JPS63100364A - Apparatus for forming ultrafine powder film of oxide - Google Patents

Apparatus for forming ultrafine powder film of oxide

Info

Publication number
JPS63100364A
JPS63100364A JP24597486A JP24597486A JPS63100364A JP S63100364 A JPS63100364 A JP S63100364A JP 24597486 A JP24597486 A JP 24597486A JP 24597486 A JP24597486 A JP 24597486A JP S63100364 A JPS63100364 A JP S63100364A
Authority
JP
Japan
Prior art keywords
substrate
ultrafine
vapor
plasma
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24597486A
Other languages
Japanese (ja)
Inventor
Makoto Nagasawa
誠 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24597486A priority Critical patent/JPS63100364A/en
Publication of JPS63100364A publication Critical patent/JPS63100364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a dry-tape fine powder film of oxide having high performance by controlling the temp. of a plasma jet with an induction heating coil and blowing a metallic or semiconductor material in the form of ultrafine powder-like vapor at a prescribed velocity or above to a substrate in a vacuum vessel to form an ultrafine powder film thereon. CONSTITUTION:The metal or semiconductor which is melted by heating to generate the ultrafine powder-like vapor is disposed in a vacuum vapor chamber 1 and the plasma jet is blown thereto. The induction heating coil 6 is provided at the blow port to control the temp. of the plasma jet. The ultrafine particles of the metal or semiconductor are transferred from the vapor chamber 1 to a film forming chamber 2 of a lower pressure through a transfer pipe 7. A high-frequency coil is provided on the outside of the transfer pipe 7 to convert the oxygen supplied from an oxygen introducing pipeline 13 to the plasma. The oxidized vapor is bombarded at the prescribed velocity or above to the substrate 11 in the film forming chamber 2, by which the ultrafine powder film is formed thereon.

Description

【発明の詳細な説明】 (発明の萬する技術分野) この発明は、ガスセンサなどの使用に供される金属ある
いは半導体の酸化物超微粉膜の製造装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to an apparatus for producing ultrafine metal or semiconductor oxide powder films used in gas sensors and the like.

(従来技術とその問題点) 金属酸化物あるいは半導体酸化物の超微粉膜は、近年、
新素材、ガスセンサなどの新機能性材料として注目され
ており、その大半が有機金属から溶液中にて金属あるい
は半導体の酸化物または水酸化物を遊離せしめるアルコ
キシド法などの湿式法で作られている。しかしこのよう
な湿式法でつくられた超微粉は、使用目的に応じ、洗滌
、乾燥のほか、シートに塗布する際にバインダと混ぜあ
わせる混練などの処理を必要とし、多大な時間とエネル
ギとを要していた。このような問題を解決するため、た
とえば、特公昭59−43988号に示されるような、
超微粉の乾式生成、成膜法が提案されている。しかし、
この方法においては、前述のような問題点は解決される
が、他方、(1)金属の加熱蒸発に抵抗加熱を用いてい
ることから融点の高い高融点材料には適さない、(2)
原料金属がおかれる真空容器内にプラズマを発生させる
ための高周波コイルが配されているため、この高周波コ
イルの内側でプラズマ化され金属や半導体の蒸気と結合
して金属や半導体の酸化物や窒化物や炭化物をつくる原
料ガスがコイルの外側でもプラズマ化されて余分な電力
が消費される、(3)蒸発した金属あるいは半導体の超
微粉が高間波コイルに付着する結果、高周波コイルの機
能を低下せしめる、(4)プラズマを発生させるための
高周波コイルが真空容器内に収容されるため真空の容積
が大きくなり、大きい真空機器を必要とする、(5)加
熱溶融により発生した金属あるいは半導体の蒸気中、成
膜には数%しか使用されず残りの蒸気は無駄になる、(
6)超微粉粒子と基板表面との間の付着力が弱い、など
の問題点があった。
(Prior art and its problems) Ultrafine powder films of metal oxides or semiconductor oxides have been developed in recent years.
They are attracting attention as new functional materials such as new materials and gas sensors, and most of them are made using wet methods such as the alkoxide method, which liberates metal or semiconductor oxides or hydroxides from organic metals in solution. . However, depending on the purpose of use, ultrafine powder produced by such a wet method requires processing such as washing, drying, and kneading to mix it with a binder before applying it to a sheet, which takes a lot of time and energy. It was necessary. In order to solve such problems, for example, as shown in Japanese Patent Publication No. 59-43988,
Dry production of ultrafine powder and film formation methods have been proposed. but,
Although this method solves the above-mentioned problems, (1) it is not suitable for high melting point materials because it uses resistance heating to vaporize the metal; (2) it is not suitable for high melting point materials;
A high-frequency coil for generating plasma is placed inside the vacuum container in which the raw metal is placed, so it becomes plasma inside the high-frequency coil and combines with the vapor of the metal or semiconductor to form oxides and nitrides of the metal or semiconductor. The raw material gas that creates substances and carbides is turned into plasma even outside the coil, consuming excess power. (3) The evaporated ultrafine metal or semiconductor powder adheres to the high-frequency coil, and as a result, the function of the high-frequency coil is impaired. (4) The high-frequency coil for generating plasma is housed in a vacuum container, which increases the vacuum volume and requires large vacuum equipment; (5) Metal or semiconductor particles generated by heating and melting Only a few percent of the steam is used for film formation, and the remaining steam is wasted (
6) There were problems such as weak adhesion between the ultrafine powder particles and the substrate surface.

(発明の目的) この発明は前述した問題点に鑑みてなされたもので、高
融点材料にも遣雨が容易であり、かつ小形、高性能にし
て基板への超微粉膜の付着力が強い乾式の酸化物超微粉
膜生成装置を提供することを目的とする。
(Purpose of the invention) This invention was made in view of the above-mentioned problems, and it is easy to apply rain to high melting point materials, is small, has high performance, and has strong adhesion of the ultrafine powder film to the substrate. The purpose of the present invention is to provide a dry type oxide ultrafine powder film generation device.

(発明の要点) この発明は、真空中で金属または半導体を加熱蒸発させ
て、この金属または半導体の蒸気を醗化し、基板上に酸
化物超微粉膜を形成する装置において、数千度のガス温
度が容易に得られるプラズマジェット装置を真空中での
金属あるいは半導体の加熱溶融に利用するとともに、(
1)この加熱溶融によって得られた超微粉からなる蒸気
が所定の速度以上で基板面に衡突するとき、基板上に付
着力の大きい超微粉膜が形成されること、(2)プラズ
マジェットは通常直径が小さくその横断面上の温度分布
が不均一なため、プラズマジェットの照射を受けた金属
または半導体から蒸発する蒸気の蒸発速度がプラズマ横
断面上の位置により異なり全横断面上で一様にはならな
いが、プラズマジェットの吹出し口に誘導加熱コイルを
設けて高周波電流を供給すれば、プラズマジェットは導
電体であることから高周波コイルによって加熱されると
ともに直径が大きくかつ温度分布が均一なプラズマジェ
ットとなり、1次粒子径のそろった酸化物超微粉膜が可
能となること、に着目し、加熱溶融されて超微粉状の蒸
気を発生する金属または半導体が配される第1の真空容
器と、プラズマジェットが吹き出される吹出し口にプラ
ズマジェットの温度を制御する誘導加熱コイルを備え前
記真空容器内に配された金属または半導体を加熱溶融す
るプラズマジェット装置と、この金属または半導体の蒸
気が酸化されてなる超微粉の膜が表面に形成される基板
と該基板が載置される載置台とが配され前記第1の真空
容器より容器内が低い圧力に保たれる第2の真空容器と
、前記第1の真空容器内で前記プラズマジェット装置か
らのプラズマジェットにより加熱溶融されて発生した金
属または半導体の蒸気を前記第1.第2の真空容器間の
圧力差により前記第2の真空容器へ移送する移送管路を
構成するとともに該管路へ酸素を導入するための酸素導
入管路と前記移送管路の外周側に巻かれて該管路へ導入
された酸素をプラズマ化する高周波コイルとを備えたプ
ラズマ酸化部と、前記基板上に前記プラズマ醇化部にお
いて酸化された蒸気を所定の速度以上で衡突させるため
のノズルとを用いて製造装置を構成することにより、高
融点材料にも適用することができ、かつ小形、高性能に
して基板への付着力が強くかつ成膜の均一性に富んだ超
微粉膜の形成可能な製造装置を得ようとするものである
(Summary of the Invention) The present invention is an apparatus that heats and evaporates a metal or semiconductor in a vacuum, liquefies the metal or semiconductor vapor, and forms an ultrafine oxide powder film on a substrate. In addition to using a plasma jet device that can easily obtain a temperature for heating and melting metals or semiconductors in a vacuum,
1) When the vapor made of the ultrafine powder obtained by heating and melting collides with the substrate surface at a predetermined speed or higher, an ultrafine powder film with strong adhesion is formed on the substrate; (2) the plasma jet Since the diameter is usually small and the temperature distribution over the cross section is uneven, the evaporation rate of the vapor evaporated from the metal or semiconductor irradiated by the plasma jet varies depending on the position on the plasma cross section and is uniform over the entire cross section. However, if an induction heating coil is installed at the outlet of the plasma jet and a high-frequency current is supplied, since the plasma jet is a conductor, it will be heated by the high-frequency coil and create a plasma with a large diameter and uniform temperature distribution. Focusing on the fact that it becomes a jet and makes it possible to form an oxide ultrafine powder film with a uniform primary particle size, we developed a first vacuum container in which a metal or semiconductor that is heated and melted to generate ultrafine powder vapor is arranged. a plasma jet device that heats and melts a metal or semiconductor placed in the vacuum container, which is equipped with an induction heating coil for controlling the temperature of the plasma jet at the outlet from which the plasma jet is blown; a second vacuum container, which is provided with a substrate on which a film of oxidized ultrafine powder is formed and a mounting table on which the substrate is placed, and whose interior is maintained at a lower pressure than the first vacuum container; and vapor of metal or semiconductor generated by heating and melting in the first vacuum container by a plasma jet from the plasma jet device. A transfer pipe line for transferring oxygen to the second vacuum container due to the pressure difference between the second vacuum containers and an oxygen introduction pipe line for introducing oxygen into the pipe line; a plasma oxidizing section equipped with a high-frequency coil that converts oxygen introduced into the pipe into plasma; and a nozzle for causing the vapor oxidized in the plasma meltening section to collide with the substrate at a predetermined speed or higher. By configuring the production equipment using The aim is to obtain a manufacturing device that can form

(発明の実施例) 第1図は本発明によって構成される金属または半導体の
酸化物超微粉膜製造装置の一実施例を示す。この装置は
、加熱溶融されて超微粉状の蒸気を発生する金属または
半導体からなる原料5が配された第1の真空容器である
蒸発室1と、プラズマジェットが吹き出される吹出し口
にプラズマジェットを取り巻くように配され高周波電流
が供給されてプラズマジェットを誘導加熱することによ
りプラズマジェットの温度をあげるとともにその横断面
の温度分布を均一にする誘導加熱コイル6を備え蒸発室
1内に配された原料5を加熱溶融するプラズマジェット
装置3と、原料5の加熱溶融によって発生した蒸気が以
下に詳細を説明する方法により酸化されてなる超微粉の
膜が表面に形成される基板11と該基板が載置される水
冷の回転テーブル12とが配され前記蒸発室1より容器
内が低い圧力に保たれる第2の真空容器である成膜室2
と、蒸発室1内で原料5から発生した蒸気を蒸発室1と
成膜室2との間の圧力差により成膜室2へ移送する移送
管路7を構成するとともにこの管路7へ酸素を導入する
ための酸素導入管路13と移送管路7の外周側に巻かれ
てこの管路へ導入された酸素をプラズマ化して活性化し
効率よく蒸気を酸化させる高周波コイル8とを備えたプ
ラズマ酸化部20と、このプラズマ酸化部を構成する移
送管路7の先端部に形成され基板11の表面にプラズマ
辱化部20において酸化された蒸気を所定の速度以上で
衡突させるためのノズルとを用イて構成され、つぎのよ
うな過程により基板上に酸化物超微粉膜が形成される。
(Embodiment of the Invention) FIG. 1 shows an embodiment of a metal or semiconductor oxide ultrafine powder film manufacturing apparatus constructed according to the present invention. This device consists of an evaporation chamber 1, which is a first vacuum container, containing a raw material 5 made of metal or semiconductor that is heated and melted to generate ultrafine powder vapor, and a plasma jet at an outlet from which a plasma jet is blown. The evaporation chamber 1 is equipped with an induction heating coil 6 which is arranged to surround the jet and which increases the temperature of the plasma jet by inductively heating the plasma jet by supplying a high-frequency current and uniformizes the temperature distribution in its cross section. a plasma jet device 3 for heating and melting the raw material 5; a substrate 11 on which a film of ultrafine powder is formed by oxidizing the steam generated by heating and melting the raw material 5 by a method described in detail below; a film-forming chamber 2 which is a second vacuum chamber in which a water-cooled rotary table 12 on which a substrate is placed is arranged, and the pressure inside the chamber is maintained at a lower pressure than that in the evaporation chamber 1;
This forms a transfer pipe 7 that transfers the vapor generated from the raw material 5 in the evaporation chamber 1 to the film formation chamber 2 due to the pressure difference between the evaporation chamber 1 and the film formation chamber 2, and also supplies oxygen to this pipe 7. A high-frequency coil 8 that is wound around the outer circumference of the transfer pipe 7 and activates the oxygen introduced into the pipe to convert it into plasma and efficiently oxidizes the vapor. An oxidizing section 20 and a nozzle formed at the tip of the transfer pipe 7 constituting the plasma oxidizing section for causing the vapor oxidized in the plasma oxidizing section 20 to collide with the surface of the substrate 11 at a predetermined speed or higher. An ultrafine oxide powder film is formed on the substrate through the following process.

蒸発室1内の原料となる金属または半導体を保持するた
めの断熱性セラミックポート4に原料5を入れ、蒸発室
1および成膜室2を排気し、成膜室2を蒸発室1より1
〜2桁程度低い圧力とする。
The raw material 5 is put into the adiabatic ceramic port 4 for holding the raw material metal or semiconductor in the evaporation chamber 1, the evaporation chamber 1 and the film forming chamber 2 are evacuated, and the film forming chamber 2 is separated from the evaporation chamber 1 by 1.
The pressure should be ~2 orders of magnitude lower.

さらにプラズマジェット装置3から、Ar、 Heなど
の不活性ガスやH2のような還元性ガス、あるいはこれ
ら不活性ガスと還元ガスとの混合ガスをプラズマの原料
ガスとするプラズマジェットを原料5に照射するととも
に、誘導加熱コイルにたとえ11300kHzの交流電
流を供給してプラズマジェットを加熱することによりプ
ラズマジェット横断面の温度分布を均一にして原料5を
加熱熔融し、原料5から超微粉状で粒子径のそろった蒸
気を発生させる。この場合、プラズマジェットを発生さ
せるための電源は直流電源として、すなわちプラズマジ
ェット装置を直流トーチとしてプラズマ電流の脈動、従
って蒸気発生の脈動を防止してより均一な成膜を図るよ
うにする。このようにして発生した蒸気は蒸発室1と成
膜室2との圧力差により前記プラズマの原料ガスととも
に石英管7を蒸発室1側から成膜室2側へ流れる。この
石英管7の途中で酸素ガスを酸素導入管路13から前記
蒸気中へ導入して蒸気と混合し、高周波コイルに例えば
13.56 MHz のような高周波電圧を印加すると
、移送管路7を構成する石英管中に蒸気を酸化するため
の高周波プラズマが形成される。この高周波プラズマで
酸化された蒸気は移送管路の先@部に形成されたノズル
9により所定の速度以上の速度の噴流となり、水冷の回
転テーブル12に載面された基板11上に衝突堆積して
基板上に付着力の強い超微粉膜を形成する。なお、基板
11を載置する載置台を水冷の回転テーブルとする理由
はつぎの通りである。すなわち、まず、水冷として基板
を冷却することにより、(1)膜厚のむらを防止するこ
とができる、(2)粒子の大きさのばらつきを防止する
ことができる、(3)iの成長速度を速くすることがで
きる。基板が冷却されていないと膜の成長速度がおそく
なり酸化された超微粉が成膜されずに逃げてしまい、成
膜効率が低下する。つぎに、回転テーブルとすることに
より、ノズルから噴出された、酸化された蒸気の焔が基
板面でゆらいでも、テーブルを回転させながらかつテー
ブルを該テーブルの面内で直線上に移動させることによ
り基板上に一様な成膜を得ることが可能になる。
Furthermore, the raw material 5 is irradiated with a plasma jet from the plasma jet device 3 using an inert gas such as Ar or He, a reducing gas such as H2, or a mixed gas of these inert gases and a reducing gas as the plasma raw material gas. At the same time, by heating the plasma jet by supplying an alternating current of 11,300 kHz to the induction heating coil, the temperature distribution in the cross section of the plasma jet is made uniform, the raw material 5 is heated and melted, and the raw material 5 is turned into particles in the form of ultra-fine powder. Generates steam with uniform diameter. In this case, the power source for generating the plasma jet is a DC power source, that is, the plasma jet device is used as a DC torch to prevent pulsations in the plasma current and, therefore, in vapor generation, thereby achieving more uniform film formation. The vapor thus generated flows from the evaporation chamber 1 side to the film formation chamber 2 side through the quartz tube 7 together with the source gas of the plasma due to the pressure difference between the evaporation chamber 1 and the film formation chamber 2 . Oxygen gas is introduced into the steam from the oxygen introduction pipe 13 in the middle of the quartz tube 7 and mixed with the steam, and when a high frequency voltage such as 13.56 MHz is applied to the high frequency coil, the transfer pipe 7 is A high frequency plasma is formed in the constituent quartz tube to oxidize the vapor. The steam oxidized by this high-frequency plasma becomes a jet stream at a speed higher than a predetermined speed through a nozzle 9 formed at the tip of the transfer pipe, and collides and deposits on the substrate 11 placed on the water-cooled rotary table 12. to form a highly adhesive ultrafine powder film on the substrate. The reason why the mounting table on which the substrate 11 is placed is a water-cooled rotary table is as follows. That is, by cooling the substrate with water, (1) it is possible to prevent uneven film thickness, (2) it is possible to prevent variations in particle size, and (3) the growth rate of i can be reduced. It can be done quickly. If the substrate is not cooled, the growth rate of the film will be slow and the oxidized ultrafine powder will escape without being formed into a film, reducing the film formation efficiency. Next, by using a rotating table, even if the flame of oxidized steam ejected from the nozzle flickers on the substrate surface, the table can be rotated and moved in a straight line within the surface of the table. It becomes possible to obtain uniform film formation on the substrate.

このようにして得られる超微粉膜の膜厚をより正確に制
御するためには第1図中に示すシャッタ1oを用いるが
、膜厚制御のためだけであれば、通常はこのシャッタは
なくてもよい。しかし、このシャッタを用いて基板面へ
の蒸気の衡突を随時阻止することができれば、回転テー
ブルに載置された複数の基板への成膜完了後、別の回転
テーブルに載置された未成膜の複数基板への成膜すなわ
ちバッチ処理が容易に可能になるというメリットが生ず
る。
In order to more accurately control the film thickness of the ultrafine powder film obtained in this way, a shutter 1o shown in Fig. 1 is used, but if the purpose is only to control the film thickness, this shutter is usually omitted. Good too. However, if this shutter could be used to prevent vapor from colliding with the substrate surface at any time, after film formation was completed on multiple substrates placed on a rotary table, unformed films placed on another rotary table could be This has the advantage that films can be easily formed on multiple substrates, that is, batch processing can be easily performed.

この装置で製造した酸化物超微粒子膜を走査電子顕微鏡
で観察したところ、1次粒子径が100〜150Aの一
様な膜であった。
When the ultrafine oxide particle film produced with this apparatus was observed with a scanning electron microscope, it was found to be a film with a uniform primary particle diameter of 100 to 150A.

(発明の効果) 以上に述べたように、本発明によれば、原料の金属ある
いは半導体を加熱蒸発させる熱源としてプラズマジェッ
トを用いたので、融点の高い金属または半導体材料の酸
化物超微粉膜を容易に形成することができる。また本発
明の製造装置によれば、プラズマジェットの吹出し口に
誘導加熱コイルを配し、このコイルに高周波電流を供給
してプラズマジェットを加熱し、これによりプラズマジ
ェットの横断面上の温度分布を均一化するようにしたの
で、金属または半導体材料の照射された範囲からの蒸発
速度を一定にでき、基板上に1次粒子径がそろった酸化
物超微粉膜を形成することができる。さらに、加熱蒸発
した金属あるいは半導体の蒸気と、プラズマ化されて金
属あるいは半導体の蒸気と結合する酸素を含む気体とは
、ともにプラズマ酸化部の移送管路内の内側のみにある
から、従来のように、プラズマ室の外側にも金属あるい
は半導体の蒸気と結合される気体が存在し、このためこ
の気体がプラズマ化されて無駄な電力消費を生ずること
がなくなる。また原因は不明であるが、ある速度以上の
速度で超微粒子を基板表面に衡突させると超微粒子と基
板表面との間にかなり大きな付着力を生ずる。本発明の
製造装置はこの点に着目し、移送管路と基板との間にノ
ズル部を設けることにより超微粒子を高速で基板表面に
衡突させるようにしたので、基板への付着力の強い、金
属あるいは半導体の酸化物超微粒子膜を得ることが可能
となった。
(Effects of the Invention) As described above, according to the present invention, since a plasma jet is used as a heat source to heat and evaporate raw material metal or semiconductor, ultrafine powder film of oxide of metal or semiconductor material with high melting point is formed. Can be easily formed. Further, according to the manufacturing apparatus of the present invention, an induction heating coil is arranged at the outlet of the plasma jet, and a high frequency current is supplied to this coil to heat the plasma jet, thereby controlling the temperature distribution on the cross section of the plasma jet. Since the irradiation is made uniform, the evaporation rate of the metal or semiconductor material from the irradiated area can be kept constant, and an ultrafine oxide powder film with uniform primary particle diameter can be formed on the substrate. Furthermore, both the metal or semiconductor vapor that has been heated and evaporated and the oxygen-containing gas that has been turned into plasma and combined with the metal or semiconductor vapor are only present inside the transfer pipe of the plasma oxidation section. In addition, there is also a gas outside the plasma chamber that is combined with the metal or semiconductor vapor, which prevents this gas from turning into plasma and causing unnecessary power consumption. Furthermore, although the cause is unknown, when ultrafine particles collide with the substrate surface at a speed higher than a certain speed, a considerably large adhesion force is generated between the ultrafine particles and the substrate surface. The manufacturing apparatus of the present invention focuses on this point, and by providing a nozzle section between the transfer pipe and the substrate, the ultrafine particles are made to collide with the substrate surface at high speed, so that they have a strong adhesion force to the substrate. , it has become possible to obtain ultrafine particle films of metal or semiconductor oxides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づいて構成される酸化物超微粉膜製
造装置の一実施例の断面図である。 1:蒸発室(第1の真空容器)、2:成膜室(第2の真
空容器)、3:プラズマジェット装置、5:原料(金属
または半導体)、6:誘導加熱コイル、7:石英¥F(
移送管路)、8:高周波コイル、9:ノズル、10:シ
ャッタ、11:基板、12:回転テーブル(載置台)、
13:配素導入管路、20:プラズマ酸化部。
FIG. 1 is a cross-sectional view of an embodiment of an ultrafine oxide powder film manufacturing apparatus constructed based on the present invention. 1: Evaporation chamber (first vacuum container), 2: Film forming chamber (second vacuum container), 3: Plasma jet device, 5: Raw material (metal or semiconductor), 6: Induction heating coil, 7: Quartz¥ F(
transfer pipe), 8: high frequency coil, 9: nozzle, 10: shutter, 11: substrate, 12: rotary table (mounting table),
13: Arrangement introduction pipe, 20: Plasma oxidation section.

Claims (1)

【特許請求の範囲】 1)加熱溶融されて超微粉状の蒸気を発生する金属また
は半導体が配される第1の真空容器と、プラズマジエツ
トが吹き出される吹出し口にプラズマジエツトの温度を
制御する誘導加熱コイルを備え前記真空容器内に配され
た金属または半導体を加熱溶融するプラズマジエツト装
置と、この金属または半導体の蒸気が酸化されてなる超
微粉の膜が表面に形成される基板と該基板が載置される
載置台とが配され前記第1の真空容器より容器内が低い
圧力に保たれる第2の真空容器と、前記第1の真空容器
内で前記プラズマジエツト装置からのプラズマジエツト
により加熱溶融されて発生した金属または半導体の蒸気
を前記第1、第2の真空容器間の圧力差により前記第2
の真空容器へ移送する移送管路を構成するとともに該管
路へ酸素を導入するための酸素導入管路と前記移送管路
の外周側に巻かれて該管路へ導入された酸素をプラズマ
化する高周波コイルとを備えたプラズマ酸化部と、前記
基板上に前記プラズマ酸化部において酸化された蒸気を
所定の速度以上で衡突させるためのノズルとを備えたこ
とを特徴とする酸化物超微粉膜の製造装置。 2)特許請求の範囲第1項記載の装置において、金属ま
たは半導体を加熱溶融するためのプラズマジエツト装置
は、Ar、Heなどの不活性ガスまたはH_2などの還
元性ガスあるいは前記不活性ガスと還元性ガスとの混合
ガスをプラズマの原料ガスとし、この原料ガスを直流電
圧を用いてプラズマ化する直流トーチであることを特徴
とする酸化物超微粉膜の製造装置。 3)特許請求の範囲第1項記載の装置において、酸化物
超微粉膜が表面に形成される基板が載置される載置台は
該基板を冷却するための冷却機構を備えていることを特
徴とする酸化物超微粉膜の製造装置。 4)特許請求の範囲第1項記載の装置において、酸化物
超微粉膜が表面に形成される基板が載置される載置台は
ノズルと垂直に対向する基板を複数かつ周方向に載置し
て軸まわりに回転しうる回転テーブルを備えるとともに
該テーブルがテーブルの面内で直線方向に移動可能に形
成されていることを特徴とする酸化物超微粉膜の製造装
置。 5)特許請求の範囲第1項記載の装置において、酸化物
超微粉膜が表面に形成される基板が配された第2の真空
容器は基板のノズル側に該基板への酸化された蒸気の衡
突を阻止するためのシヤツタを備えていることを特徴と
する酸化物超微粉膜の製造装置。
[Scope of Claims] 1) A first vacuum container in which a metal or semiconductor that is heated and melted to generate ultrafine powder vapor is placed, and a plasma jet temperature is controlled between a first vacuum container in which a metal or semiconductor that is heated and melted generates ultrafine powder vapor, and an outlet through which the plasma jet is blown out. A plasma jet device is equipped with an induction heating coil to heat and melt the metal or semiconductor placed in the vacuum container, and a film of ultrafine powder is formed on the surface by oxidizing the vapor of the metal or semiconductor. a second vacuum container in which a substrate and a mounting table on which the substrate is placed are arranged, and the inside of the container is maintained at a lower pressure than the first vacuum container; and the plasma jet in the first vacuum container. The metal or semiconductor vapor generated by heating and melting by the plasma jet from the device is transferred to the second vacuum vessel by the pressure difference between the first and second vacuum vessels.
an oxygen introduction pipe for introducing oxygen into the vacuum container; and an oxygen introducing pipe for introducing oxygen into the pipe; an oxide ultrafine powder characterized by comprising: a plasma oxidation section equipped with a high frequency coil for oxidizing the substrate; and a nozzle for causing vapor oxidized in the plasma oxidation section to collide with the substrate at a predetermined speed or higher. Membrane manufacturing equipment. 2) In the apparatus set forth in claim 1, the plasma jet device for heating and melting metals or semiconductors uses an inert gas such as Ar or He, a reducing gas such as H_2, or the inert gas. An apparatus for producing an ultrafine oxide powder film, characterized in that it is a direct current torch that uses a gas mixture with a reducing gas as a raw material gas for plasma, and converts this raw material gas into plasma using a direct current voltage. 3) The apparatus according to claim 1, wherein the mounting table on which the substrate on which the ultrafine oxide powder film is formed is equipped with a cooling mechanism for cooling the substrate. A manufacturing device for ultrafine oxide powder film. 4) In the apparatus according to claim 1, the mounting table on which the substrate on which the ultrafine oxide powder film is formed is mounted with a plurality of substrates facing perpendicularly to the nozzle in the circumferential direction. 1. An apparatus for producing an ultrafine oxide powder film, comprising a rotary table that can rotate around an axis, and the table is movable in a straight line within the plane of the table. 5) In the apparatus set forth in claim 1, the second vacuum vessel in which the substrate on which the ultrafine oxide powder film is formed is disposed is arranged such that the oxidized vapor is directed to the substrate on the nozzle side of the substrate. An apparatus for producing an ultrafine oxide powder film, characterized in that it is equipped with a shutter for preventing collision.
JP24597486A 1986-10-16 1986-10-16 Apparatus for forming ultrafine powder film of oxide Pending JPS63100364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24597486A JPS63100364A (en) 1986-10-16 1986-10-16 Apparatus for forming ultrafine powder film of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24597486A JPS63100364A (en) 1986-10-16 1986-10-16 Apparatus for forming ultrafine powder film of oxide

Publications (1)

Publication Number Publication Date
JPS63100364A true JPS63100364A (en) 1988-05-02

Family

ID=17141601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24597486A Pending JPS63100364A (en) 1986-10-16 1986-10-16 Apparatus for forming ultrafine powder film of oxide

Country Status (1)

Country Link
JP (1) JPS63100364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576593A (en) * 1992-03-19 1996-11-19 Kernforschungszentrum Karlsruhe Gmbh Apparatus for accelerating electrically charged particles
US6472632B1 (en) 1999-09-15 2002-10-29 Nanoscale Engineering And Technology Corporation Method and apparatus for direct electrothermal-physical conversion of ceramic into nanopowder
US6580051B2 (en) 1999-09-15 2003-06-17 Nanotechnologies, Inc. Method and apparatus for producing bulk quantities of nano-sized materials by electrothermal gun synthesis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576593A (en) * 1992-03-19 1996-11-19 Kernforschungszentrum Karlsruhe Gmbh Apparatus for accelerating electrically charged particles
US6472632B1 (en) 1999-09-15 2002-10-29 Nanoscale Engineering And Technology Corporation Method and apparatus for direct electrothermal-physical conversion of ceramic into nanopowder
US6580051B2 (en) 1999-09-15 2003-06-17 Nanotechnologies, Inc. Method and apparatus for producing bulk quantities of nano-sized materials by electrothermal gun synthesis
US6653591B1 (en) 1999-09-15 2003-11-25 Nanotechnologies, Inc. Method and apparatus for direct electrothermal-physical conversion of ceramic into nanopowder

Similar Documents

Publication Publication Date Title
JP4082905B2 (en) Plasma coating surface finishing method and apparatus
KR102314170B1 (en) Methods and apparatus for glass batch processing using dual source cyclonic plasma reactor
JPH04232243A (en) Apparatus for depositing granulated or powdered material on surface of base sheet
GB2175708A (en) Reaction apparatus
JP2007521395A (en) Method of coating a substrate surface using a plasma beam
JPH03505104A (en) Plasma treatment method and plasmatron
JPS63100364A (en) Apparatus for forming ultrafine powder film of oxide
JPH08236293A (en) Microwave plasma torch and plasma generating method
JPS63103804A (en) Apparatus for producing ultrafine powder film of oxide
JP2003328138A (en) Micro-plasma cvd apparatus
JPS61261201A (en) Method for producing metal oxide fine powder and apparatus therefor
JP3647653B2 (en) Cluster generator
JP3372904B2 (en) Film forming method and film forming apparatus
JP3152548B2 (en) High frequency induction plasma deposition equipment
JP2806548B2 (en) Film formation method by thermal plasma evaporation method
JPH09165674A (en) Vacuum coating apparatus
JP2005246339A (en) Method and apparatus for manufacturing nanoparticle
JPH01175231A (en) Ashing
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPH0445254A (en) Formation of sprayed composite coating film
JPH0521193A (en) High-frequency plasma device
JPS62116775A (en) Plasma cvd device
JP2001011638A (en) High frequency induction heating plasma device
JPH0758027A (en) Plasma cvd apparatus
JPS61281866A (en) Method and apparatus for forming film using ultrafine particle beam