JPS63101081A - Highly efficient welding method for titanium - Google Patents

Highly efficient welding method for titanium

Info

Publication number
JPS63101081A
JPS63101081A JP24424586A JP24424586A JPS63101081A JP S63101081 A JPS63101081 A JP S63101081A JP 24424586 A JP24424586 A JP 24424586A JP 24424586 A JP24424586 A JP 24424586A JP S63101081 A JPS63101081 A JP S63101081A
Authority
JP
Japan
Prior art keywords
welding
electrode
titanium
tig
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24424586A
Other languages
Japanese (ja)
Other versions
JPH0635063B2 (en
Inventor
Taiji Hase
泰治 長谷
Tadao Ogawa
忠雄 小川
Kiyoshi Sakuma
潔 佐久間
Seiichi Soeda
添田 精一
Masayoshi Kondo
正義 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24424586A priority Critical patent/JPH0635063B2/en
Publication of JPS63101081A publication Critical patent/JPS63101081A/en
Publication of JPH0635063B2 publication Critical patent/JPH0635063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent the occurrence of weld defects and to improve welding efficiency by adding a filler to perform the welding by a preceding electrode and then, performing the fusion welding without filler metal by a multiple electrode TIG welding method by a succeeding electrode. CONSTITUTION:Filler wires 1 are molten and joined by the preceding electrode 2 and a bead 3 formed by the preceding electrode 2 is corrected by the fusion welding without filler metal and made to a satisfactory bead shape 9. Furthermore, when a plasma torch is provided ahead further the preceding electrode and the plasma preheating is performed, the still satisfactory welding can be performed. A satisfactory welded zone is obtained and the working efficiency can be improved by this method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタン及びチタン合金の高能率な多電極TIC
溶接方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a highly efficient multi-electrode TIC made of titanium and titanium alloys.
Regarding welding methods.

[従来の技術] チタン及びチタン合金の溶接としては、現在、実用的な
方法として、TIG溶接やMIG溶接のようなイナート
ガスアーク溶接が採用され、特にTIG溶接が主として
おこなわれている。
[Prior Art] Currently, inert gas arc welding such as TIG welding and MIG welding is used as a practical method for welding titanium and titanium alloys, and TIG welding is mainly used.

チタン及びチタン合金の溶接で問題となるのは、大気に
よる汚染とブローホール及びアンダーカット等の発生で
ある。
Problems in welding titanium and titanium alloys are atmospheric pollution and the occurrence of blowholes, undercuts, etc.

大気による汚染はチタンが活性なる金属なため、大気中
で400℃以上に加熱されると酸化及び窒化が容易に起
り、硬く脆くなり、材質特性を著しく劣化させる現象で
、これを防ぐため、アルゴンガス、ヘリウムガス等のイ
ナートガスで十分なシールをする必要があるため、その
溶接には難しさがある。
Since titanium is an active metal, it easily oxidizes and nitrides when heated above 400℃ in the atmosphere, making it hard and brittle and significantly deteriorating the material properties.To prevent this, argon Welding is difficult because it requires a sufficient seal with an inert gas such as gas or helium gas.

又ブローホール等は不適当な溶接条件、溶接操作、開先
形状、開先面の清浄化等により発生し、ブローホールの
発生により溶接継手特性は劣化する。また溶接能率を向
上させるため入熱量を増大させ溶は込み量の増加を図る
と、ビード形状が悪くなるばかりでなく、アンダーカッ
ト等の欠陥が発生し易くなるため、入熱量を抑えて溶接
するため、極端に能率が低下する。
Further, blowholes and the like occur due to inappropriate welding conditions, welding operations, groove shape, cleaning of the groove surface, etc., and the properties of welded joints deteriorate due to the occurrence of blowholes. In addition, if we try to increase the amount of heat input and the amount of penetration in order to improve welding efficiency, not only will the bead shape deteriorate, but defects such as undercuts are more likely to occur, so it is necessary to weld by reducing the amount of heat input. As a result, efficiency is extremely reduced.

このため厚手材の溶接は施行コストが著しく高くなって
いるのが実態で、チタンの用途拡大の阻害因子の一つと
なっていると云っても過言でない。
For this reason, the actual cost of welding thick materials is extremely high, and it is no exaggeration to say that this is one of the factors inhibiting the expansion of titanium's uses.

これを解決する手段として特開昭56−84172号公
報は、2電極に交互に溶接電流を切換えて流し溶接する
方法で、1プール/2電極による高速溶接方法が記載さ
れている。しかしこの方法は切換タイミングの調整、電
極間のアーク干渉への対応等の高度な技術を要する共に
溶接設備も複雑・高価である。
As a means to solve this problem, Japanese Patent Application Laid-Open No. 56-84172 describes a high-speed welding method using one pool/two electrodes, in which welding is performed by alternately switching the welding current to two electrodes. However, this method requires advanced techniques such as adjusting switching timing and dealing with arc interference between electrodes, and the welding equipment is complicated and expensive.

又特開昭53−56138号公報は、1プール/2電極
にするとともに後行電極によるアークを先行電極による
アーク力とバランスさせて、溶融池を安定化させ、溶接
速度を向上させる方法である。
Furthermore, Japanese Patent Application Laid-Open No. 53-56138 discloses a method for stabilizing the molten pool and improving welding speed by using one pool/two electrodes and balancing the arc from the trailing electrode with the arc force from the leading electrode. .

この方法も、技術的には可能であるが、現場施行等の実
態を考えると、実現は必ずしも容易ではない。
Although this method is technically possible, it is not necessarily easy to realize when considering the actual situation of on-site implementation.

また、従来から溶接作業の効率改善のため、多電極化技
術が出されている。これは2プ一ル/2電極方式により
、先行電極による予熱で後行電極による溶は込みが深く
なって多少溶接速度は速くなし得るが、その効果は小さ
い。
Furthermore, multi-electrode technology has been developed to improve the efficiency of welding work. This is because of the 2-pull/2-electrode method, which allows the welding speed to be increased somewhat by preheating the leading electrode and deepening the weld penetration by the trailing electrode, but the effect is small.

[発明が解決しようとする問題点] 本発明は厚手のチタン及びチタン合金を溶接する多電極
TIG溶接法であって、従来、時として見られたやじり
状の枝打模様やブローホール、アンダーカット等の溶接
欠陥を著しく軽減ないし解消するとともに、バス当りの
溶着量の増加による作業効率を向上させるチタンの高能
率溶接方法に関する。
[Problems to be Solved by the Invention] The present invention is a multi-electrode TIG welding method for welding thick titanium and titanium alloys. The present invention relates to a high-efficiency welding method for titanium that significantly reduces or eliminates welding defects such as, etc., and improves work efficiency by increasing the amount of welding per bus.

[問題点を解決するための手段] 本発明は、チタン及びチタン合金の溶接に際し。[Means for solving problems] The present invention is applicable to welding titanium and titanium alloys.

多電極TIG溶接を採用し、後行電極にナメ付溶接の役
割を持たせて、先行電極でフィラー添加溶接したビード
の形状を修正する機能を持たせることによって、先行電
極による溶接時の規制条件を緩和する方法であって、又
プラズマによる予熱を併せ行うことにより、深い溶は込
みを可能ならしめる高能率な多電極TIG溶接法を提供
するものであり、下記をその要旨とするものである。即
ち(1)チタンのTIG溶接に於いて、先行電極でフィ
ラー添加溶接し後行電極でナメ付溶接することを特徴と
する多電極TIG溶接によるチタンの高能率溶接方法で
あり、又(2)先行電極が複数の先行電極である前記(
1)に記載のチタンの高能率溶接方法であり、又(3)
先行電極の更に先にプラズマトーチを有しプラズマ予熱
することを特徴とする前記(1)及び(2)に記載のチ
タンの高能率溶接方法である。
By adopting multi-electrode TIG welding, and giving the trailing electrode the role of welding with a name, and by giving it the function of correcting the shape of the filler-added welded bead with the leading electrode, the regulatory conditions for welding with the leading electrode can be improved. This method provides a highly efficient multi-electrode TIG welding method that allows deep weld penetration by combining preheating with plasma, and its gist is as follows. . That is, (1) in TIG welding of titanium, it is a high efficiency welding method of titanium by multi-electrode TIG welding, characterized in that filler addition welding is performed using a leading electrode and welding is performed with a filler using a trailing electrode, and (2) The preceding electrode is a plurality of preceding electrodes (
It is a highly efficient titanium welding method described in 1), and also in (3)
The highly efficient titanium welding method described in (1) and (2) above is characterized in that a plasma torch is provided further ahead of the leading electrode and plasma preheating is performed.

[作用、実施例] 第11図はチタン板1を、電極2がフィラーワイヤー4
を用いて溶融接合する、通常使われている単電極TIG
溶接の概略図である。単電極で通常の溶接速度に於いて
は良形状のビードが得られるが、溶接速度を増加すると
溶は込みが浅くなり溶融不安定となり、その結果不整ビ
ードを形成するとともに、ブローホール等の溶接欠陥の
存在もX線透過試験で確認される。
[Function, Examples] FIG. 11 shows a titanium plate 1, an electrode 2 and a filler wire 4.
Commonly used single-electrode TIG that performs fusion bonding using
It is a schematic diagram of welding. A well-shaped bead can be obtained with a single electrode at normal welding speeds, but as the welding speed increases, the penetration becomes shallower and the melting becomes unstable, resulting in the formation of irregular beads and welding problems such as blowholes. The presence of defects is also confirmed by X-ray transmission testing.

第12図〜第14図は上記課題の改善策として従来報告
されているもので、第12図は通常のTIG溶接電極2
の前に先行TIG電極6を設け、予熱することにより溶
は込み深さを増大しようとするものであり、又第13図
は2プ一ル2電極方式で、先行電極による予熱効果とと
もに溶着量の増加が期待できる。第12図および第13
図の方法は、多少溶接速度は速くなし得るが、さらに、
溶接速度を上昇すると不整ビードが発生し、後行アーク
によるビード形状の改善は全く期待できず。
Figures 12 to 14 show previously reported measures to improve the above problem, and Figure 12 shows a normal TIG welding electrode 2.
A leading TIG electrode 6 is provided in front of the electrode to increase the weld penetration depth by preheating. Fig. 13 shows a 2-pull, 2-electrode system, which increases the amount of welding as well as the preheating effect of the leading electrode. can be expected to increase. Figures 12 and 13
Although the method shown in the figure can achieve a somewhat faster welding speed,
When the welding speed is increased, irregular beads occur, and no improvement in bead shape due to trailing arc can be expected.

溶接部の品質上、高速化は不可能であった。第14図は
1プ一ル2電極方式で、溶は込み深さは深くでき高速化
も理論的には可能な方法である。しかしアーク干渉等種
々の技術的課題があり、現場施行の実態を考えると実現
性は必ずしも高いとは言えない。
Due to the quality of the welded parts, it was impossible to increase the speed. FIG. 14 shows a 1-pull, 2-electrode method, which allows deep penetration and is theoretically possible to increase speed. However, there are various technical issues such as arc interference, and considering the actual situation of on-site implementation, it cannot be said that the feasibility is necessarily high.

本発明者等は種々の面からの検討を加え、現場適用が容
易であり且つ高能率、無欠陥の溶接が可能な多電極TI
G溶接方法を見い出した。
The present inventors have investigated various aspects and developed a multi-electrode TI that is easy to apply on-site and enables highly efficient and defect-free welding.
Discovered the G welding method.

第1図は本発明者等による多電tMTIG溶接方法の一
例で、先行電極2による溶着金属ビード3の形状を後行
電極8により、ビード形状を9に示すようにナメ付修正
するものであり、先行電極2は溶着金属の形状を適正に
するための溶接条件制約が緩和されて多溶着量溶接が可
能となり、又後行電極8は溶着金属の形状や品質をナメ
付けで修正するため両電極の相互の作用により高能率で
溶接欠陥のない溶接を実現したものである。第2図及び
第3図は第1図のハーバ切断面図、及び二−二切断面図
であり本発明の多電極TIG溶接方法で形成されるビー
ド形状の例を示したもので、先行電極2で形成されるビ
ード形状が第2図の3のような不整ビードと成ると、従
来の多電極溶接の積層溶接では10の部分に融合不良等
の溶接欠陥が高頻度で発生するが、本発明では後行電極
8でビード形状をナメ付修正する事により第3図の9の
ようにビード形状が平坦化されて溶接欠陥はない。又第
4図は本発明の別の実施態様例で、フィラーワイヤー4
の溶融溶着を単電極で行う第1図の方法では溶接条件の
規制が緩和されても溶着金属量の増には限界があるため
、先行電極を複数2゜2aとし、各々でフィラーワイヤ
ー4,4aの溶融溶接を1プ一ル1電極方式で行うこと
により溶着金属量を増加させ、後行電極8によるナメ付
溶接により、先行電極2aで形成されたビード3の形状
を平坦なビードに修正する事で、より高能率な溶接を可
能ならしめるものである。先行電極2および2aの溶接
電流は同一でもよいが、材料温度の関係等から2と28
の電極では溶は込み深さが異なるため、電極2の電流値
を単電極溶接時の電流値とし、2aの電極の電流値は電
極2の1.0〜1.5倍とし多溶着溶接を行うことがで
きる。
FIG. 1 shows an example of the multi-electric tMTIG welding method by the present inventors, in which the shape of the weld metal bead 3 formed by the leading electrode 2 is corrected by using the trailing electrode 8 to modify the bead shape as shown in 9. , the leading electrode 2 is used to ease the welding condition constraints for optimizing the shape of the welded metal, making it possible to weld a large amount of welded metal, and the trailing electrode 8 is used to correct the shape and quality of the welded metal by naming. The mutual action of the electrodes achieves highly efficient welding without welding defects. FIGS. 2 and 3 are a sectional view of the harbor shown in FIG. If the bead shape formed in step 2 becomes an irregular bead as shown in step 3 in Figure 2, welding defects such as poor fusion will occur frequently at point 10 in conventional multi-electrode lamination welding, but this In the present invention, by modifying the bead shape with the trailing electrode 8, the bead shape is flattened as shown at 9 in FIG. 3, and there are no welding defects. FIG. 4 shows another embodiment of the present invention, in which a filler wire 4
In the method shown in Fig. 1, in which molten welding is performed using a single electrode, there is a limit to the increase in the amount of deposited metal even if regulations on welding conditions are relaxed. The amount of deposited metal is increased by carrying out the fusion welding of 4a in a 1 pull 1 electrode method, and the shape of the bead 3 formed by the leading electrode 2a is corrected to a flat bead by welding with a slant with the trailing electrode 8. This enables more efficient welding. The welding currents of the preceding electrodes 2 and 2a may be the same, but due to the material temperature etc., the welding currents of 2 and 28
Since the weld penetration depth is different for electrodes 2a and 2a, the current value of electrode 2 is the current value for single electrode welding, and the current value of electrode 2a is 1.0 to 1.5 times that of electrode 2 for multi-weld welding. It can be carried out.

第5図〜第7図は第4図のホーホ、ヘーへ、トートの各
切断面図で第4図で示した多電極TIG溶接の各電極で
形成されるビードの断面形状を示したものである。第8
図は本発明の別の構成で、プラズマトーチ11を有する
高能率溶接法である。
Figures 5 to 7 are cross-sectional views of Hoho, Hehe, and Thoth in Figure 4, showing the cross-sectional shape of the bead formed by each electrode of the multi-electrode TIG welding shown in Figure 4. be. 8th
The figure shows another configuration of the present invention, which is a high-efficiency welding method using a plasma torch 11.

公知の高速−高能率溶接法として先行TIG電極に加熱
機能を持たせた多電極TIG溶接法が最近実用化されて
いるが、TIG電極による加熱は平面的な予熱効果はあ
るが加熱深さが浅く厚手材等の予熱には適さない。しか
しプラズマ加熱は大なる溶着量を要求される厚手材の狭
開先の溶接にあって、深部も予熱されるために優位点が
ある。即ち第9図に示すとと<、TIG加熱に比べ高深
度で狭い範囲の加熱が出来るプラズマ加熱の特性を活か
し、最先行部にプラズマ加熱源を設け、最適な予熱効果
を実現せしめ、電極2による溶は込み深さを著しく増大
させ、溶接能率の向上を具現化したものである。
As a well-known high-speed, high-efficiency welding method, a multi-electrode TIG welding method in which the preceding TIG electrode has a heating function has recently been put into practical use, but heating with a TIG electrode has a planar preheating effect, but the heating depth is limited. Not suitable for shallow preheating of thick materials, etc. However, plasma heating has an advantage in welding narrow gaps in thick materials, which requires a large amount of welding, because it preheats deep parts. That is, as shown in FIG. 9, by taking advantage of the characteristics of plasma heating, which allows heating in a narrow range at a deeper depth than TIG heating, a plasma heating source is provided at the leading edge to achieve an optimal preheating effect, and the electrode 2 This material significantly increases the penetration depth and improves welding efficiency.

本発明の詳細な説明した各電極及びプラズマ加熱源は、
直列に配置されたもので、各電極間距離は20〜50m
Taが好ましい。
Each electrode and plasma heating source described in detail of the present invention includes:
They are arranged in series, and the distance between each electrode is 20 to 50 m.
Ta is preferred.

[実施例コ 第1表に、チタンのTIG溶接による1バス溶接時の溶
接条件と溶接能率、溶接品質の例を、従来法と本発明で
比較して示した。開先形状は第10図とした0本発明の
溶接方法は従来の方法に比べて溶着量(g/m1n)を
極めて大きくする事が可能であり、且つ溶接欠陥がない
[Example Table 1 shows examples of welding conditions, welding efficiency, and welding quality during one-bus welding by TIG welding of titanium, comparing the conventional method and the present invention. The groove shape is as shown in FIG. 10. The welding method of the present invention allows the amount of welding (g/m1n) to be extremely large compared to conventional methods, and there is no welding defect.

[発明の効果コ 本発明法の採用により、従来の単電極TIG溶接法に比
べ溶接欠陥が少なく且つ溶接能率を2〜4倍に向上させ
ることができ、又本発明は現場適用性の高い溶接法であ
り、産業上の効果が大きい。
[Effects of the invention] By adopting the method of the present invention, there are fewer welding defects and the welding efficiency can be improved by 2 to 4 times compared to the conventional single electrode TIG welding method. law, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で先行電極が一本で後行電極が一本の例
を示す図。 第2図は第1図の先行電極によるビード形状を示す図。 第3図は第1図の後行電極によるナス付溶接後のビード
形状を示す図。 第4図は本発明で先行電極が二本で後行電極が一本の例
を示す図。 第5図は第4図で最先行電極によるビード形状を示す図
。 第6図は第4図で28電極による二層肉盛り後のビード
形状を示す図。 第7図は第4図で電極8によりナス付溶接後のビード形
状を示す図。 第8図は本発明でプラズマトーチを有する例を示す図。 第9図はTIG電極とプラズマトーチによる加熱部の大
きさを示す図。 第10図は実施例の開先形状を示す図。 第11図は従来の実施例を示す図、第12図は従来の他
の実施例を示す図、第13図は従来の別の実施例を示す
図、第14図は従来の更に異なる実施例を示す図。であ
る。 1:チタン板、2:TIG電極、2a:TIGff!極
、3:肉盛ビード、4:フィラーワイヤ、5:開先、6
:予熱用TIG電極、7:プール、8:ナメ付溶接用T
IG電極、9:ナメ付溶接で平滑化されたビード、10
:溶接欠陥の原因となる箇所、11:プラズマトーチ。
FIG. 1 is a diagram showing an example in which there is one leading electrode and one trailing electrode in the present invention. FIG. 2 is a diagram showing a bead shape formed by the preceding electrode in FIG. 1. FIG. 3 is a diagram showing a bead shape after welding with an eggplant by the trailing electrode in FIG. 1; FIG. 4 is a diagram showing an example in which there are two leading electrodes and one trailing electrode in the present invention. FIG. 5 is a diagram showing a bead shape due to the leading electrode in FIG. 4. FIG. 6 is a diagram showing the bead shape after two-layer build-up using 28 electrodes in FIG. 4. FIG. 7 is a diagram showing the bead shape after welding with eggplant by the electrode 8 in FIG. 4. FIG. 8 is a diagram showing an example of the present invention having a plasma torch. FIG. 9 is a diagram showing the size of the heated part by the TIG electrode and plasma torch. FIG. 10 is a diagram showing the groove shape of the example. Fig. 11 shows a conventional embodiment, Fig. 12 shows another conventional embodiment, Fig. 13 shows another conventional embodiment, and Fig. 14 shows a further different conventional embodiment. Diagram showing. It is. 1: Titanium plate, 2: TIG electrode, 2a: TIGff! Pole, 3: Overlay bead, 4: Filler wire, 5: Bevel, 6
: TIG electrode for preheating, 7: Pool, 8: T for welding with latch
IG electrode, 9: Bead smoothed by tongue welding, 10
: Locations that cause welding defects, 11: Plasma torch.

Claims (3)

【特許請求の範囲】[Claims] (1)チタンのTIG溶接に於いて、先行電極でフィラ
ー添加溶接し後行電極でナメ付溶接することを特徴とす
る多電極TIG溶接によるチタンの高能率溶接方法
(1) A high-efficiency welding method for titanium using multi-electrode TIG welding, which is characterized by performing filler addition welding with a leading electrode and tongue welding with a trailing electrode.
(2)先行電極が複数の先行電極であることを特徴とす
る特許請求の範囲第1項に記載の多電極TIG溶接によ
るチタンの高能率溶接方法
(2) A high-efficiency titanium welding method by multi-electrode TIG welding according to claim 1, characterized in that the leading electrode is a plurality of leading electrodes.
(3)チタンのTIG溶接に於いて、1又は2以上の先
行電極でフィラー添加溶接し後行電極でナメ付溶接する
ことを特徴とする多電極TIG溶接法にあって、先行電
極の更に先にプラズマトーチを有し、プラズマ予熱する
ことを特徴とするチタンの高能率溶接方法
(3) In TIG welding of titanium, there is a multi-electrode TIG welding method in which filler addition welding is performed using one or more leading electrodes and tongue welding is performed using a trailing electrode. A highly efficient titanium welding method characterized by having a plasma torch and plasma preheating.
JP24424586A 1986-10-16 1986-10-16 High efficiency welding method for titanium Expired - Fee Related JPH0635063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24424586A JPH0635063B2 (en) 1986-10-16 1986-10-16 High efficiency welding method for titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24424586A JPH0635063B2 (en) 1986-10-16 1986-10-16 High efficiency welding method for titanium

Publications (2)

Publication Number Publication Date
JPS63101081A true JPS63101081A (en) 1988-05-06
JPH0635063B2 JPH0635063B2 (en) 1994-05-11

Family

ID=17115888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24424586A Expired - Fee Related JPH0635063B2 (en) 1986-10-16 1986-10-16 High efficiency welding method for titanium

Country Status (1)

Country Link
JP (1) JPH0635063B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301376A (en) * 1999-04-05 2000-10-31 General Electric Co <Ge> Heat treatment of weld bead
JP2002001538A (en) * 2000-06-21 2002-01-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for welding of multielectrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301376A (en) * 1999-04-05 2000-10-31 General Electric Co <Ge> Heat treatment of weld bead
JP2002001538A (en) * 2000-06-21 2002-01-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for welding of multielectrode

Also Published As

Publication number Publication date
JPH0635063B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US5140140A (en) Method and apparatus of submerged arc welding with electrodes in tandem
JPH06114587A (en) Butt welding method for thick plates
US3519780A (en) Method of arc welding and building up of parts
JPS63101081A (en) Highly efficient welding method for titanium
JP3189643B2 (en) Single side butt welding method
JP2833279B2 (en) Steel pipe welding method
JPH0428472B2 (en)
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JP3572985B2 (en) Multi-electrode submerged arc welding method
JPS60187476A (en) Narrow gap submerged arc welding method
JPS61266185A (en) Double electrode mig welding method
JP5483553B2 (en) Laser-arc combined welding method
JP2534853B2 (en) High-speed Tig dressing method
JPS61209779A (en) Arc welding method for al-li series alloy
JPS6221479A (en) Laser beam welding method
JPH106010A (en) Steam turbine rotor assembling method
JP3052544B2 (en) Strengthening method of aluminum alloy cast cylinder head
SU563245A1 (en) Method of welding metals and alloys in
JPH07266047A (en) Welding method for manufacture of tube
JPS60177966A (en) Narrow gap submerged arc welding method
JPH042347B2 (en)
JPH0639431A (en) Manufacture of spiral steel tube
JPS60115367A (en) Butt welding method of single vee groove with broad root face to prevent generation of blowhole
JPS61238468A (en) Welding method
JPH11277239A (en) Four-electrode one-side submerged arc welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees