JPS62149840A - High strength, heat and wear resistant al alloy - Google Patents

High strength, heat and wear resistant al alloy

Info

Publication number
JPS62149840A
JPS62149840A JP29108585A JP29108585A JPS62149840A JP S62149840 A JPS62149840 A JP S62149840A JP 29108585 A JP29108585 A JP 29108585A JP 29108585 A JP29108585 A JP 29108585A JP S62149840 A JPS62149840 A JP S62149840A
Authority
JP
Japan
Prior art keywords
alloy
strength
wear
heat
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29108585A
Other languages
Japanese (ja)
Inventor
Shojiro Oya
大家 正二郎
Mutsumi Abe
睦 安倍
Takafumi Takebe
武部 貴文
Masahiro Tsukuda
筑田 昌宏
Katsuyuki Yoshikawa
吉川 克之
Tsukasa Shiomi
塩見 司
Hidetoshi Inoue
秀敏 井上
Masaharu Sato
正治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Original Assignee
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI filed Critical ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority to JP29108585A priority Critical patent/JPS62149840A/en
Publication of JPS62149840A publication Critical patent/JPS62149840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high strength, heat and wear resistant Al alloy maintaining its strength even in environment at high temp., having superior strength and wear resistance at ordinary temp. and also having superior hot workability and machinability by adding specific amounts of Si and Cr to Al of further adding other alloying element. CONSTITUTION:An Al-Si alloy having such a high Si content as 12-30wt% as starting material for powder metallurgy is alloyed with 4-10wt% Cr or further alloyed with one or more among 0.5-10wt% Mg, 2-10% Mn, 0.5-10% Fe, 0.5-3% Ni, 0.01-2% Zr and 0.01-2.0% V. An Al alloy having superior strength, wear and heat resistances at high temp. and also having satisfactory formability and machinability is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温環境下において強度低下を招かず、常温強
度及び耐摩耗性が優れ、しかも熱間加工性や切削加工性
等においても優れた特性を発揮する高力耐熱耐摩耗性A
l合金に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention does not cause a decrease in strength in a high-temperature environment, has excellent room temperature strength and wear resistance, and has excellent hot workability, cutting workability, etc. High strength heat resistance and wear resistance A that exhibits its characteristics
This relates to l-alloys.

[従来の技術] 各種車輛においては燃費の向上等の為に怪量化の要請が
強く、エンジンやエアコン用コンプレッサー等の重量部
品をAl合金性とする研究開発が種々なされている。こ
れら部品のAl合金化は燃費改善に止まらず、その熱伝
導率が、鋳鉄よりもはるかに優れている為放熱性か向上
し温度上昇が回避される結果潤滑油の寿命を延ばす等の
効果も得ることができる。
[Prior Art] There is a strong demand for heavier parts in various vehicles in order to improve fuel efficiency, and various research and development efforts have been made to make heavy parts such as engines and air conditioner compressors made of Al alloys. Al alloying these parts not only improves fuel efficiency, but also has effects such as extending the life of lubricating oil as its thermal conductivity is far superior to cast iron, improving heat dissipation and avoiding temperature rises. Obtainable.

Al合金の中では特にSi含有量の高いAl合金が耐摩
耗性に優れ且つ熱膨張率も低いことがら車軸用Al合金
として有望視されている。しかるに従来から開発されて
いる溶解鋳造法による高Si含有Al合金では熱間加工
時の割れや切削加工性及び耐熱性が問題とされており、
これらの改善が解決課題として提示されていた。
Among Al alloys, Al alloys with a particularly high Si content have excellent wear resistance and a low coefficient of thermal expansion, and are therefore considered promising as Al alloys for axles. However, the high Si-containing Al alloys produced by melting and casting methods that have been developed in the past have problems with cracking during hot working, machinability, and heat resistance.
These improvements were presented as issues to be solved.

[発明が解決しようとする問題点コ 上記解決課題のうち熱間加工性及び切削加工性について
はその悪化原因が究明され解決手段も提案されている。
[Problems to be Solved by the Invention] Among the above-mentioned problems to be solved, the causes of deterioration in hot workability and cutting workability have been investigated, and solutions have been proposed.

即ち溶解鋳造法による高Si含有Al合金においては溶
解鋳造時の冷却速度が小さい為に巨大初晶Si粒が晶出
し材料強度が低下して熱間加工時等に割れが発生する。
That is, in high Si-containing Al alloys produced by melting and casting, the cooling rate during melting and casting is slow, so giant primary Si grains crystallize, reducing the strength of the material and causing cracks during hot working.

従)て解決手段としては巨大Si初晶の晶出を防止すべ
く冷却速度を高めることが有効であり、急冷凝固の達成
できる粉末冶金法が適用されるに及んでいる。即ち急冷
凝固法を用いた高Si含有Al粉末合金では初晶Si粒
が巨大化することがなく微細分散される為上述の熱間加
工性や切削加工性の低下といった問題点が解消されるこ
ととなった。また粉末冶金法では従来の溶解鋳造法では
得られなかフた様な高Si含有量を達成することもでき
、高性能新合金の製造も期待されている。
Therefore, as a solution, it is effective to increase the cooling rate in order to prevent the crystallization of giant Si primary crystals, and powder metallurgy methods that can achieve rapid solidification are being applied. In other words, in high-Si-containing Al powder alloys produced using the rapid solidification method, the primary Si grains do not become gigantic and are finely dispersed, which eliminates the above-mentioned problems such as poor hot workability and machinability. It became. Powder metallurgy also makes it possible to achieve a higher Si content than conventional melting and casting methods, and is expected to produce new high-performance alloys.

しかるに耐熱性に関しては上記高Si含有Al粉末合金
も未だ改善の余地があり、殊に前記重量部品が高温霊囲
気中で連続的に使用されることから高温における強度低
下を防止すべく耐熱性の一層優れたAl合金の提供が望
まれている。また車輌等においては高速度化、高性能化
が増々進行しており、耐熱性は勿論のこと強度並びに耐
摩耗性についてもこれまで以上に高性能であるAl合金
が求められている。
However, in terms of heat resistance, there is still room for improvement in the high Si-containing Al powder alloy, and in particular, since the heavy parts are continuously used in high-temperature ashes, heat resistance has to be improved to prevent strength loss at high temperatures. It is desired to provide an even better Al alloy. Furthermore, as vehicles and the like are becoming increasingly faster and more sophisticated, there is a demand for Al alloys that have higher performance than ever in terms of not only heat resistance but also strength and wear resistance.

本発明はこうした事情に着目してなされたものであって
熱間加工性及び切削加工性の良好な急冷凝固法による高
Si含有Al合金合金にあって耐熱性の優れたAl合金
さらに耐熱性だけでなく強度と耐摩耗性の優れたAl合
金をt是供することを目的とするものである。
The present invention has been made in view of these circumstances, and is an Al alloy with high Si content produced by a rapid solidification method that has good hot workability and cutting workability, and an Al alloy with excellent heat resistance. The purpose is to provide an Al alloy with excellent strength and wear resistance.

[問題点を解決するための手段] 上記目的を達成した本発明は、 Si:12〜30零(重量%の意味、以下同じ)Cr:
2〜IO零を含み残部が実質的にAI及び不可避不純物
よりなるものであるに第1の要旨があり、これによって
耐熱性の改善を達成した。又更に下記合金元素群から選
択される1種以上の元素を配合することにより強度と耐
摩耗性の一層の向上を果すことができた。
[Means for Solving the Problems] The present invention, which has achieved the above objects, has the following features: Si: 12 to 30 zero (meaning in weight %, the same applies hereinafter) Cr:
The first feature is that it contains 2 to IO zero and the remainder consists essentially of AI and unavoidable impurities, thereby achieving improvement in heat resistance. Further, by blending one or more elements selected from the following alloying element group, the strength and wear resistance could be further improved.

Mg:0.5〜lO% Mn:  2〜10% F e : 0.5〜10% Ni:015〜3% Zr:0.01〜2% V  :0.01〜2% [作用] 本発明者等は、上記問題について種々検討を重ねた結果
耐熱性に関しては、高温で生成される金属間化合物の安
定性が大きく影響しており、安定性が悪い場合に高温強
度の低下を招くのではないかとの知見を得た。そこで耐
熱性向上の為には(換言すると金属間化合物の安定化の
為には)、AIマトリックス中での拡散速度が小さい元
素の添加が有効であると考え、こうした観点からAl 
 。
Mg: 0.5-10% Mn: 2-10% Fe: 0.5-10% Ni: 015-3% Zr: 0.01-2% V: 0.01-2% [Function] This invention As a result of various studies regarding the above-mentioned problem, researchers have concluded that the stability of intermetallic compounds generated at high temperatures has a large effect on heat resistance, and that poor stability may lead to a decrease in high-temperature strength. I found out that there is no such thing. Therefore, in order to improve heat resistance (in other words, to stabilize intermetallic compounds), we believe that it is effective to add elements that have a low diffusion rate in the AI matrix.
.

−3iをベースにさらに他の合金元素を適正配合し、こ
れにより耐熱性を向上させ、さらに強度と耐摩耗性の一
層の改善を達成した。以下本発明のおける合金元素の種
類並びに配合量を選定した理由を述べることによって本
発明の作用効果を説明する。尚本発明合金は前記説明か
ら明らかであるように粉末冶金法で製造するという技術
の延長上にある。即ち急冷凝固法を適用した粉末冶金法
では(1)各合金元素の固溶限を拡大でき、(2)金属
粒子や各種金属間化合物を微細均一の分散できるという
特長があり、その結果として強度、耐摩耗性熱間加工性
、切削加工性等の諸特性が改善され且つ耐熱性向上元素
(Cr)の微細分散を促進することによって耐熱性の向
上にも寄与するとの期待があり、本発明の目的を達成す
る上で適合性が高い。尚粉末冶金法において急冷凝固時
の冷却速度は102℃/sec以上好ましくは104℃
/sec以上とすることが推奨され、またアトマイズ粉
末に限らず、急冷薄片や急冷薄帯を粉砕して得られる粉
末も適用することができる。
Based on -3i, other alloying elements were appropriately blended, thereby improving heat resistance and achieving further improvements in strength and wear resistance. The effects of the present invention will be explained below by describing the reasons for selecting the types and amounts of alloying elements used in the present invention. As is clear from the above description, the alloy of the present invention is an extension of the technology of manufacturing by powder metallurgy. In other words, the powder metallurgy method that applies the rapid solidification method has the following features: (1) the solid solubility limit of each alloying element can be expanded, and (2) metal particles and various intermetallic compounds can be dispersed finely and uniformly, resulting in improved strength. It is expected that various properties such as wear resistance, hot workability, and cutting workability will be improved, and that the present invention will also contribute to improving heat resistance by promoting fine dispersion of the heat resistance improving element (Cr). It is highly suitable for achieving the objectives of In addition, in the powder metallurgy method, the cooling rate during rapid solidification is 102°C/sec or more, preferably 104°C.
/sec or more is recommended, and not only atomized powder but also powder obtained by crushing quenched flakes or quenched ribbons can be used.

Si:12〜30% Siは12%未満では急冷凝固法によるSi粒子の分散
量が極端に少なくなり、所望の強度及び耐摩耗性を得る
ことができない。一方30%を超えると急冷凝固法を採
用しても初晶Si粒子の巨大化を防止できず、靭性や衝
撃値の低下更には切削加工性の悪化を招くだけで熱間加
工時の成形性も著しく劣化する。さらに加工圧力が著し
く増大し固化成形性も悪くなる。
Si: 12-30% If Si is less than 12%, the amount of Si particles dispersed by the rapid solidification method becomes extremely small, making it impossible to obtain the desired strength and wear resistance. On the other hand, if it exceeds 30%, even if the rapid solidification method is used, it will not be possible to prevent the primary Si particles from becoming large, resulting in a decrease in toughness and impact value, as well as deterioration in machinability and formability during hot working. also deteriorates significantly. Furthermore, processing pressure increases significantly and solidification formability deteriorates.

Cr:2〜10% CrはAl中での拡散速度が小さく、急冷凝固によって
微細に分散した金属間化合物は高温でも粗大化すること
がなく、従って高温下における強度の低下を防ぐ上で顕
著な効果を発揮する。また該Cr系微細金属間化合物は
常温強度や耐摩耗性の著しい向上をもたらす。但しCr
量が2%未満では当該金属間化合物の生成量が少なく所
望の特性を達成できない。一方10%を超えると上記金
属間化合物の粗大化による靭性の低下が発生する。
Cr: 2-10% Cr has a low diffusion rate in Al, and the intermetallic compounds finely dispersed by rapid solidification do not become coarse even at high temperatures. be effective. Further, the Cr-based fine intermetallic compound significantly improves room temperature strength and wear resistance. However, Cr
If the amount is less than 2%, the amount of the intermetallic compound produced is so small that desired characteristics cannot be achieved. On the other hand, if it exceeds 10%, the intermetallic compound becomes coarser and the toughness deteriorates.

Mg、Mn、Fe、Ni、Zr及びVの1諸以上 これらの元素に共通の作用効果は、主として常温及び高
温下における強度の向上並びに微細分散相による耐摩耗
性の向上であり、これらの作用効果を有効に発揮させる
為には、Mg、Fe及びNiについては各々0.5%以
上、Mnについては2%以上、Zrと■については各々
0.01%LJ、 上ノ添加が必要である。しかしMg
、Mn及びFeが各々10%、Nfが3%、Zr及びV
が各々2%を超えると分散相の粗大化を招いて靭性、耐
摩耗性、耐熱性等の諸特性を低下させる。特にMgにつ
いてはSiと反応してMg2Siの金属間化合物を形成
することによって耐摩耗性向上元素であるSiを消費し
て該効果の発現を阻害し、さらに靭性を低下させるとい
う欠点、またMnについてはAl−Mn系巨大化合物を
形成して熱間加工性を低下させるという欠点があり、こ
れらの欠点を防止する意味からも上限値を厳守しなけれ
ばならない。
The common effects of one or more of Mg, Mn, Fe, Ni, Zr, and V are mainly the improvement of strength at room temperature and high temperature, and the improvement of wear resistance due to the finely dispersed phase. In order to effectively exhibit the effect, it is necessary to add 0.5% or more for each of Mg, Fe, and Ni, 2% or more for Mn, and 0.01%LJ each for Zr and ■. . However, Mg
, Mn and Fe are each 10%, Nf is 3%, Zr and V
If each exceeds 2%, the dispersed phase becomes coarser and various properties such as toughness, wear resistance, and heat resistance are deteriorated. In particular, Mg has the disadvantage that it reacts with Si to form an intermetallic compound of Mg2Si, which consumes Si, which is an element that improves wear resistance, inhibits the expression of this effect, and further reduces toughness. has the disadvantage of forming Al--Mn-based giant compounds and deteriorating hot workability, and in order to prevent these defects, the upper limit must be strictly observed.

[実施例] 第1表に示す各種組成のAl合金溶湯を103℃/se
eの冷却速度で急冷凝固し、合金粉末を得た。次にこれ
らを温間にて圧粉成形しさらに押出比14で熱間押出加
工をおこない、20mmすの押出材を得た。次いで各押
出材は、400℃x2hrの熱処理をおこなった。また
比較材として用いた鋳造物A390は500℃X4hr
の溶体化処理後、170℃X10hrの時効処理をおこ
なフた。
[Example] Molten Al alloys having various compositions shown in Table 1 were heated at 103°C/se.
The mixture was rapidly solidified at a cooling rate of e to obtain an alloy powder. Next, these were compacted in a warm state and further hot extruded at an extrusion ratio of 14 to obtain an extruded material of 20 mm. Each extruded material was then heat treated at 400°C for 2 hours. In addition, the cast A390 used as a comparison material was heated at 500°C for 4 hours.
After the solution treatment, an aging treatment was performed at 170°C for 10 hours.

次いでこれらの押出材または鋳物材(A 390)につ
いて、次に示す各試験をおこなった。
Next, the following tests were conducted on these extruded materials or cast materials (A 390).

摩擦摩耗試験 大連式摩擦摩耗試験を次の条件下にておこなった。Friction and wear test The Dalian friction and wear test was conducted under the following conditions.

相手材 :Fe12 摩擦速度 1.97m/sec 摩擦距離:100m ■滑  :なし 荷重  : 2.2kg 摩耗試験後、摩耗痕より摩耗量を測定した。各試料間の
耐摩耗性比較は粉末冶金によるAl−20St(比較材
No、1.1)の摩耗量を1.0としたときの値として
求め、第1表に併記するような結果を得た。
Mating material: Fe12 Friction speed: 1.97 m/sec Friction distance: 100 m ■Slip: None Load: 2.2 kg After the wear test, the amount of wear was measured from the wear marks. The wear resistance comparison between each sample was determined as the value when the wear amount of Al-20St (comparison material No. 1.1) made by powder metallurgy was set to 1.0, and the results shown in Table 1 were obtained. Ta.

室温および高裁引張試験 平行部6m社、標点距離30 amのテストピースを用
い、室温、100℃、200℃、300℃にて引張試験
をおこない、各温度での引張強度および室温伸びを求め
た。それらの結果は第1表に併記する通りである。
Room temperature and high court tensile test Tensile tests were conducted at room temperature, 100°C, 200°C, and 300°C using a test piece with a parallel section of 6 m and a gage length of 30 am, and the tensile strength and room temperature elongation at each temperature were determined. . The results are also listed in Table 1.

No、 1.2.3 (本発明材)とNo、11.14
(比較材)並びにNo、 4.5 (本発明材)とNo
No. 1.2.3 (invention material) and No. 11.14
(comparative material) and No. 4.5 (invention material) and No.
.

16(比較材)を比べると明らかな様に、Crを適正量
(2%以“上)添加することによって高温強度、低温強
度、耐摩耗性を顕著に向上させることができる。一方N
o、 15 (比較材)ではCr添加量が過多である為
に室温における伸びが極端に低下している。またSi添
加量の少ないNo、12(比較材)では耐摩耗性が不十
分であり、一方Si添加量が過多であるNo、13では
室温における伸びの極端な低下が認められる。さらにM
g。
As is clear from the comparison with No. 16 (comparative material), adding an appropriate amount (2% or more) of Cr can significantly improve high temperature strength, low temperature strength, and wear resistance.On the other hand, N
In No. 15 (comparative material), the elongation at room temperature was extremely reduced due to the excessive amount of Cr added. Further, No. 12 (comparative material) with a small amount of Si added has insufficient wear resistance, while No. 13 with an excessive amount of Si added shows an extreme decrease in elongation at room temperature. Further M
g.

Mn、Fe、Ni、Zr及びVの添加効果はNo。The effect of adding Mn, Fe, Ni, Zr and V is No.

4〜10の本発明材から確認され、耐摩耗性、常温強度
、高温強度の一層の向上を得ることができる。しかるに
これら合金元素の配合量が上限値を超えたもの(No、
 17〜19)については金属間化合物の粗大化による
耐摩耗性の低下あるいは伸びの低下が認められる。尚溶
解鋳造法により製造されたA390材(No、20)と
比較すると本発明合金の優秀性が明確に理解される。
This was confirmed from the materials of the present invention Nos. 4 to 10, and further improvements in abrasion resistance, room temperature strength, and high temperature strength can be obtained. However, those in which the blending amount of these alloying elements exceeds the upper limit (No.
Regarding Nos. 17 to 19), a decrease in wear resistance or elongation due to coarsening of the intermetallic compound was observed. In addition, when compared with A390 material (No. 20) manufactured by the melt casting method, the superiority of the present alloy can be clearly understood.

[発明の効果] 本発明は以上の様に構成されており、強度、耐摩耗性と
共に耐熱性が優れ、さらに成形加工性及び切削加工性の
良好なAl合金を提供することができる。
[Effects of the Invention] The present invention is configured as described above, and can provide an Al alloy that has excellent strength, wear resistance, and heat resistance, and also has good formability and cutting workability.

Claims (2)

【特許請求の範囲】[Claims]  (1)Si:12〜30%(重量%の意味,以下同じ
)Cr:2〜10% を含み残部が実貫的にAl及び不可避不純物よりなるも
のであることを特徴とする高力耐熱耐摩耗性Al合金。
(1) Si: 12-30% (weight %, the same applies hereinafter) Cr: 2-10%, with the remainder consisting essentially of Al and inevitable impurities. Abrasive Al alloy.
(2)Si:12〜30% Cr:2〜10% を含む他、更に Mg:0.5〜10% Mn:2〜10% Fe:0.5〜10% Ni:0.5〜3% Zr:0.01〜2% V:0.01〜2% よりなる群から選択される1種以上の合金元素を含み、
残部が実質的にAl及び不可避不純物よりなるものであ
ることを特徴とする高力耐熱耐摩耗性Al合金。
(2) Contains Si: 12-30% Cr: 2-10%, and further includes Mg: 0.5-10% Mn: 2-10% Fe: 0.5-10% Ni: 0.5-3% Contains one or more alloying elements selected from the group consisting of Zr: 0.01-2% V: 0.01-2%,
A high-strength, heat- and wear-resistant Al alloy, wherein the remainder consists essentially of Al and inevitable impurities.
JP29108585A 1985-12-24 1985-12-24 High strength, heat and wear resistant al alloy Pending JPS62149840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29108585A JPS62149840A (en) 1985-12-24 1985-12-24 High strength, heat and wear resistant al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29108585A JPS62149840A (en) 1985-12-24 1985-12-24 High strength, heat and wear resistant al alloy

Publications (1)

Publication Number Publication Date
JPS62149840A true JPS62149840A (en) 1987-07-03

Family

ID=17764243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29108585A Pending JPS62149840A (en) 1985-12-24 1985-12-24 High strength, heat and wear resistant al alloy

Country Status (1)

Country Link
JP (1) JPS62149840A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328841A (en) * 1986-07-21 1988-02-06 Toyo Alum Kk Manufacture of aluminum alloy material and sliding member
JPS6421061A (en) * 1987-07-15 1989-01-24 Kobe Steel Ltd Surface treated steel sheet
CN102808119A (en) * 2012-09-07 2012-12-05 重庆大学 Light high-temperature wear-resistant aluminum alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259829A (en) * 1985-05-10 1986-11-18 Showa Alum Corp Production of wear resistant aluminum alloy extrudate
JPS6256550A (en) * 1985-09-04 1987-03-12 Kubota Ltd Al alloy material having low coefficient of linear expansion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259829A (en) * 1985-05-10 1986-11-18 Showa Alum Corp Production of wear resistant aluminum alloy extrudate
JPS6256550A (en) * 1985-09-04 1987-03-12 Kubota Ltd Al alloy material having low coefficient of linear expansion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328841A (en) * 1986-07-21 1988-02-06 Toyo Alum Kk Manufacture of aluminum alloy material and sliding member
JPS6421061A (en) * 1987-07-15 1989-01-24 Kobe Steel Ltd Surface treated steel sheet
CN102808119A (en) * 2012-09-07 2012-12-05 重庆大学 Light high-temperature wear-resistant aluminum alloy

Similar Documents

Publication Publication Date Title
US4466829A (en) Tungsten carbide-base hard alloy for hot-working apparatus members
JP2697400B2 (en) Aluminum alloy for forging
JPS63157831A (en) Heat-resisting aluminum alloy
US3973952A (en) Heat resistant alloy casting
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPS6342344A (en) Al alloy for powder metallurgy excellent in high temperature strength characteristic
JP3875338B2 (en) Aluminum alloy for piston
JPS62149840A (en) High strength, heat and wear resistant al alloy
JPS60204857A (en) Aluminum alloy and article using same
JPH04323343A (en) Aluminum alloy excellent in wear resistance
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JPH055147A (en) Low thermal expansion aluminum alloy excellent in wear resistance
JPH0762199B2 (en) A1-based alloy
JPS6244547A (en) Composite aluminum alloy material
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JPH04173935A (en) Wear resistant aluminum alloy
JP3355673B2 (en) Heat-resistant aluminum alloy and method for producing the same
JPS6283444A (en) Heat and wear resistant aluminum alloy
JP3179095B2 (en) Valve train members for internal combustion engines
JPH06172903A (en) Aluminum matrix composite with high heat resistance and high wear resistance
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP2693175B2 (en) Aluminum alloy with excellent heat resistance
JP2787703B2 (en) A-l-Si alloy powder forged member with extremely low coefficient of thermal expansion
JPS61186443A (en) High strength, heat and wear resistant al alloy