too small, while if it exceeds 10%, it will be difficult to dissolve, which will cause problems in terms of production. When the molten metal with the above composition is rapidly solidified by air atomization, there is almost no crystallization of primary Si, which causes deterioration of toughness and strength, and no crystallization occurs in the Al matrix.
A fine eutectic structure is formed in an Al-Si-Cr solid solution containing supersaturated Si and Cr and solid solution hardened by Cr.
Si crystallizes, and an Al alloy powder with good mechanical properties and a low coefficient of linear expansion is obtained. In addition, in order to obtain the structure of the above powder alloy, 10 2
It is necessary to rapidly solidify at a cooling rate of ℃/second or higher. At a speed lower than this, a large amount of primary Si crystallizes and
Formation of Al-Si-Cr intermetallic compounds occurs, leading to deterioration of mechanical properties. However, from an industrial production perspective, there is actually an upper limit, which is probably 10 6 °C/sec. Such rapidly solidified Al alloy powder is subjected to extrusion processing in order to integrate a large amount of powder. That is,
The powder is subjected to strong shearing action during the extrusion process, which breaks up and destroys the inert and stable Al 2 O 3 film of several angstroms that is formed on the outer surface of the powder.
The eutectic Si in the base is further divided into fine particles, and these are uniformly dispersed in the high-strength Al solid solution.
This simultaneously promotes high strength and integrates the base by diffusion bonding. The extrusion processing method involves compressing the Al alloy powder isostatically using cold isostatic pressing (CIP), then degassing the compressed material in a sealed can, and then using long-term hot isostatic pressing (HIP). There are two methods: pressure sintering and extrusion of the sintered material, and a method of performing vacuum hot pressing or cold-axial compression on Al alloy powder and extruding the compressed material. During extrusion, Al 2 O 3 coating and
In order to sufficiently divide and disperse the eutectic Si in the Al solid solution, the extrusion ratio is preferably 5 to 20, and the extrusion temperature is 250 to 450°C to reduce the extrusion load and diffusion bond the matrix. It is better to The alloy material of the present invention can be subjected to forging in addition to extrusion to achieve the same effect as extrusion, and the desired alloy structure can be obtained. At this time, the forging temperature is preferably 260 to 510°C. The extruded material or forged material obtained as described above is processed into the desired product shape by forging, cutting, etc., as appropriate. The alloy material of the present invention is
It has excellent heat resistance, wear resistance, and strength, and has a small coefficient of thermal expansion, so it can be applied to high-precision parts that require these properties. For example, pistons, piston rings, cylinder liners, piston pins,
Suitable for applications such as cooking stoves, VTR cylinders, and oil pump bushes. Note that for products with a cylindrical shape, such as cylinder liners, the product may be extruded into a cylindrical shape in the extrusion step. Next, specific examples will be described. (1) By weight, Si17.8%, Cr5.2% balance substantially
An Al alloy of Al was melted and rapidly solidified powder was produced by air atomization at a cooling rate of 10 3 to 10 4 °C/sec. (2) The obtained powder was classified, and those with a diameter of 44 μm or less were packed in a rubber container and pressurized at 3000 Kgf/cm 2 for 1 minute to obtain a bar with a diameter of 140 mm. Add this to a thickness of 3 mm.
It was inserted into a can body made of JIS5052 material, thoroughly degassed under a pressure of 10 -2 to 10 -3 Torr, sealed by electron beam welding, and subjected to HIP treatment. The HIP treatment was performed at 350° C. and 1500 Kgf/cm 2 for 1 hour. After sufficiently heating the obtained sintered material at 350℃ for about 30 minutes, it was heated to φ43mm at an extrusion ratio of 10.6 and an extrusion speed of 25mm/min.
It was pushed out. (3) A test piece of φ10×25 was taken along the extrusion direction from the extruded material and subjected to the following investigation.
For comparison, a similar investigation was also conducted on JIS2218 materials. JIS2218 material is Cr4.1%, Mg1.4
%, Ni2.1% balance has a composition of substantially Al,
T61 treatment (510℃ solution treatment, hot water quenching,
This was followed by aging treatment at 170°C for 10 hours. (4) Table 1 shows the results of examining mechanical properties.

【表】 第1表より、本発明材は、2218材に比べて、
伸びがやや劣るものの、その他の性質は良好で
あることが確認され、強度面等を考えた場合
2218材に十分代替えできることが判つた。 (5) 線膨張係数を調べた結果を第2表に示す。
[Table] From Table 1, compared to the 2218 material, the material of the present invention has
Although the elongation was slightly inferior, other properties were confirmed to be good, considering strength etc.
It was found that it can be a sufficient substitute for 2218 material. (5) Table 2 shows the results of examining the coefficient of linear expansion.

【表】 第2表より、内熱機関等で特に問題となる
300℃以下の温度範囲で線膨張係数が2218材に
対して約20%以上低下しているのが確かめられ
た。また、500℃以下でも線膨張係数は12%以
上低下している。 (6) 金属組織の観察結果を第1図および第3図に
示す。第1図は本発明材の金属組織写真(3000
倍)であり、第3図は2218材の同写真(3000
倍)である。尚、参考のため、本発明に係る
Al合金急冷凝固粉末の金属組織写真(3000倍)
を第2図に示す。 第1図より、本発明材は、基地中に多量の細
粒状の共晶Siが微細かつ均一に分散している様
子が観察される。また、Crの析出物は見当ら
ず、Crは基地中に完全に固溶していることが
推察される。尚、第2図は押出し加工前の急冷
凝固粉末の組織を示すが、網目状の共晶Siが全
面に晶出している様子が観察されるが、初晶Si
の晶出は見られない。また、粉末の表面には
Al2O3の被膜が形成されているが数Åであるた
め、視認不能である。第1図においても、同様
にAl2O3被膜の分断片の視認はできなかつた。 一方、第3図より、2218材は、平均3μm程
度の白色のNu−Cu金属間化合物と平均5μm程
度の黒色のMg−Si化合物が基地中に析出して
いる様子が観察される。 本発明材は、第1図より明らかな通り、Si粒
子が基地中に微細かつ均一に分散しており、機
械的性質が優れている理由がミクロ組織からも
裏付けられていた。 (発明の効果) 以上説明した通り、本発明の合金材は、Siを15
〜25%含有しているので、Crの添加とあいまつ
て、従来の鍛造用Al合金に対して線膨張係数が
300℃以下において20%以上低下する。また、本
来機械的性質を劣化させない多量の共晶SiをAl
固溶体中に細粒状に均一分散させたものであるか
ら、機械的性質をまつたく劣化させずに、良好な
耐摩耗性を付与することができる。また、Crを
2〜10%含有しているので、基地はCrを過飽和
に固溶して固溶体硬化が図られ、強度向上および
転位の阻止による線膨張係数の低下に資するもの
となる。 このように本発明の合金材は、機械的性質を損
なうことなく優れた耐摩耗性を具備したものであ
り、更に線膨張係数も低く押さえることができ、
これらの諸特性が共に要求される部材の素材とし
て、利用価値は著大である。
[Table] From Table 2, this is a particular problem in internal heat engines, etc.
It was confirmed that the coefficient of linear expansion was approximately 20% lower than that of 2218 material in the temperature range below 300°C. Furthermore, the coefficient of linear expansion decreases by more than 12% even at temperatures below 500°C. (6) The observation results of the metal structure are shown in Figs. 1 and 3. Figure 1 is a photograph of the metallographic structure of the material of the present invention (3000
Figure 3 shows the same photo of 2218 material (3000 times).
times). For reference, the following information regarding the present invention is provided.
Metal structure photograph of rapidly solidified Al alloy powder (3000x)
is shown in Figure 2. From FIG. 1, it is observed that in the material of the present invention, a large amount of fine grained eutectic Si is finely and uniformly dispersed in the matrix. Furthermore, no Cr precipitates were found, suggesting that Cr was completely dissolved in the matrix. Figure 2 shows the structure of the rapidly solidified powder before extrusion processing, and it is observed that network-like eutectic Si is crystallized over the entire surface, but primary crystal Si
No crystallization was observed. Also, on the surface of the powder
Although a film of Al 2 O 3 is formed, it is not visible because it is several Å thick. Similarly, in FIG. 1, no fragments of the Al 2 O 3 film were visible. On the other hand, from FIG. 3, it is observed that in the 2218 material, a white Nu-Cu intermetallic compound with an average size of about 3 μm and a black Mg-Si compound with an average size of about 5 μm are precipitated in the matrix. As is clear from FIG. 1, the material of the present invention has Si particles finely and uniformly dispersed in the matrix, and the reason why the material has excellent mechanical properties is also supported by the microstructure. (Effect of the invention) As explained above, the alloy material of the present invention contains 15% Si.
Since it contains ~25%, together with the addition of Cr, the coefficient of linear expansion is lower than that of conventional Al alloys for forging.
Decreases by more than 20% at temperatures below 300℃. In addition, a large amount of eutectic Si, which does not originally deteriorate mechanical properties, was added to Al.
Since it is uniformly dispersed in fine particles in a solid solution, it can impart good wear resistance without significantly deteriorating mechanical properties. In addition, since it contains 2 to 10% Cr, the matrix is solid solution hardened with supersaturated Cr, which contributes to improving the strength and reducing the coefficient of linear expansion by preventing dislocations. As described above, the alloy material of the present invention has excellent wear resistance without impairing mechanical properties, and furthermore, the coefficient of linear expansion can be kept low.
It has great utility as a material for parts that require all of these properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のAl合金材の金属組織写真、
第2図は本発明の合金材の原料であるAl合金急
冷凝固粉末の金属組織写真、第3図はJIS2218材
の金属組織写真である。
Figure 1 is a photograph of the metal structure of the Al alloy material of the present invention.
FIG. 2 is a photograph of the metallographic structure of the rapidly solidified Al alloy powder, which is the raw material for the alloy material of the present invention, and FIG. 3 is a photograph of the metallographic structure of the JIS2218 material.

Claims (1)

【特許請求の範囲】 1 化学組成が重量%で、 Si:15〜25%、Cr:2〜10% および残部実質的にAlからなるAl合金急冷凝固
粉末の押出材もしくは鍛造材であつて、Al基地
中にSiおよびCrが過飽和に固溶されたAl固溶体
に主として細粒状の共晶Siが均一に分散してなる
ことを特徴とする線膨張係数の低いAl合金材。
[Scope of Claims] 1. An extruded or forged material of rapidly solidified Al alloy powder having a chemical composition of 15 to 25% Si, 2 to 10% Cr, and the remainder substantially Al in weight percent, An Al alloy material with a low coefficient of linear expansion, characterized in that fine-grained eutectic Si is uniformly dispersed in an Al solid solution in which Si and Cr are supersaturated in an Al base.
JP19646085A 1985-09-04 1985-09-04 Al alloy material having low coefficient of linear expansion Granted JPS6256550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19646085A JPS6256550A (en) 1985-09-04 1985-09-04 Al alloy material having low coefficient of linear expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19646085A JPS6256550A (en) 1985-09-04 1985-09-04 Al alloy material having low coefficient of linear expansion

Publications (2)

Publication Number Publication Date
JPS6256550A JPS6256550A (en) 1987-03-12
JPS6310224B2 true JPS6310224B2 (en) 1988-03-04

Family

ID=16358174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19646085A Granted JPS6256550A (en) 1985-09-04 1985-09-04 Al alloy material having low coefficient of linear expansion

Country Status (1)

Country Link
JP (1) JPS6256550A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149840A (en) * 1985-12-24 1987-07-03 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPH01159344A (en) * 1987-09-22 1989-06-22 Kobe Steel Ltd Parts for retaining of working means in high speed and high accuracy shifter

Also Published As

Publication number Publication date
JPS6256550A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
US5811058A (en) Heat-resistant magnesium alloy
US4834941A (en) Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy
EP0877831B1 (en) Aluminium alloy powder blends and sintered aluminium alloys
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
US20030029526A1 (en) Quasicrystalline phase-reinforced Mg-based metallic alloy with high warm and hot formability and method of making the same
EP1127950A1 (en) Die casting magnesium alloy
JP2860064B2 (en) Method for producing Ti-Al alloy target material
US5466277A (en) Starting powder for producing sintered-aluminum alloy, method for producing sintered parts, and sintered aluminum alloy
JPS6210237A (en) Aluminum alloy for hot forging
EP0533950B1 (en) Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor
EP0892075B1 (en) Method of manufacturing a piston from an aluminium alloy.
JP2789035B2 (en) Method for producing aluminum / silicon alloy article
US4992117A (en) Heat resistant aluminum alloy excellent in tensile strength, ductility and fatigue strength
JPS6310224B2 (en)
JPS6310225B2 (en)
KR920009037B1 (en) Process for producing extruded aluminium alloys
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JP3336631B2 (en) Aluminum alloy oil pump
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JPS63266004A (en) High strength aluminum alloy powder having heat and wear resistances
JPS62185857A (en) Heat resistant and high strength aluminum alloy
JP3234380B2 (en) Heat resistant aluminum powder alloy
JP3234379B2 (en) Heat resistant aluminum powder alloy