JPH0521193A - High-frequency plasma device - Google Patents

High-frequency plasma device

Info

Publication number
JPH0521193A
JPH0521193A JP3168232A JP16823291A JPH0521193A JP H0521193 A JPH0521193 A JP H0521193A JP 3168232 A JP3168232 A JP 3168232A JP 16823291 A JP16823291 A JP 16823291A JP H0521193 A JPH0521193 A JP H0521193A
Authority
JP
Japan
Prior art keywords
plasma
high frequency
frequency plasma
electrode
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3168232A
Other languages
Japanese (ja)
Inventor
Jun Takeuchi
順 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3168232A priority Critical patent/JPH0521193A/en
Publication of JPH0521193A publication Critical patent/JPH0521193A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To heat a material evenly from the upper stream to the downstream of the plasma by providing one side electrode at the upper stream side and at the downstream side of a high-frequency plasma torch respectively, and adding a system connected to a plasma power source which is independent from a high-frequency plasma power source. CONSTITUTION:A high-frequency coil 1 is positioned outside a plasma confinement tube 2, lets flow a high-frequency current fed from a high-frequency power source, and induces an induction current in the plasma by this high-frequency current. This current flows to the surface of the plasma near the high-frequency coil 1, and the plasma is heats by the Joule heating. As a result, an energy is thrown in to the midstream of the plasma through a nozzle. An upper stream side electrode 4 is formed of copper or brass. At the downstream side of the plasma torch, one side electrode 5 is provided. The electrode 4 at the upper stream side and the electrode 5 at the downstream side of the plasma torch which are independent from a power source 3 are connected. A vacuum container 7 is preferable to be insulated from the electrode 5 electrically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導結合型高周波プラ
ズマ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductively coupled high frequency plasma device.

【0002】[0002]

【従来の技術】誘導結合型高周波プラズマ(以下高周波
プラズマ)は、超微粒子の合成、溶射、蒸着、塩化物の
酸化などの分野に用いられている。高周波プラズマは直
流プラズマに比べてプラズマの体積が大きい、プラズマ
の流速が遅いという特徴を有する。このため高周波プラ
ズマにおいては供給した材料の滞留時間が長いという利
点がある。一方高周波プラズマではこの原理上高周波プ
ラズマコイル上流部の中心軸付近では流れが上流に逆流
するという流体力学的特徴がある。この逆流部にガスや
粉末などの原料を吹き込むとプラズマが不安定化する欠
点がある。
2. Description of the Related Art Inductively coupled high frequency plasma (hereinafter referred to as high frequency plasma) is used in fields such as ultrafine particle synthesis, thermal spraying, vapor deposition, and chloride oxidation. The high-frequency plasma has features that the volume of the plasma is larger than that of the direct-current plasma and the flow velocity of the plasma is slow. Therefore, in the high frequency plasma, there is an advantage that the residence time of the supplied material is long. On the other hand, the high-frequency plasma has a hydrodynamic characteristic that the flow reverses upstream near the central axis of the upstream part of the high-frequency plasma coil due to this principle. When a raw material such as gas or powder is blown into this backflow portion, there is a drawback that the plasma becomes unstable.

【0003】この欠点を克服するために高周波プラズマ
トーチを改良することが行われている。第一の方法は高
周波プラズマトーチ内の流れを制御するとともに原料供
給用水冷ノズルをプラズマ中に挿入し、このノズルから
原料を供給することである。この装置の概略図を図2に
示す(特開昭63-58799)。第二の方法は高周波プラズマ
トーチの上流部に補助的なプラズマトーチを設置するこ
とである。補助的なプラズマトーチとして直流非移行型
プラズマトーチを設置するものはハイブリッドプラズマ
と呼ばれ最も古くに開発された。単独の直流非移行型プ
ラズマトーチ8を設置する装置の概略図を図3に示す
(特開昭55-32317)。複数の直流非移行型プラズマトー
チ8を設置する装置を図4に示す(特開昭63−22184
2)。補助的なプラズマトーチとして別個の高周波プラ
ズマトーチ(特開昭61−161138)を設置する方法なども
開発されている。
To overcome this drawback, improvements have been made to high frequency plasma torches. The first method is to control the flow in the high-frequency plasma torch and insert a water-cooling nozzle for supplying raw material into the plasma, and supply the raw material from this nozzle. A schematic diagram of this device is shown in FIG. 2 (Japanese Patent Laid-Open No. 63-58799). The second method is to install an auxiliary plasma torch upstream of the high frequency plasma torch. The one that installs a direct current non-transfer type plasma torch as an auxiliary plasma torch is called a hybrid plasma and was developed in the oldest. FIG. 3 shows a schematic view of an apparatus in which a single DC non-transfer type plasma torch 8 is installed (JP-A-55-32317). FIG. 4 shows an apparatus in which a plurality of DC non-transfer type plasma torches 8 are installed (Japanese Patent Laid-Open No. 63-22184).
2). A method of installing a separate high-frequency plasma torch (Japanese Patent Laid-Open No. 61-161138) as an auxiliary plasma torch has also been developed.

【0004】高周波プラズマを用いた材料プロセスにお
いては上に指摘した欠点に加えもう一つ欠点がある。高
周波プラズマでは流速が遅いためプラズマの上流部及び
中流部で加熱された原料がプラズマの下流部に長く滞留
する間に放射冷却により冷却される。すなわち、適度に
加熱された状態で材料を取り出すことが困難である。上
に述べた改良では高周波プラズマ上流部でのプラズマの
流れや温度分布を対象としている。したがって、第一の
欠点については改良が加えられた。しかし、第二の欠点
については上流部での温度分布の改善はみられるものの
下流部での温度分布が改善されていない。
There is another drawback in the material process using the high frequency plasma in addition to the above-mentioned drawbacks. Since the high-frequency plasma has a low flow velocity, the raw material heated in the upstream portion and the middle-stream portion of the plasma is cooled by radiative cooling while long staying in the downstream portion of the plasma. That is, it is difficult to take out the material while being heated appropriately. The improvements described above are aimed at the plasma flow and temperature distribution in the upstream part of the high-frequency plasma. Therefore, the first drawback has been improved. However, regarding the second drawback, although the temperature distribution in the upstream part is improved, the temperature distribution in the downstream part is not improved.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる現状に
鑑み、プラズマの上流部、中流部及び下流部において材
料を均一に加熱する高周波プラズマ装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above situation, it is an object of the present invention to provide a high frequency plasma device which uniformly heats a material in the upstream portion, the middle flow portion and the downstream portion of plasma.

【0006】[0006]

【課題を解決するための手段】本発明者は上記の目的を
達成するべく種々実験、検討を重ねた結果、本発明に至
った。高周波プラズマ単独では中流部でのみ材料が加熱
される。補助的なプラズマを設置した場合設置した部分
のみしか温度分布が改善されない。そこで上流部及び下
流部が同時に加熱される方法を検討した。移行型アーク
プラズマではプラズマフレーム中も加熱されるが陽極お
よび陰極近傍が集中的に加熱される。これは陽極降下及
び陰極降下により陽極及び陰極近傍で電位落差が大きい
ためである。この移行型アークの陽極及び陰極を高周波
プラズマの上流部及び下流部に配置することで高周波プ
ラズマフレームを加熱するだけでなく上流部及び下流部
を重点的に加熱することが可能であることを思いつき本
発明に至った。
As a result of various experiments and studies conducted by the inventor of the present invention, the present invention has been achieved. With the high-frequency plasma alone, the material is heated only in the midstream portion. When the auxiliary plasma is installed, the temperature distribution is improved only in the installed part. Then, the method of heating the upstream part and the downstream part simultaneously was examined. In the transfer-type arc plasma, heating is performed in the plasma flame as well, but the vicinity of the anode and the cathode is intensively heated. This is because the potential drop is large near the anode and the cathode due to the anode fall and the cathode fall. By arranging the anode and cathode of this transfer arc at the upstream and downstream parts of the high-frequency plasma, it is possible to not only heat the high-frequency plasma flame but also heat the upstream and downstream parts in a focused manner. The present invention has been reached.

【0007】すなわち、本発明は高周波プラズマ装置に
於て、高周波プラズマトーチ上流側に一方の電極を設
け、高周波プラズマトーチ下流側にもう一方の電極を設
けるとともに、前記両電極を高周波プラズマ電源から独
立したプラズマ電源に接続してなる系を付加したことを
特徴とする高周波プラズマ装置である。
That is, according to the present invention, in a high frequency plasma apparatus, one electrode is provided on the upstream side of the high frequency plasma torch, the other electrode is provided on the downstream side of the high frequency plasma torch, and both electrodes are independent from the high frequency plasma power source. The high-frequency plasma device is characterized by adding a system connected to the plasma power source.

【0008】[0008]

【作用】以下に詳細に本発明を説明する。図1を用いて
説明する。図1に示した本発明の高周波プラズマ装置は
高周波プラズマトーチの上流部に陽極を有し高周波プラ
ズマトーチ下流部に陰極を有してて高周波電源とは独立
した直流プラズマ電源に接続した装置である。
The present invention will be described in detail below. This will be described with reference to FIG. The high frequency plasma apparatus of the present invention shown in FIG. 1 is an apparatus which has an anode in the upstream part of the high frequency plasma torch and a cathode in the downstream part of the high frequency plasma torch and is connected to a direct current plasma power supply independent of the high frequency power supply. ..

【0009】高周波プラズマトーチは高周波電流が流れ
る高周波コイル1とプラズマを閉じ込めるためのプラズ
マ閉じ込め管2とからなっている。プラズマ閉じ込め管
2は絶縁体で出来ており高周波により誘導されず、かつ
プラズマがコイルに放電することを防いでいる。高周波
コイル1はプラズマ閉じ込め管2の外部に位置し高周波
電源3から供給される高周波電流を流しこの高周波電流
により誘導電流をプラズマ中に誘起する。誘起される電
流は高周波コイル1近傍のプラズマ表面に流れ、このジ
ュール発熱によりプラズマが加熱される。したがって、
高周波プラズマにおいては高周波コイル近傍のプラズマ
中流部にエネルギーが投下される。
The high frequency plasma torch comprises a high frequency coil 1 through which a high frequency current flows and a plasma confinement tube 2 for confining plasma. The plasma confinement tube 2 is made of an insulator, is not induced by high frequencies and prevents the plasma from discharging into the coil. The high frequency coil 1 is located outside the plasma confinement tube 2, and a high frequency current supplied from a high frequency power source 3 is flown to induce an induction current in the plasma. The induced current flows to the plasma surface in the vicinity of the high frequency coil 1, and the Joule heat heats the plasma. Therefore,
In the high-frequency plasma, energy is dropped in the plasma midstream portion near the high-frequency coil.

【0010】高周波プラズマトーチ上流部にはガスを供
給するためのノズルが設置されておりプラズマにガスを
供給する。高周波プラズマトーチ上流部電極4は銅また
は黄銅などの導電体により構成される必要がある。また
高周波プラズマトーチ上流部電極4は十分に冷却される
必要がある。高周波プラズマトーチの下流部にもう一方
の電極5を設置する。高周波プラズマ装置を成膜プロセ
スに応用する場合には基板ホルダーまたは基板を電極と
することが可能である。電極の形状を環状とし高周波プ
ラズマトーチの直下に設置し、電極の中心部からプラズ
マフレームが吹き抜ける構造とすることも可能である。
A nozzle for supplying gas is installed upstream of the high frequency plasma torch and supplies gas to the plasma. The high frequency plasma torch upstream electrode 4 must be made of a conductor such as copper or brass. Further, the high frequency plasma torch upstream electrode 4 needs to be sufficiently cooled. The other electrode 5 is installed downstream of the high frequency plasma torch. When the high frequency plasma device is applied to the film forming process, the substrate holder or the substrate can be used as the electrode. It is also possible to form the electrode into an annular shape and install it directly below the high-frequency plasma torch so that the plasma flame blows through from the center of the electrode.

【0011】高周波プラズマ電源3とは独立なプラズマ
電源6を高周波プラズマトーチ上流部電極4と高周波プ
ラズマトーチ下流部電極5に接続する。該独立電源6と
しては直流電源を用いるが、交流電源または高周波電源
であってもかまわない。該独立電源6が直流電源である
場合、電極の極性は任意である。すなわち、上流部電極
4を陰極とし下流部電極5を陽極とする組合せであって
も、上流部電極4を陽極とし下流部電極5を陰極とする
組合せであっても良い。
A plasma power source 6 independent of the high frequency plasma power source 3 is connected to the high frequency plasma torch upstream electrode 4 and the high frequency plasma torch downstream electrode 5. Although a DC power supply is used as the independent power supply 6, an AC power supply or a high frequency power supply may be used. When the independent power source 6 is a DC power source, the polarity of the electrodes is arbitrary. That is, the upstream electrode 4 may be a cathode and the downstream electrode 5 may be an anode, or the upstream electrode 4 may be an anode and the downstream electrode 5 may be a cathode.

【0012】真空容器7は下流部電極5と電気的に絶縁
されていることが望ましい。すなわち、真空容器7と下
流部電極5が電気的に接続されている場合、移行型アー
クは下流部電極5でなく真空容器7の高周波プラズマト
ーチ直下流部を電極として放電するからである。以下に
本発明の実施例を示す。
The vacuum vessel 7 is preferably electrically insulated from the downstream electrode 5. That is, when the vacuum container 7 and the downstream electrode 5 are electrically connected, the transitional arc discharges not by the downstream electrode 5 but by the part immediately downstream of the high frequency plasma torch of the vacuum container 7 as an electrode. Examples of the present invention will be shown below.

【0013】[0013]

【実施例】【Example】

(実施例1)図1に示された本発明の装置を用いて下流
部電極5すなわち、基板ホルダー5−2上に設置した基
板5−1を加熱し温度計測を行なった。熱電対により上
記基板5−1の温度を測定した。手順は以下の通りであ
る。真空容器7を真空にする。高周波プラズマトーチ上
流部へノズルからアルゴンを40l/min 供給する。高
周波プラズマ電源3を動作させプラズマを点火する。真
空容器7が大気圧になったら真空容器7を大気開放とす
る。この時、高周波電源における陽極出力条件は、陽極
電圧5kV、陽極電流5Aとする。したがって、陽極出力
は25kWである。この後独立電源6を動作させ移行型ア
ークを高周波プラズマに重畳させる。この時上流部電極
4を陽極とし、下流部電極5である基板5−1及び基板
ホルダー5−2を陰極とした。独立電源6の運転条件は
基板位置によるが出力電圧40V、出力電流40Aであ
り、電力としては1.6kWであり、高周波電源の出力の
1/10以下である。なお、対比のため独立電源6を動
作させない実験も行なった。この時の高周波電源の出力
も25kWとした。
Example 1 Using the apparatus of the present invention shown in FIG. 1, the downstream electrode 5, that is, the substrate 5-1 placed on the substrate holder 5-2 was heated to measure the temperature. The temperature of the substrate 5-1 was measured with a thermocouple. The procedure is as follows. The vacuum container 7 is evacuated. 40 l / min of argon is supplied from the nozzle to the upstream part of the high frequency plasma torch. The high frequency plasma power supply 3 is operated to ignite plasma. When the vacuum container 7 reaches the atmospheric pressure, the vacuum container 7 is opened to the atmosphere. At this time, the anode output condition in the high frequency power supply is an anode voltage of 5 kV and an anode current of 5 A. Therefore, the anode output is 25 kW. After that, the independent power source 6 is operated to superimpose the transfer type arc on the high frequency plasma. At this time, the upstream electrode 4 was used as an anode, and the substrate 5-1 and the substrate holder 5-2 which were the downstream electrodes 5 were used as cathodes. The operating conditions of the independent power source 6 are an output voltage of 40 V and an output current of 40 A, depending on the substrate position, and an electric power of 1.6 kW, which is 1/10 or less of the output of the high frequency power source. For comparison, an experiment in which the independent power source 6 was not operated was also conducted. The output of the high frequency power supply at this time was also set to 25 kW.

【0014】熱電対により測定された温度は時間の経過
とともに上昇し、一定となる。一定となった温度を到達
温度とする。本発明の装置による高周波+移行型アーク
プラズマによる到達温度と高周波プラズマのみによる到
達温度を様々な基板距離において測定した。なお、基板
距離とは高周波プラズマトーチ出口から基板までの距離
をさす。
The temperature measured by the thermocouple rises and becomes constant over time. The temperature that has become constant is defined as the ultimate temperature. The temperature reached by the high frequency + transfer arc plasma and the temperature reached only by the high frequency plasma by the apparatus of the present invention were measured at various substrate distances. The substrate distance means the distance from the high frequency plasma torch exit to the substrate.

【0015】表1にこの結果を示す。1.6kWの移行型
アークを重畳した場合には高周波プラズマのみの場合に
比べて到達温度が高い。さらに対比のため高周波プラズ
マ電源の出力を26.6kWにした場合および25kW高周
波プラズマに4kW直流非移行型アークプラズマを重畳し
た場合についても到達温度を測定した。この結果も表1
に示すが移行型アークを重畳した場合は高周波プラズマ
のみのいずれの場合や非移行型アークを重畳した場合に
比べて到達温度が高い。すなわち、移行型アークを重畳
することがプラズマ下流部を効率よく加熱するため基板
の到達温度が高くなる。
Table 1 shows the results. When the 1.6kW transfer type arc is superposed, the reached temperature is higher than that when only high-frequency plasma is used. Further, for comparison, the ultimate temperature was measured when the output of the high frequency plasma power source was set to 26.6 kW and when the 4 kW non-transfer type arc plasma was superimposed on the 25 kW high frequency plasma. This result is also shown in Table 1.
As shown in Fig. 5, the reached temperature is higher when the transfer type arc is superposed than in the case where only the high frequency plasma is used or when the non-transfer type arc is superposed. That is, the superposition of the transfer type arc efficiently heats the downstream portion of the plasma, so that the temperature reached by the substrate increases.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例2)実施例1に示された移行型ア
ークの効果が逆極性および交流においても見られること
を確かめた。実施例1では下流部電極5を陰極とした
が、下流部電極5を陽極とし上流部電極4を陰極とした
場合、及び独立電源6を交流電源とした場合について到
達温度を測定した。独立電源の出力は1.6kWに調整し
た。交流電源とした場合の周波数は50Hzである。基板
距離は100mmとした。
(Embodiment 2) It was confirmed that the effect of the transfer type arc shown in Embodiment 1 can be seen in the case of reverse polarity and alternating current. In Example 1, the downstream electrode 5 was used as a cathode, but the reached temperature was measured when the downstream electrode 5 was an anode and the upstream electrode 4 was a cathode, and when the independent power source 6 was an AC power source. The output of the independent power supply was adjusted to 1.6kW. The frequency when the AC power supply is used is 50 Hz. The substrate distance was 100 mm.

【0018】表2にこの結果を示す。25kW高周波+
1.6kW移行型アークの場合の到達温度はそれぞれほぼ
等しく、かつ表1に示した26.6kW高周波のみの場合
の到達温度に比して高い。すなわち、いずれの場合にお
いても移行型アークによる高周波プラズマ下流部の加熱
効果が見られた。
Table 2 shows the results. 25kW high frequency +
The reached temperatures in the case of the 1.6 kW transfer type arc are almost equal to each other, and are higher than the reached temperatures in the case of only the 26.6 kW high frequency shown in Table 1. That is, in any case, the effect of heating the high frequency plasma downstream part by the transfer arc was observed.

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例3)図1に示された本発明の高周
波プラズマ装置を用いて溶射を行なった。手順は以下の
通りである。真空容器7を真空にする。高周波プラズマ
トーチ上流部へノズルからアルゴンを40l/min 供給
する。高周波プラズマ電源3を動作させプラズマを点火
する。真空容器7が大気圧になったら真空容器7を大気
開放とする。独立電源6を動作させ移行型アークを高周
波プラズマに重畳させる。この時上流部電極4を陽極と
し、下流部電極5である基板5−1及び基板ホルダー5
−2を陰極とした。重畳されたプラズマにより基板5−
1を加熱したのち、プラズマトーチ上流部から粉末を供
給し溶射した。溶射中の基板5−1が過熱される様であ
れば溶射前または溶射中に移行型アークを停止すること
も可能である。しかし、溶射中のプラズマ中の温度分布
を改善するためには移行型アーク及び独立電源6を溶射
前及び溶射中に動作することが必要である。
(Example 3) Thermal spraying was carried out using the high frequency plasma apparatus of the present invention shown in FIG. The procedure is as follows. The vacuum container 7 is evacuated. 40 l / min of argon is supplied from the nozzle to the upstream part of the high frequency plasma torch. The high frequency plasma power supply 3 is operated to ignite plasma. When the vacuum container 7 reaches the atmospheric pressure, the vacuum container 7 is opened to the atmosphere. The independent power source 6 is operated to superimpose the transfer type arc on the high frequency plasma. At this time, the upstream electrode 4 serves as an anode, and the downstream electrode 5 includes the substrate 5-1 and the substrate holder 5.
-2 was used as the cathode. Substrate 5-by the superposed plasma
After heating No. 1, powder was supplied from the upstream part of the plasma torch and sprayed. If the substrate 5-1 during thermal spraying is overheated, it is possible to stop the transfer arc before or during thermal spraying. However, in order to improve the temperature distribution in the plasma during spraying, it is necessary to operate the transfer arc and the independent power source 6 before and during spraying.

【0021】粒径が60〜80,80〜100,100
〜120ミクロンのTi粉体を原料として溶射を行な
い、溶射皮膜の密度を測定した。高周波プラズマのみの
場合、高周波プラズマに直流非移行型アークを重畳した
場合、本発明に示される様に高周波プラズマに移行型ア
ークを重畳した場合の比較を表3に示す。
Particle sizes of 60-80, 80-100, 100
Thermal spraying was performed using Ti powder of 120 micron as a raw material, and the density of the sprayed coating was measured. Table 3 shows a comparison between the case of only the high frequency plasma, the case of superposing the direct current non-transfer type arc on the high frequency plasma, and the case of superposing the transfer type arc on the high frequency plasma as shown in the present invention.

【0022】[0022]

【表3】 [Table 3]

【0023】以上から本発明の装置を用いて移行型アー
クを高周波プラズマに重畳する方法で溶射した場合には
いかなる原料粒径であっても高周波プラズマ溶射法より
も高密度の皮膜が得られる。これは本発明の高周波プラ
ズマ装置では上流部、中流部及び下流部において材料を
均一に加熱するためであり、また高周波プラズマ溶射法
では中流部での加熱が中心であるためであり、高周波プ
ラズマ+非移行型アークでは上流部及び中流部での加熱
が中心であるため下流部では材料が冷却されるからであ
る。
From the above, when the apparatus of the present invention is used to perform thermal spraying by a method of superposing a transfer type arc on a high frequency plasma, a coating having a higher density than that of the high frequency plasma spraying method can be obtained with any raw material particle size. This is because the high-frequency plasma apparatus of the present invention uniformly heats the material in the upstream portion, the middle-flow portion, and the downstream portion, and in the high-frequency plasma spraying method, the heating in the middle-flow portion is the center of the high-frequency plasma + This is because in the non-transfer type arc, the heating is mainly performed in the upstream portion and the middle-flow portion, so that the material is cooled in the downstream portion.

【0024】[0024]

【発明の効果】本発明の装置により、プラズマの上流
部、中流部及び下流部において材料を均一に加熱する高
周波プラズマを発生することが可能となった。これによ
り高周波プラズマを工業的に運転することが可能とな
り、産業上の発展に貢献するところきわめて大である。
With the apparatus of the present invention, it is possible to generate high-frequency plasma that uniformly heats the material in the upstream portion, the midstream portion, and the downstream portion of the plasma. As a result, it becomes possible to industrially operate the high-frequency plasma, and it is extremely large that it contributes to industrial development.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高周波プラズマ装置を示す正面断面図
である。
FIG. 1 is a front sectional view showing a high-frequency plasma device of the present invention.

【図2】従来の高周波プラズマ装置を示す正面断面図で
ある。
FIG. 2 is a front sectional view showing a conventional high-frequency plasma device.

【図3】従来の単独の直流非移行型プラズマを高周波プ
ラズマトーチ上流部に設置した装置を示す正面断面図で
ある。
FIG. 3 is a front sectional view showing an apparatus in which a conventional single DC non-transfer type plasma is installed upstream of a high frequency plasma torch.

【図4】従来の複数の直流非移行型プラズマを高周波プ
ラズマトーチ上流部に設置した装置を示す正面断面図で
ある。
FIG. 4 is a front sectional view showing an apparatus in which a plurality of conventional DC non-transfer type plasmas are installed in an upstream part of a high frequency plasma torch.

【符号の説明】[Explanation of symbols]

1…高周波コイル 2…プラズマ閉じこめ管 3…高周波電源 4…高周波プラズマトーチ上流部電極 5…高周波プラズマトーチ下流部電極 6…移行型アーク電源 7…真空容器 8…直流非移行型プラズマトーチ 9…直流電源 10…原料供給用ノズル DESCRIPTION OF SYMBOLS 1 ... High frequency coil 2 ... Plasma confinement tube 3 ... High frequency power source 4 ... High frequency plasma torch upstream electrode 5 ... High frequency plasma torch downstream electrode 6 ... Transfer type arc power supply 7 ... Vacuum container 8 ... DC non-transfer type plasma torch 9 ... DC Power supply 10 ... Raw material supply nozzle

Claims (1)

【特許請求の範囲】 【請求項1】 高周波プラズマ装置に於て、高周波プラ
ズマトーチ上流側に一方の電極を設け、かつ前記高周波
プラズマトーチ下流側にもう一方の電極を設けるととも
に、前記両電極を高周波プラズマ電源から独立したプラ
ズマ電源に接続してなる系を付加したことを特徴とする
高周波プラズマ装置。
Claim: What is claimed is: 1. In a high frequency plasma device, one electrode is provided on the upstream side of the high frequency plasma torch, and the other electrode is provided on the downstream side of the high frequency plasma torch. A high-frequency plasma device characterized in that a system connected to a plasma power source independent of the high-frequency plasma power source is added.
JP3168232A 1991-07-09 1991-07-09 High-frequency plasma device Withdrawn JPH0521193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168232A JPH0521193A (en) 1991-07-09 1991-07-09 High-frequency plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168232A JPH0521193A (en) 1991-07-09 1991-07-09 High-frequency plasma device

Publications (1)

Publication Number Publication Date
JPH0521193A true JPH0521193A (en) 1993-01-29

Family

ID=15864228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168232A Withdrawn JPH0521193A (en) 1991-07-09 1991-07-09 High-frequency plasma device

Country Status (1)

Country Link
JP (1) JPH0521193A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264296A (en) * 1994-11-01 1996-10-11 Applied Materials Inc Reactive ion etching inductively reinforced
EP0742577A2 (en) * 1995-05-08 1996-11-13 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
JP2011049103A (en) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd Plasma generation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264296A (en) * 1994-11-01 1996-10-11 Applied Materials Inc Reactive ion etching inductively reinforced
EP0742577A2 (en) * 1995-05-08 1996-11-13 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
US5710486A (en) * 1995-05-08 1998-01-20 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
EP0742577A3 (en) * 1995-05-08 1999-01-13 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
US6020686A (en) * 1995-05-08 2000-02-01 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
JP2011049103A (en) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd Plasma generation method

Similar Documents

Publication Publication Date Title
CA2144834C (en) Method and apparatus for generating induced plasma
US5369336A (en) Plasma generating device
US7232975B2 (en) Plasma generators, reactor systems and related methods
JPH04232243A (en) Apparatus for depositing granulated or powdered material on surface of base sheet
JP2002231498A (en) Composite torch type plasma generating method and device
JPH0521193A (en) High-frequency plasma device
JP2527150B2 (en) Microwave thermal plasma torch
JP3662621B2 (en) Induction plasma generation method and apparatus
JP2989555B2 (en) Method of melting radioactive solid waste
US6313429B1 (en) Dual mode plasma arc torch for use with plasma arc treatment system and method of use thereof
US7880119B2 (en) One sided electrode for manufacturing processes especially for joining
KR101147349B1 (en) Plasma processing equipment with a leakage current transformer
KR101721565B1 (en) Induction Plasma Torch with Dual Frequency Power and Nono-sized Particles Production Apparatus using the Same
US4414672A (en) Plasma-arc furnace
JP2779000B2 (en) Induction plasma generator
JPH05170408A (en) Production of aluminum nitride
JPH0713290B2 (en) Thermal spray torch
US1947267A (en) Heating process and apparatus
JPS63100364A (en) Apparatus for forming ultrafine powder film of oxide
JPH05315094A (en) Plasma torch
JP3819514B2 (en) Inductively coupled plasma device
JPH01145309A (en) Production of metallic nitride and device therefor
JPH0367496A (en) Induction plasma generation device
JPH03272600A (en) Method and device for generating heat plasma jet
JP2001011638A (en) High frequency induction heating plasma device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008