JP2527150B2 - Microwave thermal plasma torch - Google Patents

Microwave thermal plasma torch

Info

Publication number
JP2527150B2
JP2527150B2 JP1192372A JP19237289A JP2527150B2 JP 2527150 B2 JP2527150 B2 JP 2527150B2 JP 1192372 A JP1192372 A JP 1192372A JP 19237289 A JP19237289 A JP 19237289A JP 2527150 B2 JP2527150 B2 JP 2527150B2
Authority
JP
Japan
Prior art keywords
torch
plasma
gas
microwave
thermal plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1192372A
Other languages
Japanese (ja)
Other versions
JPH0357199A (en
Inventor
豊信 吉田
好孝 光田
和夫 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP1192372A priority Critical patent/JP2527150B2/en
Publication of JPH0357199A publication Critical patent/JPH0357199A/en
Application granted granted Critical
Publication of JP2527150B2 publication Critical patent/JP2527150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高効率で高純度の物質を合成するためのマ
イクロ波熱プラズマ・トーチに関するものであり、とく
にセラミックスやダイヤモンドを初めとする新素材の生
成や、新しい応用分野の開拓を目標とする。
TECHNICAL FIELD The present invention relates to a microwave thermal plasma torch for synthesizing a highly efficient and highly pure substance, and particularly to a new type including ceramics and diamond. The goal is to generate materials and develop new application fields.

〔従来の技術〕[Conventional technology]

マイクロ波プラズマは、直流や高周波によるプラズマ
に比べて電子密度が高く反応性も高いと言われながら、
発生領域が非常に限られているために、熱プラズマ反応
には応用されていない。
While it is said that microwave plasma has higher electron density and higher reactivity than plasma generated by direct current or high frequency,
It has not been applied to thermal plasma reactions due to the very limited generation area.

大気圧下でのマイクロ波熱プラズマ発生法には、幾つ
かの報告がある。無電極方式では、導波管内に設置され
た反応管中のみにフィラメント状の直径数mm程度のプラ
ズマを発生させる様式が一般的であり、膜堆積のような
工程には適さないと考えられた。1951年には、Cobineら
によって、同軸先端でプラズマを発生させる方式が考案
され、(J.D.Cobine and D.A.Wilber,J.Appl.Phys.,22
(1951)835)、その後Marrodineauvらによって、(R.M
arrodineauv and R.C.Hughes,Spectrochim.Acta,19(19
63)1309)発光分光分析用トーチとして開発された。し
かし、ICP(高周波誘導結合プラズマ)発光分光分析の
隆盛に押されたのか、その後報告例はほとんど無い。そ
の理由としては、プラズマ炎の安定性と、中心導体のエ
ロージョンの問題が考えられる。これらはいずれも、高
純度の生成物の高速度膜堆積工程には適当でない。
There are some reports on the microwave thermal plasma generation method under atmospheric pressure. In the electrodeless method, it is common to generate a filamentary plasma with a diameter of several mm only in the reaction tube installed in the waveguide, and it was considered not suitable for processes such as film deposition. . In 1951, Cobine et al. Devised a method of generating plasma at the coaxial tip (JDCobine and DAWilber, J.Appl.Phys., 22
(1951) 835), then by Marrodineauv et al., (RM
arrodineauv and RCHughes, Spectrochim.Acta, 19 (19
63) 1309) Developed as a torch for emission spectroscopy. However, there have been few reports since then, probably because of the rise of ICP (Inductively Coupled Plasma) emission spectroscopy. The reason for this may be the stability of the plasma flame and the problem of erosion of the center conductor. None of these are suitable for high rate film deposition processes of high purity products.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の発光分光分析用として開発された装置は、安定
に、強力なプラズマ炎を発生させることが困難であっ
た。本発明では、マイクロ波電力を効率よくプラズマ炎
に吸収させ、流体力学的に安定化を図り、高純度の生成
物を高速度に堆積させる、マイクロ波熱プラズマ・トー
チを提供するを目的とする。
It has been difficult for a device developed for conventional emission spectroscopy to stably generate a powerful plasma flame. It is an object of the present invention to provide a microwave thermal plasma torch that efficiently absorbs microwave power in a plasma flame, stabilizes it hydrodynamically, and deposits highly pure products at a high speed. .

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、同軸管回路を形成するトーチ発生部、該ト
ーチ発生部に対し気密性誘電体窓および同軸導波管変換
器を経て、マイクロ波電力を供給する手段、該トーチ発
生部に対し円周方向および半径方向に向かってガスを噴
出させて渦巻状態として供給する手段を有し、供給され
たマイクロ波電力によって渦巻状態のガスを電離してプ
ラズマを発生させることを特徴とするマイクロ波熱プラ
ズマ・トーチである。
The present invention relates to a torch generator that forms a coaxial tube circuit, a means for supplying microwave power to the torch generator via an airtight dielectric window and a coaxial waveguide converter, and a circle for the torch generator. Microwave heat having means for ejecting gas in a circumferential direction and a radial direction to supply it in a spiral state, and ionizing the gas in the spiral state by the supplied microwave power to generate plasma It is a plasma torch.

本発明では、同軸管回路を形成しているトーチ発生部
に、導波管回路からマイクロ波電力を供給するのに、同
軸導波管変換器を使用して、効率よく伝送し、トーチ発
生部では内導体の先端部と、外導体を共に絞って、マイ
クロ波電界をこの部分で最大にしている。
According to the present invention, a coaxial waveguide converter is used to supply microwave power from a waveguide circuit to a torch generator that forms a coaxial tube circuit, and the torch generator is efficiently transmitted. Then, both the tip portion of the inner conductor and the outer conductor are narrowed down to maximize the microwave electric field at this portion.

プラズマの安定性および制御性を増すために、ガス噴
出口はトーチ発生部の上部に、円周方向並びに半径方向
の、独立した2系統を設ける。
In order to increase the stability and controllability of the plasma, the gas ejection port is provided above the torch generation section with two independent systems in the circumferential direction and the radial direction.

トーチ発生部では内導体の先端部即ち電極で、マイク
ロ波電界によりガスが電離してプラズマが発生する。一
旦発生したプラズマは、電極のまわりに形成される電界
によって、エネルギーを供給され維持される。
In the torch generating portion, gas is ionized by the microwave electric field at the tip portion of the inner conductor, that is, the electrode, and plasma is generated. The generated plasma is supplied with energy and maintained by the electric field formed around the electrodes.

〔作 用〕[Work]

導波管回路から供給されるマイクロ波電力は、同軸導
波管変換器によって効率よくトーチ発生部の同軸管回路
に変換され、先端の電極部でマイクロ波電界を最大にす
る。円周方向並びに半径方向の、2系統のガス噴出口か
ら、ガスが回転し渦流になって供給されるので、安定で
強力なプラズマが発生しチャンバー内に吹きだし、維持
される。
The microwave power supplied from the waveguide circuit is efficiently converted into the coaxial tube circuit of the torch generator by the coaxial waveguide converter, and the microwave electric field is maximized at the electrode portion at the tip. Gas is rotated and supplied as a vortex from two gas outlets in the circumferential direction and the radial direction, so that stable and powerful plasma is generated and blown out and maintained in the chamber.

この結果、生成物は電極に接しないから不純物を含み
にくいという利点がある。
As a result, the product has the advantage that it is less likely to contain impurities because it does not contact the electrodes.

〔実施例〕〔Example〕

第1図は、本発明の実施例の概略縦断面図を示してい
る。トーチ発生部は、主として内導体1と、外導体2と
で構成され、上部の同軸導波管変換器によって、導波管
回路からマイクロ波電力を供給される。同軸導波管変換
器としては、方形導波管4の中央にリッジ5を設け、同
軸管回路とのインピーダンス整合を行った。図で6は気
密性誘電体窓である。
FIG. 1 shows a schematic vertical sectional view of an embodiment of the present invention. The torch generator is mainly composed of an inner conductor 1 and an outer conductor 2, and is supplied with microwave power from a waveguide circuit by an upper coaxial waveguide converter. As the coaxial waveguide converter, a ridge 5 was provided at the center of the rectangular waveguide 4 to perform impedance matching with the coaxial waveguide circuit. In the figure, 6 is an airtight dielectric window.

内導体1は銅製でその先端7は尖って、電極となって
いる。この内導体1の内部には、水管3が通っており、
上部の冷却水注入口17から冷却水出口18に、冷却水が流
されている。外導体2は銅製で内導体1と同軸管回路を
形成しており、トーチ発生部においては直径が狭められ
て最小直径部8を有し、マイクロ波電界を集中させてガ
スの電離を容易にしている。また、この内部には冷却水
溜19を設け、冷却水注入口171から冷却水出口181へ冷却
水を流している。
The inner conductor 1 is made of copper, and its tip 7 is sharpened to form an electrode. Inside the inner conductor 1, a water pipe 3 passes,
Cooling water is flowing from the cooling water inlet 17 at the upper part to the cooling water outlet 18. The outer conductor 2 is made of copper and forms a coaxial tube circuit with the inner conductor 1, and the diameter is narrowed at the torch generation portion to have the smallest diameter portion 8 to concentrate the microwave electric field and facilitate the ionization of gas. ing. Further, a cooling water reservoir 19 is provided inside this, and the cooling water is made to flow from the cooling water inlet 171 to the cooling water outlet 181.

一方ガスは、プラズマの安定性と制御性を増すため
に、円周方向にガス流を生じさせる円周方向ガス噴出口
9と、半径方向のガス流を生じさせる半径方向ガス噴出
口10を、トーチ発生部上部の外導体2の壁面周囲に多数
設け、ガスに回転と渦を生じさせる。こらのガスは、ガ
ス注入口15、16からそれぞれ独立して供給される。
On the other hand, in order to increase the stability and controllability of the plasma, the gas has a circumferential gas jet port 9 that produces a gas flow in the circumferential direction and a radial gas jet port 10 that produces a radial gas flow. A large number of them are provided around the wall surface of the outer conductor 2 above the torch generation portion to generate rotation and vortex in the gas. These gases are independently supplied from the gas inlets 15 and 16.

導波管回路より方形導波管4に加えられたTE01モード
のマイクロ波電力は、気密性誘電体窓6を経て同軸導波
管変換器のリッジ5によって、同軸のTEMモードに変換
され、電極7の部分で最大電圧となり、ガスを電離させ
てプラズマを発生させる。一旦発生したプラズマ炎11
は、電極先端の周囲のマイクロ波電界によって、エネル
ギーを補給されて継続し、チェンバー12に噴出される。
13はチェンバー壁である。
The TE01 mode microwave power applied to the rectangular waveguide 4 from the waveguide circuit is converted to the coaxial TEM mode by the ridge 5 of the coaxial waveguide converter through the airtight dielectric window 6 and the electrode The maximum voltage is reached at the portion 7, and the gas is ionized to generate plasma. Once generated plasma flame 11
Is continuously replenished with energy by the microwave electric field around the tip of the electrode and is jetted to the chamber 12.
13 is a chamber wall.

投入口14から供給された反応物質を、トーチ発生部の
上部に投入するために、電極7にはその先端部に開孔す
る投出口141が設けられている。また、外導体2に穿っ
た投入口142によっても反応物質が供給されうる。
In order to charge the reactant supplied from the charging port 14 to the upper part of the torch generating part, the electrode 7 is provided with a discharging port 141 having a hole at the tip thereof. In addition, the reactant can be supplied also through the inlet 142 formed in the outer conductor 2.

実施例では、同軸管回路を形成する内導体1及び外導
体2の内外直径は、それぞれ約20mm、約57mmであり、ト
ーチ発生部の最小直径部8は約22mmとした。周波数2.45
GHzのマイクロ波電力を印加し、水素とアルゴンの混合
ガスをプラズマ・ガスとして用いた場合、大気圧下で安
定にプラズマを発生・維持した。
In the embodiment, the inner and outer diameters of the inner conductor 1 and the outer conductor 2 forming the coaxial waveguide circuit are about 20 mm and about 57 mm, respectively, and the minimum diameter portion 8 of the torch generating portion is about 22 mm. Frequency 2.45
When a microwave power of GHz was applied and a mixed gas of hydrogen and argon was used as the plasma gas, the plasma was stably generated and maintained under atmospheric pressure.

〔発明の効果〕〔The invention's effect〕

従来のマイクロ波熱プラズマ発生装置では、発光分光
分析に使用される程度で、プラズマ炎の安定度などの理
由によって、物質の熱プラズマ反応には、応用されてい
なかった。本発明のマイクロ波熱プラズマ・トーチを使
用すれば、強力なプラズマ炎を発生・維持できるので、
これが可能になった。本発明のマイクロ波熱プラズマ・
トーチの特徴を挙げれば、つぎのようになる。
In the conventional microwave thermal plasma generator, it was only used for emission spectroscopic analysis, but was not applied to the thermal plasma reaction of substances due to the stability of the plasma flame. By using the microwave thermal plasma torch of the present invention, a powerful plasma flame can be generated and maintained,
This is possible now. The microwave thermal plasma of the present invention
The characteristics of the torch are as follows.

(1)マイクロ波熱プラズマ・トーチでは、直流アーク
・ジェットと比較して、電極からの不純物を堆積物に含
みにくい長所がある。
(1) The microwave thermal plasma torch has an advantage that impurities from the electrode are less likely to be contained in the deposit as compared with the DC arc jet.

(2)直流アーク・ジェットや高周波プラズマと比較し
て、大気圧純水素プラズマを維持する電力が、格段に低
い。即ち、4MHzの高周波プラズマでは、500kw以上必要
であるのに対して、マイクロ波では、1.8kw程度の低電
力で充分である。
(2) The electric power to maintain the atmospheric pressure pure hydrogen plasma is much lower than that of the DC arc jet or the high frequency plasma. That is, high-frequency plasma of 4 MHz requires 500 kw or more, while microwave requires a low power of about 1.8 kw.

(3)マイクロ波熱プラズマ・トーチではプラズマ中の
温度勾配・濃度勾配が、共にかなり小さいと考えられる
ので、物質合成に適している。
(3) The microwave thermal plasma torch is suitable for substance synthesis because both the temperature gradient and the concentration gradient in plasma are considered to be quite small.

(4)電極の溶解が殆ど無いから、電極エロージョンの
問題も少ない。
(4) Since there is almost no dissolution of the electrode, there is little problem of electrode erosion.

(5)安定なプラズマ炎を長時間発生し、効率よく高純
度の反応生成物が得られる。
(5) A stable plasma flame is generated for a long time, and a highly pure reaction product is efficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の概略縦断面図である。 1は内導体、2は外導体、3は水管、4は方形導波管、
5はリッジ、6は気密性誘電体窓、7は電極、8は最小
直径部、9は円周方向ガス噴出口、10は半径方向ガス噴
出口、11はプラズマ炎、12はチェンバー、13はチェンバ
ー壁、14・142は投入口、141は投出口、15・16はガス注
入口、17・171は冷却水注入口、18・181は冷却水出口、
19は冷却水溜
FIG. 1 is a schematic vertical sectional view of an embodiment of the present invention. 1 is an inner conductor, 2 is an outer conductor, 3 is a water pipe, 4 is a rectangular waveguide,
5 is a ridge, 6 is an airtight dielectric window, 7 is an electrode, 8 is a minimum diameter portion, 9 is a circumferential gas jet, 10 is a radial gas jet, 11 is a plasma flame, 12 is a chamber, 13 is 13 Chamber wall, 14/142 inlet, 141 outlet, 15/16 gas inlet, 17/171 cooling water inlet, 18/181 cooling water outlet,
19 is a cooling water reservoir

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内導体の先端部と外導体を共に絞り、外導
体はその直径が狭められて最小直径部を有する同軸管回
路を形成するトーチ発生部、該トーチ発生部に対し気密
性誘電体窓および同軸導波管変換器を経て、マイクロ波
電力を供給する手段、該トーチ発生部に対し円周方向お
よび半径方向に向かってガスを噴出させて渦巻状態とし
て供給する手段を有し、供給されたマイクロ波電力によ
って渦巻状態のガスを電離してプラズマを発生させるこ
とを特徴とするマイクロ波熱プラズマ・トーチ。
1. A torch generating portion forming a coaxial tube circuit having a minimum diameter portion by narrowing both the tip portion of the inner conductor and the outer conductor, and the outer conductor, and an airtight dielectric for the torch generating portion. A means for supplying microwave power through the body window and the coaxial waveguide converter, and means for ejecting a gas toward the torch generating portion in a circumferential direction and a radial direction to supply the gas in a spiral state, A microwave thermal plasma torch, characterized in that a gas in a spiral state is ionized by supplied microwave power to generate plasma.
【請求項2】トーチ発生部の上部に、円周方向並びに半
径方向の独立した2系統のガス噴出口が設けられた請求
項1記載のマイクロ波熱プラズマ・トーチ。
2. The microwave thermal plasma torch according to claim 1, wherein two independent gas ejection ports in the circumferential direction and the radial direction are provided above the torch generating portion.
JP1192372A 1989-07-25 1989-07-25 Microwave thermal plasma torch Expired - Lifetime JP2527150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192372A JP2527150B2 (en) 1989-07-25 1989-07-25 Microwave thermal plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192372A JP2527150B2 (en) 1989-07-25 1989-07-25 Microwave thermal plasma torch

Publications (2)

Publication Number Publication Date
JPH0357199A JPH0357199A (en) 1991-03-12
JP2527150B2 true JP2527150B2 (en) 1996-08-21

Family

ID=16290191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192372A Expired - Lifetime JP2527150B2 (en) 1989-07-25 1989-07-25 Microwave thermal plasma torch

Country Status (1)

Country Link
JP (1) JP2527150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194467A1 (en) * 2018-04-05 2019-10-10 (주)그린사이언스 Microwave plasma torch for manufacturing metal powder or metal alloy, and method for treating metal compound or metal compound-containing material and metal powder by using same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351899A (en) * 1991-05-28 1992-12-07 Toyonobu Yoshida Microwave heat plasma reaction device
JP3147137B2 (en) * 1993-05-14 2001-03-19 セイコーエプソン株式会社 Surface treatment method and device, semiconductor device manufacturing method and device, and liquid crystal display manufacturing method
TW285746B (en) 1994-10-26 1996-09-11 Matsushita Electric Ind Co Ltd
KR19990068381A (en) * 1999-05-11 1999-09-06 허방욱 microwave plasma burner
AUPQ861500A0 (en) * 2000-07-06 2000-08-03 Varian Australia Pty Ltd Plasma source for spectrometry
US7164095B2 (en) * 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
EP2501368B1 (en) 2009-11-16 2018-04-18 Evonik Röhm GmbH A process for converting a solid (meth)acrylate copolymer into a dispersed form by means of a dispersing agent
JP5868137B2 (en) * 2011-11-18 2016-02-24 住友理工株式会社 Microwave plasma processing equipment
DE102017115438A1 (en) * 2017-06-06 2018-12-06 Fricke Und Mallah Microwave Technology Gmbh DEVICE FOR GENERATING A PLASMASTRAEL IN THE MHZ AND GZ AREA WITH TEM AND HOLLOWING MODES
CN113194594B (en) * 2021-04-21 2023-06-23 电子科技大学 Medium nozzle reinforced handheld medical low-power microwave plasma torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194467A1 (en) * 2018-04-05 2019-10-10 (주)그린사이언스 Microwave plasma torch for manufacturing metal powder or metal alloy, and method for treating metal compound or metal compound-containing material and metal powder by using same

Also Published As

Publication number Publication date
JPH0357199A (en) 1991-03-12

Similar Documents

Publication Publication Date Title
CA2144834C (en) Method and apparatus for generating induced plasma
US5571577A (en) Method and apparatus for plasma treatment of a surface
CA2221624C (en) Microwave-driven plasma spraying apparatus and method for spraying
US5144110A (en) Plasma spray gun and method of use
KR100189311B1 (en) Microwave plasma torch and method for generating plasma
JP4082905B2 (en) Plasma coating surface finishing method and apparatus
JP5944487B2 (en) Method for treating gas and apparatus for carrying out the method
EP0368547B1 (en) Plasma generating apparatus and method
US20120034135A1 (en) Plasma reactor
JP2527150B2 (en) Microwave thermal plasma torch
EP0002623B1 (en) Electric arc apparatus and method for treating a flow of material by an electric arc
CN107920411B (en) Hybrid plasma generator for processing silicon-based materials
JPH03150341A (en) Conjugate torch type plasma generator and plasma generating method using the same
KR880012791A (en) Diamond deposition apparatus and method
RU2455119C2 (en) Method to produce nanoparticles
JPH08236293A (en) Microwave plasma torch and plasma generating method
JPH03214600A (en) Microwave heated plasma reaction device
JPS61161138A (en) Plasma-utilizing chemical reactor
JPH03211284A (en) Multistage thermal plasma reaction apparatus
WO1998040533A1 (en) Device and method for surface treatment
JPH04351899A (en) Microwave heat plasma reaction device
JPH06290896A (en) High frequency plasma heater and its operating method
JPS6286700A (en) Electrodeless radio frequency plasma reactor
JPS6019034A (en) Chemical reaction apparatus using composite plasma
JP3047486B2 (en) Diamond film production equipment