JP3234379B2 - Heat resistant aluminum powder alloy - Google Patents

Heat resistant aluminum powder alloy

Info

Publication number
JP3234379B2
JP3234379B2 JP32037593A JP32037593A JP3234379B2 JP 3234379 B2 JP3234379 B2 JP 3234379B2 JP 32037593 A JP32037593 A JP 32037593A JP 32037593 A JP32037593 A JP 32037593A JP 3234379 B2 JP3234379 B2 JP 3234379B2
Authority
JP
Japan
Prior art keywords
powder
alloy
heat
resistant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32037593A
Other languages
Japanese (ja)
Other versions
JPH07173554A (en
Inventor
彰一 吉野
登志夫 谷
和男 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP32037593A priority Critical patent/JP3234379B2/en
Publication of JPH07173554A publication Critical patent/JPH07173554A/en
Application granted granted Critical
Publication of JP3234379B2 publication Critical patent/JP3234379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐熱Al合金粉末を接
合一体化した耐熱、耐摩耗性を備えた粉末合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant and wear-resistant powder alloy obtained by joining heat-resistant Al alloy powder.

【0002】[0002]

【従来の技術】自動車や自動二輪車等の内燃機関に使用
される部品、例えばピストンや連節棒あるいはブレーキ
ロータ等は、高温下での激しい運動に耐える強度を有す
るものでなければならない。一方、近年、自動車等の軽
量化や省エネルギーの見地から部品の軽量化が望まれて
いる。このため、前記高温強度が要求される部品につい
てもアルミニウム合金が使用されるようになってきてい
る。かかる高温強度に優れる耐熱アルミニウム合金とし
て、Siを13wt%程度以上含有したAl−Si粉末合
金がある。該粉末合金は微細な初晶Siが基地中に分散
しており、耐熱性等の高温特性に優れる。前記Al−S
i粉末合金は、その急冷凝固粉末を単独で、あるいはS
iC粉末等の分散強化材と共に熱間塑性加工されて、粉
末同士が接合一体化されて製造される。
2. Description of the Related Art Parts used in internal combustion engines such as automobiles and motorcycles, such as pistons, connecting rods and brake rotors, must be strong enough to withstand severe movements at high temperatures. On the other hand, in recent years, weight reduction of parts has been desired from the viewpoint of weight reduction of automobiles and the like and energy saving. For this reason, aluminum alloys have come to be used for parts requiring the high-temperature strength. As a heat-resistant aluminum alloy having such high-temperature strength, there is an Al-Si powder alloy containing about 13% by weight or more of Si. The powder alloy has fine primary crystal Si dispersed in the matrix, and is excellent in high temperature characteristics such as heat resistance. The Al-S
The i powder alloy uses the rapidly solidified powder alone or S
Hot plastic working is performed together with a dispersion strengthening material such as iC powder, and the powders are joined together and manufactured.

【0003】また、他の耐熱アルミニウム合金として、
Feを過飽和に含有したAl−Fe合金の急冷凝固粉末
を熱間塑性加工により粉末同士を接合一体化した粉末合
金がある。例えば、特開昭62−47448号公報に
は、Feを10wt%以上過飽和に含有した耐熱アルミ
ニウム合金粉末の熱間押出成形材が開示されている。
Further, as another heat-resistant aluminum alloy,
There is a powder alloy in which rapidly solidified powder of an Al-Fe alloy containing Fe in supersaturation is joined and integrated by hot plastic working. For example, JP-A-62-47448 discloses a hot extruded material of a heat-resistant aluminum alloy powder containing 10% by weight or more of Fe in supersaturation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Al合
金粉末の表面には酸化膜が形成されているため、かかる
耐熱Al合金粉末を一体化するには粉末表面の酸化皮膜
を分断、破砕して基地同士を一体化する必要がある。こ
のため、従来、高価な高出力の熱間押出機や熱間鍛造機
が必要とされていた。一方、熱間加圧成形による場合、
比較的簡単な装置で実施できるが、粉末表面の酸化膜の
ため、粉末同士の接合強度引いては粉末合金の強度が不
足するという問題がある。また、従来のAl合金粉末
は、高温強度に優れるも高温での耐摩耗性が劣るという
問題もあった。
However, since an oxide film is formed on the surface of the Al alloy powder, in order to integrate such heat-resistant Al alloy powder, the oxide film on the powder surface is divided and crushed to form a base. It is necessary to integrate them. For this reason, expensive high-output hot extruders and hot forging machines have conventionally been required. On the other hand, in the case of hot pressing,
Although it can be carried out with a relatively simple apparatus, there is a problem that the strength of the powder alloy is insufficient due to the bonding strength between the powders due to the oxide film on the surface of the powder. Further, the conventional Al alloy powder has a problem that the high-temperature strength is excellent but the wear resistance at high temperature is inferior.

【0005】本発明はかかる問題に鑑みなされたもの
で、高温での粉末同士が容易に接合一体化される、換言
すると圧縮強度が大きく、更には高温での耐摩耗性の優
れた耐熱アルミニウム粉末合金を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and heat-resistant aluminum powder which is easily bonded and integrated at a high temperature, in other words, has a high compressive strength and further has excellent wear resistance at a high temperature. It is intended to provide an alloy.

【0006】[0006]

【課題を解決するための手段】本発明の耐熱アルミニウ
ム粉末合金は、耐熱Al合金粉末と分散強化用粉末とN
i粉末の混合粉末が前記耐熱Al合金の液相開始温度以
上で熱間加工により接合一体化されてなる耐熱アルミニ
ウム粉末合金であって、 前記分散強化用粉末の化学組成
が、重量%でSi:30〜50%、Ni,Cu,Feが
Ni:5〜20%、Cu:3〜15%、Fe:1〜10
%の範囲内で総計:20〜35%を本質的に含有し、残
部が実質的にAlからなるSi−Al系 合金粉末であ
り、かつ耐熱Al合金粉末と、Ni粉末の配合量は、後
者の粉末が混合粉末に対して、20〜50wt%であ
り、分散強化用粉末が前記混合粉末に対して5〜80w
t%であることを特徴とする(請求項1)。
The heat-resistant aluminum powder alloy of the present invention comprises a heat-resistant aluminum alloy powder, a dispersion strengthening powder and N
The mixed powder of the i-powder is lower than the liquid phase onset temperature of the heat-resistant Al alloy
Heat-resistant aluminum that is joined and integrated by hot working
Powder alloy, the chemical composition of the dispersion strengthening powder
Is 30% to 50% by weight of Si, Ni, Cu, and Fe
Ni: 5 to 20%, Cu: 3 to 15%, Fe: 1 to 10
% Essentially within the range of 20-35%, with the balance
Part is a Si-Al-based alloy powder consisting essentially of Al.
The amount of heat-resistant Al alloy powder and Ni powder
Powder is 20 to 50 wt% with respect to the mixed powder.
And the dispersion strengthening powder is 5 to 80 w
t% (claim 1).

【0007】また、本発明の耐熱アルミニウム粉末合金
は、耐熱Al合金粉末の粒度が590μm以下、分散強
化用粉末及びNi粉末の粒度がそれぞれ10μm以下で
ある(請求項2)。
The heat-resistant aluminum powder alloy of the present invention
Means that the particle size of the heat-resistant Al alloy powder is 590 μm or less,
The particle size of powder for chemical conversion and Ni powder is 10 μm or less
(Claim 2).

【0008】[0008]

【作用】耐熱Al合金粉末分散強化用粉末とNi粉末と
の混合粉末を耐熱Al合金粉末の液相開始温度以上で熱
間加工すると、耐熱Al合金粉末の溶融部分とNiとが
反応して、耐熱Al合金の共晶温度以上のNi−Al金
属間化合物が溶融部に分散生成するため、高温強度が向
上する。例えば、耐熱Al合金粉末としてAl−Si合
金粉末を用いた場合、溶融凝固部はSiとNi−Al金
属間化合物からなる。またAl−Fe合金粉末を用いた
場合、Fe3 AlとNi−Al金属間化合物からなる。
このNi−Al金属間化合物の融点はNiAl3 が85
5℃、Ni2 Al3 が1135℃、NiAlが1640
℃、Ni3 Alが1397℃であり、元の耐熱Al合金
の共晶点(Al−Si合金では570℃、Al−Fe合
金では640℃)が消えるため、耐熱性に優れた粉末合
金が得られる。
When the mixed powder of the heat-resistant Al alloy powder dispersion strengthening powder and the Ni powder is hot-worked at a temperature equal to or higher than the liquid phase starting temperature of the heat-resistant Al alloy powder, the molten portion of the heat-resistant Al alloy powder reacts with Ni, Since a Ni-Al intermetallic compound having a temperature equal to or higher than the eutectic temperature of the heat-resistant Al alloy is dispersed and generated in the molten portion, high-temperature strength is improved. For example, when Al-Si alloy powder is used as the heat-resistant Al alloy powder, the melt-solidified portion is made of Si and a Ni-Al intermetallic compound. In the case of using the Al-Fe alloy powder consists of Fe 3 Al and Ni-Al intermetallic compound.
The melting point of the NiAl intermetallic compound is NiAl 3 85
5 ° C., 1135 ° C. for Ni 2 Al 3 , 1640 for NiAl
° C, Ni 3 Al is 1397 ° C, and the eutectic point (570 ° C for Al-Si alloy, 640 ° C for Al-Fe alloy) of the original heat-resistant Al alloy disappears, so that a powder alloy excellent in heat resistance is obtained. Can be

【0009】一方、分散強化用粉末として、本発明では
前記特定組成のSi−Al系合金粉末を用いる。このS
iーAl系合金粉末は、Si、Alをベースとしている
ため、軽量であり、高硬度(Hv700〜1000)で耐
熱耐摩耗性も良好であり、またNi−Al系の耐熱アル
ミナイドの生成により、高温での強度が保持される。更
に、Cu−Al系の硬質化合物が耐摩耗性を向上させる
と共に、530〜750℃程度の広範囲にわたり、極少
量の液相を段階的に溶出する。このため、耐熱Al合金
との接合性も良好であり、高温での潤滑性を発揮する。
該Si−Al系合金粉末の熱間加工温度は好ましくは6
50℃以下とするのがよい。650℃以下では急冷凝固
組織が維持されるが、650℃を越えると組織が変化す
るようになるからである。
On the other hand, in the present invention, a Si-Al alloy powder having the above specific composition is used as the dispersion strengthening powder. This S
Since the i-Al alloy powder is based on Si and Al, it is lightweight, has a high hardness (Hv 700 to 1000), has good heat and wear resistance, and has a Ni-Al heat resistant aluminide, High temperature strength is maintained. Further, the Cu-Al-based hard compound improves wear resistance, and elutes a very small amount of liquid phase stepwise over a wide range of about 530 to 750 ° C. For this reason, the bondability with the heat-resistant Al alloy is good, and the lubrication at high temperatures is exhibited.
The hot working temperature of the Si-Al alloy powder is preferably 6
The temperature is preferably set to 50 ° C. or lower. This is because the rapidly solidified structure is maintained at 650 ° C. or lower, but the structure changes at 650 ° C. or higher.

【0010】以上のことより、熱間加工温度は、液相開
始温度より若干高温に設定するのがよい。あまり高くし
ても効果がなく、金型温度は低い方がよい。以下、Si
−Al系合金粉末の成分限定理由を下記に示す。単位は
重量%である。 Si:30〜50% Siは主として耐摩耗性確保および軽量化のために添加
される。30%未満ではこれらの作用、特に耐摩耗性が
不足し、一方50%を越えると材質が脆くなる。
As described above, the hot working temperature is preferably set slightly higher than the liquid phase starting temperature. There is no effect if the temperature is too high, and the mold temperature should be low. Hereinafter, Si
The reasons for limiting the components of the Al-based alloy powder are shown below. The unit is% by weight. Si: 30 to 50% Si is mainly added for securing wear resistance and reducing the weight. If it is less than 30%, these effects, especially wear resistance, are insufficient, while if it exceeds 50%, the material becomes brittle.

【0011】Ni:5〜20% NiはNiAl、Ni2 Al3 、NiAl3 等のNi−
Al系の耐熱アルミナイドを生成させるために含有され
る。また、耐食性向上に寄与する。5%未満では耐熱ア
ルミナイド量が不足し、一方20%を越えるとコスト高
の要因になると共に合金の融点が高くなり、溶解が困難
になる。 Cu:3〜15% Cuは耐食性向上に寄与するほか、Cu3 Al、CuA
2 等の固体潤滑作用を有する硬質アルミナイドを生成
させるために含有される。3%未満ではアルミナイド量
が不足し、一方、15%を越えるとアルミナイド量が過
多となり、材質が脆化する。
Ni: 5 to 20% Ni is Ni- such as NiAl, Ni 2 Al 3 , NiAl 3 or the like.
It is contained in order to generate an Al-based heat-resistant aluminide. In addition, it contributes to improvement of corrosion resistance. If it is less than 5%, the amount of heat-resistant aluminide will be insufficient, while if it exceeds 20%, the cost will increase and the melting point of the alloy will increase, making it difficult to melt. Cu: 3 to 15% Cu contributes to the improvement of corrosion resistance, Cu 3 Al, CuA
It is contained in order to produce a hard aluminide having a solid lubricating action such as l 2 . If it is less than 3%, the amount of aluminide is insufficient, while if it exceeds 15%, the amount of aluminide becomes excessive and the material becomes brittle.

【0012】Fe:1〜10% FeはNiと同様、耐熱性および熱間強度を向上させる
作用を有する。1%未満ではかかる作用が不足し、一方
10%を越えると脆いFe−Al金属間化合物が多量に
生成し、材質が脆化する。上記Ni、Cu、Fe成分は
総量で20〜35%とされる。20%未満ではNi−A
l系及びCu−Al系の耐熱アルミナイド量が総量とし
て不足するため、優れた高温強度、潤滑作用が期待でき
なくなる。一方、35%を越えると比重が大きくなり、
軽量化が害されると共に、溶解が困難になる。
Fe: 1 to 10% Fe, like Ni, has an effect of improving heat resistance and hot strength. If it is less than 1%, such an effect is insufficient, while if it exceeds 10%, a large amount of brittle Fe-Al intermetallic compound is generated, and the material becomes brittle. The Ni, Cu, and Fe components are 20 to 35% in total. If less than 20%, Ni-A
Since the total amount of l-type and Cu-Al-based heat-resistant aluminides is insufficient, excellent high-temperature strength and lubricating action cannot be expected. On the other hand, if it exceeds 35%, the specific gravity increases,
Weight reduction is impaired and dissolution becomes difficult.

【0013】上記本質的合金成分のほか、合金成分とし
てZr, V, Ti, Ce,Nb,B,Coの1種以上を
総計で1〜5%含有させることができる。これらの成分
は、耐熱性の向上に寄与する。1%未満ではその作用が
ほとんどなく、一方5%を越えると融点が高くなり過ぎ
て、溶解が困難となる。以上の合金成分のほか、残部は
不可避的に混入した不純物とAl、すなわち実質的にA
lである。該Si−Al系合金の急冷凝固粉末は、合金
元素を過飽和に固溶しており、高含有量のSiはその大
部分が0.5〜3μm程度の微細粒子として晶出し、そ
のSi粒子の周りにネットワーク状にAl−Ni,C
u,Feの複合金属間化合物が生成した組織となり基地
の強化が図られている。
In addition to the above essential alloy components, one or more of Zr, V, Ti, Ce, Nb, B and Co can be contained as an alloy component in a total amount of 1 to 5%. These components contribute to improvement in heat resistance. If it is less than 1%, the effect is almost negligible, while if it exceeds 5%, the melting point becomes too high and dissolution becomes difficult. In addition to the above alloy components, the balance is unavoidably mixed with impurities and Al, that is, substantially A
l. The rapidly solidified powder of the Si-Al alloy has a solid solution of the alloy element in a supersaturated state, and most of the high-content Si is crystallized as fine particles of about 0.5 to 3 μm. Al-Ni, C around the network
The structure becomes a structure in which a composite intermetallic compound of u and Fe is formed, and the matrix is strengthened.

【0014】[0014]

【実施例】本発明の原料となる耐熱Al合金粉末やSi
−Al系合金粉末は、原料合金をその融点より50〜2
00℃程度高温に溶解し、水あるいはガスアトマイズ法
や回転水流法等の適宜の粉末製造手段によって、103
〜106 ℃/sec 程度の冷却速度で急冷することによっ
て得られる。かかる急冷により、例えばAl−Fe合金
の場合、θ−FeAl3 が微細に分散したAl合金粉末
が得られる。回転水流法とは、特開平4−17605号
公報に開示されているように、冷却用筒体の内周面に旋
回しながら流下する冷却水層を形成し、該冷却水層に溶
融金属流あるいは該金属流を不活性ガスで噴霧した溶滴
を供給し、これを旋回する冷却液層によって分断し、急
冷凝固させて金属粉末を得る方法である。該製造法によ
ると、平均粒径が200μm というような比較的大きな
粒子でも、105 ℃/sec 以上の冷却速度が容易に得ら
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Heat-resistant Al alloy powder and Si as raw materials of the present invention
-Al-based alloy powder is obtained by melting the raw material alloy by 50 to 2
It is dissolved at a high temperature of about 00 ° C., and is cooled to 10 3 by an appropriate powder production means such as water or gas atomization method or rotary water flow method.
It is obtained by quenching at a cooling rate of about 〜1010 6 ° C./sec. By such rapid cooling, for example, in the case of an Al—Fe alloy, an Al alloy powder in which θ-FeAl 3 is finely dispersed is obtained. The rotating water flow method is, as disclosed in Japanese Patent Application Laid-Open No. 17605/1992, to form a cooling water layer that swirls down on the inner peripheral surface of a cooling cylinder, and the molten metal flow is formed on the cooling water layer. Alternatively, there is provided a method in which droplets obtained by spraying the metal stream with an inert gas are supplied, divided by a rotating cooling liquid layer, and rapidly solidified to obtain metal powder. According to this production method, a cooling rate of 10 5 ° C / sec or more can be easily obtained even with relatively large particles having an average particle size of 200 µm.

【0015】耐熱Al合金粉末としては、Si含有量が
13〜30wt%程度のAl−Si合金粉末や既述の特開
昭62−47448号公報に開示されたAl−Fe合金
粉末など、適宜の高温高強度Al合金粉末を使用するこ
とができる。好ましくは、熱間加工により一体化した後
の引張強さが、300℃において20kgf/mm2
上のものがよい。このような耐熱Al合金として、前記
合金の他、Fe,Mn,Ni,Crからなる遷移金属の
一種又は二種以上を総計で15〜25wt%本質的に含有
し、必要により前記本質的合金成分に加えてMo,V,
Ti,Zr,Coの一種又は二種以上を総計で3wt%以
下含有し、残部が実質的にAlからなるものを例示する
ことができる。尚、Feを含有するAl合金粉末では、
熱間加工後、液相が生成しない温度域(例えば、Feを
38wt%以下含有したAl−Fe合金粉末の場合、50
0〜630℃)で適宜の熱処理を施すことにより、Al
−Ni−Fe金属間化合物を生成させることができ、耐
熱耐摩耗アルミニウム粉末合金が得られる。
Suitable heat-resistant Al alloy powders include Al-Si alloy powder having a Si content of about 13 to 30% by weight and Al-Fe alloy powder disclosed in the above-mentioned JP-A-62-47448. High-temperature, high-strength Al alloy powder can be used. Preferably, it has a tensile strength of 20 kgf / mm 2 or more at 300 ° C. after being integrated by hot working. Such a heat-resistant Al alloy essentially contains, in addition to the above alloy, one or more transition metals of Fe, Mn, Ni, and Cr in a total amount of 15 to 25 wt%, and if necessary, the essential alloy component. In addition to Mo, V,
A material containing one or more of Ti, Zr, and Co in a total amount of 3 wt% or less and the balance substantially consisting of Al can be exemplified. In addition, in the Al alloy powder containing Fe,
After hot working, a temperature range in which a liquid phase is not formed (for example, in the case of Al-Fe alloy powder containing Fe of 38 wt% or less, 50
0 to 630 ° C.) to obtain Al
-Ni-Fe intermetallic compound can be generated, and a heat and wear resistant aluminum powder alloy can be obtained.

【0016】耐熱Al合金粉末とNi粉末との配合量
は、後者の粉末が混合粉末に対して、20〜50wt%
程度がよい。20%wt未満ではNi粉末の接合促進作
用が不足し、一方50wt%を越えると軽量化が損なわ
れるようになる。粉末の粒度は特に規定されないが、通
常、耐熱Al合金粉末は590μm以下、Ni粉末は1
0μm以下のものが使用される。耐摩耗性向上のため、
本発明では分散強化用粉末として、Si−Al系合金粉
末を前記混合粉末に添加する。この粉末の粒度は材料の
均一性を確保するため10μm 以下がよく、またその配
合量は、添加後の混合粉末に対して5〜80wt%程度が
よい。5wt%未満では強化作用が少なく、一方80w
t%を越えると材質が脆くなる。
The compounding amount of the heat-resistant Al alloy powder and the Ni powder is such that the latter powder is 20 to 50 wt% based on the mixed powder.
Good degree. If it is less than 20% by weight, the effect of promoting the bonding of the Ni powder is insufficient, while if it exceeds 50% by weight, the reduction in weight is impaired. Although the particle size of the powder is not particularly limited, usually, the heat-resistant Al alloy powder is 590 μm or less, and the Ni powder is 1 μm or less.
Those having a size of 0 μm or less are used. To improve wear resistance,
In the present invention, a Si-Al alloy powder is added to the mixed powder as a dispersion strengthening powder. The particle size of this powder is preferably 10 μm or less in order to ensure uniformity of the material, and its blending amount is preferably about 5 to 80% by weight based on the mixed powder after addition. If it is less than 5 wt%, the reinforcing effect is small, while 80 w
If it exceeds t%, the material becomes brittle.

【0017】混合粉末の接合一体化手段としては、熱間
押出、熱間鍛造、熱間等方圧加圧、熱間一軸圧縮等の適
宜の熱間加工手段を適用することができる。本発明で
は、Ni粉末の作用によりAl−Ni相が生成し、この
相を介して粉末同士が接合するため、一軸圧縮成形加工
でも容易に成形することができる。尚、熱間加工に供す
るに際し、原料粉末の取扱性を考慮して、予め冷間圧縮
により、予備成形しておいてもよい。次に、本発明の具
体的実施例及び比較例を下記表1に示す。
Appropriate hot working means such as hot extrusion, hot forging, hot isostatic pressing, and hot uniaxial compression can be applied as the means for joining and integrating the mixed powder. In the present invention, an Al-Ni phase is generated by the action of the Ni powder, and the powders are joined to each other via this phase. Therefore, the powder can be easily formed by uniaxial compression molding. In addition, when the material is subjected to hot working, it may be preliminarily formed by cold compression in consideration of handleability of the raw material powder. Next, specific examples and comparative examples of the present invention are shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】<本発明実施例(表1の試料No. 2)> (1) 平均粒径200μmのAl−Si合金粉末(27
%Si、残部Al)、平均粒径5μmのNi粉末、平均
粒径50μmの分散強化用Si−Al系合金粉末(44
%Si、33%Al、4%Fe、7%Cu、12%N
i)を準備し、表1の実施例No. 2に示した配合により
均一に混合して、混合粉末を調製した。単位はいづれも
重量%である。 (2) 混合粉末を同表に示した成形温度で、700MP
aで一軸圧縮(ホットプレス)し、外径φ64mmの成
形体を得た。この成形体の相対密度は99.9%であっ
た。 <比較例(表1の試料No. 1)> この比較例No. 1と本発明実施例No. 2の相違するとこ
ろは、前記No. 1と該実施例No. 2における分散強化用
Si−Al系合金粉末が使用されておらず、主としてA
l−Si粉末、及びNi粉末の含有量の相違のみを示す
ものである。 <比較例(表1の試料No. 3)> この比較例No. 3と本発明実施例No. 2と相違するとこ
ろは、前記No. 3は該実施例No. 2におけるAl−Si
粉末のみを使用したものを示したものである。 (3) これらの成形体から試験片を採取し、室温から4
00℃における圧縮強度を測定した。その結果を表1に
示す。上記表1より、本発明の実施例No. 2及び比較例
No. 1は比較例No. 3に対して、高温圧縮強度が大幅に
向上していることが分かる。 (4) ホットプレス後の本発明の実施例No. 2及び比較
例No. 1の成形体を用いて、EPMA分析した結果、N
2 Al3 が同定された。更に、前記成形体に570℃
で2hr保持後、炉冷する熱処理を施し、得られた試料
を用いてEPMA分析したところ、前記Ni2 Al3
ほか、NiAl3 が同定された。一方、Niは認められ
なかった。これより、Ni粉末部分はNi2 Al3 及び
NiAl3に置き換わったものと推定される。
<Examples of the Present Invention (Sample No. 2 in Table 1)> (1) Al-Si alloy powder having an average particle diameter of 200 μm (27
% Si, balance Al), Ni powder having an average particle diameter of 5 μm, Si-Al alloy powder for dispersion strengthening having an average particle diameter of 50 μm (44
% Si, 33% Al, 4% Fe, 7% Cu, 12% N
i) was prepared and uniformly mixed according to the formulation shown in Example No. 2 of Table 1 to prepare a mixed powder. All units are% by weight. (2) The mixed powder was mixed at the molding temperature shown in the table at 700 MPa.
a) Uniaxial compression (hot pressing) was performed to obtain a molded product having an outer diameter of 64 mm. The relative density of this compact was 99.9%. <Comparative Example (Sample No. 1 in Table 1)> The difference between Comparative Example No. 1 and Example No. 2 of the present invention is that Si- Al alloy powder is not used.
Only the difference between the contents of the l-Si powder and the Ni powder is shown. <Comparative Example (Sample No. 3 in Table 1)> The difference between Comparative Example No. 3 and Example No. 2 of the present invention is that No. 3 is Al-Si in Example No. 2.
It shows the one using only the powder. (3) Test specimens were taken from these compacts, and
The compressive strength at 00 ° C. was measured. Table 1 shows the results. From the above Table 1, it can be seen that Example No. 2 of the present invention and Comparative Example
It can be seen that No. 1 has significantly improved high-temperature compressive strength compared to Comparative Example No. 3. (4) As a result of EPMA analysis using the compacts of Example No. 2 and Comparative Example No. 1 of the present invention after hot pressing, N
i 2 Al 3 was identified. Furthermore, 570 ° C.
After holding for 2 hours at, a heat treatment for furnace cooling was performed, and EPMA analysis was performed using the obtained sample. In addition to Ni 2 Al 3 , NiAl 3 was identified. On the other hand, Ni was not recognized. From this, it is presumed that the Ni powder portion was replaced with Ni 2 Al 3 and NiAl 3 .

【0020】ところで、上記表1における比較例No. 1
及び本発明の実施例No. 2の高温である400℃におけ
る圧縮強度を対比すると、数値的に僅かであるが、前者
の比較例No. 1の方がやや高い。従って両者を対比する
限りにおいて、本発明実施例で使用した分散強化用粉末
(Si−Al系合金粉末)の効果は明らかでない。そこ
で、本発明者らは、高温における耐摩耗性を評価する手
段として摩耗試験後の表面粗度Ra.μmを測定するた
め次の実験を行った結果、表2に示すようなデータを得
た。
Incidentally, Comparative Example No. 1 in Table 1 above was used.
In comparison with the compressive strength of Example No. 2 of the present invention at 400 ° C., which is a high temperature, the former Comparative Example No. 1 is slightly higher in numerical value, but slightly higher. Therefore, as long as the two are compared, the effect of the dispersion strengthening powder (Si-Al-based alloy powder) used in the examples of the present invention is not clear. Therefore, the present inventors have developed a method of evaluating the wear resistance at high temperatures by measuring the surface roughness Ra. As a result of the following experiment for measuring μm, data as shown in Table 2 were obtained.

【0021】[0021]

【表2】 [Table 2]

【0022】以上の表1から本発明実施例No. 2は分散
強化用粉末として特定組成のSi−Al系合金粉末を混
合することにより、比較例No. 1とは高温圧縮強度の点
については僅差であるが、高温耐摩耗性は後者に比し向
上したものが得られた。
From Table 1 above, Example No. 2 of the present invention is different from Comparative Example No. 1 in terms of high-temperature compressive strength by mixing a Si—Al alloy powder having a specific composition as a dispersion strengthening powder. Although the difference is small, high temperature abrasion resistance was improved as compared with the latter.

【0023】[0023]

【発明の効果】以上説明した通り、本発明の耐熱アルミ
ニウム粉末合金は、耐熱Al合金粉末とNi粉末との混
合粉末が前記耐熱Al合金の液相開始温度以上で熱間加
工により接合一体化されてなるので、耐熱Al合金粉末
の溶融部分とNiとが反応して生成した、元の耐熱Al
合金の共晶温度以上の融点をもつNi−Al金属間化合
物により高温強度、耐熱性が向上する。このさい、本発
明では特に前記混合粉末に分散強化用粉末として特定組
成のSi−Al合金粉末を混合することにより、耐熱耐
摩耗性をより一層向上することができる。
As described above, in the heat-resistant aluminum powder alloy of the present invention, the mixed powder of the heat-resistant Al alloy powder and the Ni powder is joined and integrated by hot working at a temperature equal to or higher than the liquid phase starting temperature of the heat-resistant Al alloy. Therefore, the original heat-resistant Al formed by the reaction between the molten portion of the heat-resistant Al alloy powder and Ni
High temperature strength and heat resistance are improved by a Ni-Al intermetallic compound having a melting point equal to or higher than the eutectic temperature of the alloy. At this time, in the present invention, in particular, by mixing a Si—Al alloy powder having a specific composition as the dispersion strengthening powder with the mixed powder, the heat and wear resistance can be further improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長田 和男 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ 技術開発研究所内 (56)参考文献 特開 平1−92329(JP,A) 特開 平1−279701(JP,A) 特開 昭55−19476(JP,A) 特開 昭61−124549(JP,A) 特開 昭63−277728(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuo Nagata 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd. (56) References JP-A-1-92329 (JP, A) JP JP-A-1-279701 (JP, A) JP-A-55-19476 (JP, A) JP-A-61-124549 (JP, A) JP-A-63-277728 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐熱Al合金粉末と分散強化用粉末とN
i粉末の混合粉末が前記耐熱Al合金の液相開始温度以
上で熱間加工により接合一体化されてなる耐熱アルミニ
ウム粉末合金であって、 前記分散強化用粉末の化学組成が、重量%でSi:30
〜50%、Ni,Cu,FeがNi:5〜20%、C
u:3〜15%、Fe:1〜10%の範囲内で総計:2
0〜35%を本質的に含有し、残部が実質的にAlから
なるSi−Al系合金粉末であり、かつ耐熱Al合金粉
末と、Ni粉末の配合量は、後者の粉末が混合粉末に対
して、20〜50wt%であり、分散強化用粉末が前記
混合粉末に対して5〜80wt%であることを特徴とす
る耐熱アルミニウム粉末合金。
1. A heat-resistant Al alloy powder, a dispersion strengthening powder, and N
The mixed powder of the i-powder is lower than the liquid phase onset temperature of the heat-resistant Al alloy
Heat-resistant aluminum that is joined and integrated by hot working
Powder alloy, wherein the chemical composition of the dispersion strengthening powder is 30 wt% Si:
5050%, Ni: Cu, Fe is Ni: 5-20%, C
u: 3 to 15%, Fe: 1 to 10%, total: 2
0-35%, with the balance being substantially from Al
Si-Al alloy powder and heat-resistant Al alloy powder
Powder and the amount of Ni powder are such that the latter powder is
And 20 to 50% by weight, and the powder for dispersion strengthening is
It is characterized in that it is 5 to 80 wt% with respect to the mixed powder.
Heat-resistant aluminum powder alloy.
【請求項2】 耐熱Al合金粉末の粒度が590μm以
下、分散強化用粉末及びNi粉末の粒度がそれぞれ10
μm以下である請求項1に記載した耐熱アルミニウム粉
末合金。
2. The heat-resistant Al alloy powder has a particle size of 590 μm or less.
Below, the particle size of the dispersion strengthening powder and the Ni powder was 10
The heat-resistant aluminum powder according to claim 1, which has a size of not more than μm.
Powder alloy.
JP32037593A 1993-12-20 1993-12-20 Heat resistant aluminum powder alloy Expired - Fee Related JP3234379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32037593A JP3234379B2 (en) 1993-12-20 1993-12-20 Heat resistant aluminum powder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32037593A JP3234379B2 (en) 1993-12-20 1993-12-20 Heat resistant aluminum powder alloy

Publications (2)

Publication Number Publication Date
JPH07173554A JPH07173554A (en) 1995-07-11
JP3234379B2 true JP3234379B2 (en) 2001-12-04

Family

ID=18120775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32037593A Expired - Fee Related JP3234379B2 (en) 1993-12-20 1993-12-20 Heat resistant aluminum powder alloy

Country Status (1)

Country Link
JP (1) JP3234379B2 (en)

Also Published As

Publication number Publication date
JPH07173554A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
US5976214A (en) Slide member of sintered aluminum alloy and method of manufacturing the same
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
US5374295A (en) Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
EP0821072A1 (en) Highly wear-resistant aluminium-based composite alloy and wear-resistant parts
EP1905856B1 (en) Al base alloy excellent in heat resistance, workability and rigidity
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JPS6050138A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JP3234379B2 (en) Heat resistant aluminum powder alloy
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JP2024505349A (en) Powder material with high thermal conductivity
JP2951262B2 (en) Aluminum alloy with excellent high-temperature strength
JP3388476B2 (en) Aluminum-based composite sliding material and method for producing the same
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JP3234380B2 (en) Heat resistant aluminum powder alloy
JPS6244547A (en) Composite aluminum alloy material
US6024806A (en) A1-base alloy having excellent high-temperature strength
JP2000282161A (en) Heat resisting aluminum alloy excellent in toughness, and its manufacture
JPH08134561A (en) Heat resistant powdery aluminum alloy
JPH10137920A (en) Production of brake disk composite material for railway vehicle
JP3230903B2 (en) Heat resistant aluminum powder metal alloy
JPS6310225B2 (en)
Koike et al. Development of SiC-composite-PM aluminum alloy piston
Farooq et al. A Review on Electrical, Thermal and Wear Behaviour of AL6061-Ag Composite
JPH06271967A (en) Composite aluminum alloy material with high strength at high temperature
Ji et al. A review on high stiffness aluminium-based composites and bimetallics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees