WO1998040533A1 - Device and method for surface treatment - Google Patents
Device and method for surface treatment Download PDFInfo
- Publication number
- WO1998040533A1 WO1998040533A1 PCT/JP1998/001068 JP9801068W WO9840533A1 WO 1998040533 A1 WO1998040533 A1 WO 1998040533A1 JP 9801068 W JP9801068 W JP 9801068W WO 9840533 A1 WO9840533 A1 WO 9840533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- source gas
- surface treatment
- electrode
- energy transfer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/452—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
Definitions
- the present invention relates to a surface treatment apparatus, and more particularly to a surface treatment apparatus that efficiently excites a raw material gas to form radicals having high activity, and makes the radicals contact the substrate surface to perform a surface treatment of the substrate.
- the DC arc jet method using the DC arc jet is adopted.
- Japanese Patent Publication No. 4-77710 Japanese Patent Application Laid-open No.
- the DC arc jet method as disclosed in Japanese Patent Publication No. 92 is adopted.
- the gas-phase synthesis method disclosed in Japanese Patent Publication No. Hei 4-77770 discloses that a hydrogen and gaseous carbonized compound is added to a plasma generator having an anode 2 and a cathode 1.
- the gas is radialized by a DC arc discharge between the electrodes to form a thermal plasma, which is jetted into the raw material chamber 1 as a thermal plasma jet 19, and the thermal plasma jet is cooled to a cooled substrate 2
- the diamond film C is quenched by colliding with the substrate 2 to vapor-grow the diamond film C on the substrate 22.
- the gas phase synthesis method described in Japanese Patent Application Laid-Open No. 11-100092 supplies a gas to a plasma generator having an anode 2 and a cathode 1, This gas is radicalized by a direct current arc discharge between the electrodes to form thermal plasma, which is generated
- the heated thermal plasma is ejected from the nozzle at the tip of the torch as a plasma jet 19, and a raw material gas is sprayed on the ejected plasma jet 19 to generate a non-equilibrium plasma.
- a diamond film C is vapor-phase grown on the substrate 22.
- radicals having high energy can be generated, so that they exhibit a high growth rate even in vapor-phase growth requiring high energy such as diamond film formation, and have high productivity. Obtainable.
- the raw material gas is sprayed onto the plasma jet to rapidly cool the plasma jet, and the thermal plasma is changed to a so-called non-equilibrium plasma state to improve productivity.
- the raw material radicals can be converted into high-temperature thermal plasma of 10,000 degrees or more, which easily causes problems such as melting and destruction of the substrate. Furthermore, due to the characteristics of the DC plasma jet, a film can be formed only within the arc irradiation range, and thus there is a problem that the area where the film can be formed is small.
- the tungsten discharge electrode may be severely consumed depending on the type of the source gas.
- the source gas contains carbon atoms
- tungsten carbide is generated
- the source gas contains oxygen atoms
- tungsten oxide is generated and the discharge electrode is consumed.
- the tungsten compound generated in this way adheres to the substrate surface, which causes deterioration of the film quality.
- Electrode Tungsten with 2% thoria 5 Anode Material: Copper
- Nozzle diameter ⁇ 2.2
- An object of the present invention is to provide a surface treatment apparatus effective for improving the excitation efficiency of a gas phase.
- Source gas supply means for supplying the source gas
- Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas
- Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma
- a material radical generating means for mixing the thermal plasma generated by the thermal plasma generating means with the raw material gas supplied by the raw material gas supply means to generate a raw material radical;
- the source gas supply means is configured to supply
- Equipped with source gas swirling means for swirling the source gas to be supplied It is characterized by the following.
- the source gas supply means applies pressure to a gas phase containing a substance to be brought into contact with the substrate surface, causes the gas phase to flow through a flow path having a predetermined shape, and sends the gas to an excitation point of the source gas.
- the raw material gas for example, in the case of forming a diamond film on the substrate surface, using a carbon compound, in the case of forming an C -BN is a reactive gas such as NH 3 gas and B 2 H s gas use.
- a reactive gas corresponding to various surface treatments such as etching, oxidation, and nitriding.
- the energy transfer gas supply means applies pressure to a gaseous phase serving as a carrier of excitation energy, flows the gaseous phase into a flow path having a predetermined shape, and sends the gaseous phase to a point for thermal plasma conversion.
- the thermal plasma generating means is a means for rapidly heating an energy transfer gas to generate thermal plasma, and applies ignition, arc discharge, high frequency excitation, microwave excitation, electron beam excitation, hot filament excitation, and the like.
- the raw material radical generating means mixes the energy transfer gas converted into the thermal plasma with the raw material gas, sends the energy filled in the energy transfer gas to the raw material gas, and radicalizes the raw material gas.
- a space for mixing the two use a space that suppresses the expansion of the gas phase, such as a reduced nozzle whose opening cross section gradually decreases toward the downstream of the flow path or a cylindrical nozzle whose opening cross section is constant and elongated. It is preferable.
- the raw material gas swirling means is a means for rotating the raw material gas by adding a rotational component to the flow direction of the raw material gas. An additional configuration or a stirring means using a rotary blade is applied.
- the raw material gas swirling means By providing the raw material gas swirling means, the raw material gas and the energy transfer gas converted into thermal plasma are smoothly mixed, and the energy transfer efficiency can be improved.
- the energy transfer gas supply means The energy transfer gas supply means,
- This energy transfer gas swirl means swirls the energy transfer gas by the same means as the above-described source gas swirl means.
- the energy transfer gas swirling means As described above, by providing the energy transfer gas swirling means, the energy transfer gas is supplied to the thermal plasma generation means in a swirled state. A stable discharge state can be obtained by the pressure gradient formed by the turning. Therefore, an inert gas such as argon can be stably used as the energy transfer gas.
- the invention according to claim 3 is the invention according to claim 1 or claim 2, wherein the non-equilibrium plasma generation means for generating a non-equilibrium plasma by adiabatically expanding the source radical generated by the source radical generation means.
- the non-equilibrium plasma generating means adiabatically expands the raw material radicals, increases the flow rate of the raw material radicals, and configures a wide area spray width.
- insulation includes not only a completely insulated state, but also a state in which heat flow is extremely low.
- the non-equilibrium plasma generating means an enlarged nozzle whose opening section gradually increases toward the downstream of the flow path, and a nozzle having an opening cross section wider than the flow path of the raw material radical are used.
- the particle density decreases toward the outer periphery of the expanded gas flow, and when the particle density of the ejected material radicals becomes non-uniform, so-called dissipation is performed. The effect occurs.
- a source gas swirling means is provided to swirl the source gas. That is, the raw material gas swirled by the raw material swirling means is radicalized while being swirled by the raw material radical generating means. The gas flow becomes high. As a result, the above-mentioned dissipative effect is complemented, and a raw material radical stream having a uniform particle density can be ejected.
- the invention described in claim 4 is the invention according to any one of claims 1 to 3,
- the source gas swirling means The source gas swirling means,
- a source gas introduction passage disposed at a periphery of the source gas circulation circuit, for introducing the source gas supplied by the source gas supply unit in a direction deviated from the center of the source gas circulation circuit.
- the source gas circuit is an annular flow path arranged so as to surround the thermal plasma generated by the thermal plasma generating means.
- the source gas introduction path is a flow path for introducing the source gas from the outer periphery of the source gas wire circuit, and the source gas introduced from the source gas introduction path is separated from the center of the source gas rotation circuit by thermal plasma. Mix into the stream.
- a plurality of the source gas introduction paths are arranged on the outer peripheral tangent of the source gas rotation circuit, and the source gas introduction paths are introduced so that the rotation directions of the source gases introduced from the respective source gas introduction paths are the same. Unify the directions.
- the thermal plasma generating means
- the force source and the anode are used as discharge electrodes, and are arranged close to each other.
- the insulating member surrounding the periphery of the cathode is interposed to maintain the insulated property between the cathode and the anode, and is preferably configured to conform to the shape of the force source.
- the force sword is cylindrical
- a cylindrical shape is used for the insulating member.
- This insulating member is disposed between the power source and the anode with the discharge point of the power source exposed. It is preferable that the source gas swirling means is provided at a tip of the insulating member.
- the discharge point is defined by surrounding the periphery of the force sword with the insulating member, the discharge is stabilized.
- the energy transfer gas swirl means The energy transfer gas swirl means
- An energy transfer gas introduction path which is provided at a periphery of the energy transfer gas swirling circuit and that introduces the energy transfer gas supplied by the energy transfer gas supply unit in a direction deviated from the center of the energy transfer gas swirl path.
- the energy transfer gas swirl circuit is an annular flow path arranged so as to surround a tip (preferably, a discharge point) of a force source.
- the energy transfer gas introduction path is a flow path for introducing the energy transfer gas into the energy transfer gas circuit.
- the energy transfer gas introduced from the energy transfer gas introduction path collides with the inner wall of the energy transfer gas swirl circuit, avoiding the center of the energy transfer gas swirl circuit, and turns along the inner wall.
- the energy transfer gas swirled in this manner forms a pressure gradient near the tip of the force sword, stabilizing the discharge.
- the invention according to claim 7 is the invention according to claim 5 or claim 6, wherein the force sword is:
- An electrode holder having a concave portion at the tip and holding the electrode in the concave portion is provided.
- the electrode is a portion serving as a discharge point, and is formed of a high melting point metal such as tungsten.
- a high melting point metal such as tungsten.
- One or more grooves are formed on the periphery of this electrode.
- the electrode holder has a concave portion for holding the electrode, and the electrode is held in a state fitted in the concave portion.
- This recess has a protrusion that fits into the groove formed in the electrode. It is desirable that the raised portion be formed or filled with a brazing material to enhance the fitting property with the electrode.
- the electrode When the electrode is inserted into the recess, a part of the recess enters a groove formed in the electrode due to plastic deformation of the recess, and the electrode expands due to a difference in the coefficient of thermal expansion between the electrode and the electrode holder. Even if a gap is formed between the electrode and the concave portion, the portion that enters the groove prevents the electrode from falling.
- the brazing material filled in the recess enters the groove formed in the electrode, so that a gap is generated due to the difference in the coefficient of thermal expansion as described above. Even in this case, the material that has entered the groove prevents the electrode from falling.
- the electrode is a first electrode
- the arc is stabilized by the concave portion formed at the center of the tip surface, and the fluctuation of the arc generating voltage is prevented.
- the surface of the substrate treated according to the present invention becomes stable, and it is possible to prevent the electrode material from being mixed into the treated surface due to the consumption of the electrode.
- Source gas supply means for supplying the source gas
- Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas
- Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma
- the thermal plasma generated by the thermal plasma generating means is supplied by the raw gas supply means.
- a raw material radical generating means for mixing the raw material gas with the raw material gas to generate a raw material radical,
- the energy transfer gas supply means The energy transfer gas supply means,
- Equipped with energy transfer gas swirl means for swirling the energy transfer gas to be supplied
- the invention according to claim 10 is
- Source gas supply means for supplying the source gas
- Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas
- Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma
- An expansion nozzle connected downstream of the mixing space and adiabatically expanding the mixed gas mixed in the mixing space.
- the enlarged nozzle constitutes a supersonic nozzle, and a gas flow passing through the supersonic nozzle is jetted at a flow velocity higher than the sonic velocity.
- the raw material radicals reach the substrate surface in a short time while maintaining a high reaction state, so that the adhesion of the raw materials and the processing speed are improved.
- the temperature of the raw material radicals that have passed through the expansion nozzle is reduced by adiabatic expansion, so that deterioration of the substrate surface is suppressed.
- An electrode made of a high melting point metal with a groove formed on the periphery An electrode holder having a concave portion at the tip and holding the electrode via a brazing filler material filled in the concave portion.
- the invention of claim 12 is the invention of claim 11,
- the electrode is a first electrode
- It has a tapered part whose diameter is reduced from 55 ° to 65 °.
- the arc generation voltage can be further stabilized.
- the electrode is a first electrode
- the electrode holder The electrode holder,
- It is characterized by being composed mainly of any one of copper, silver, aluminum, brass, molybdenum, tungsten, niobium, tantalum, and copper, or an alloy of two or more thereof.
- the electrode holder made of the above metal suppresses the consumption of the electrode material, a stable arc discharge can be obtained for a long time, and the electrode material is prevented from being mixed into the treated surface.
- the electrode is a first electrode
- Tungsten calcium oxide, thorium oxide, yttrium oxide, zirconium
- the main component is an alloy consisting of at least one of palladium and hafnium or two or more of them
- the electrode made of the above-mentioned metal suppresses the consumption of the electrode material, a stable arc discharge can be obtained for a long time, and the electrode material is prevented from being mixed into the treated surface.
- an electrode containing zirconium or hafnium has a remarkable effect of suppressing consumption when exciting a gas phase containing oxygen atoms.
- the invention described in claim 16 is the invention according to any one of claims 11 to 15,
- the electrode is a first electrode
- the electrode mixed with the metal suppresses consumption of the electrode material.
- An electrode holder having a concave portion at the tip and holding the electrode via a brazing filler material filled in the concave portion
- the electrode is a first electrode
- the invention of claim 18 is
- An energy transfer gas serving as a transfer medium of energy for exciting the source gas,
- the raw material gas is mixed while swirling to generate a raw material radical that flows out while swirling,
- the raw material radical is adiabatically expanded, and is sprayed on the substrate surface while rotating the raw material radical.
- the energy transfer gas is swirled in the same direction as the swirling direction of the source gas to mix the energy transfer gas and the source gas.
- FIG. 1 is a cross-sectional view showing one configuration example of a surface treatment apparatus according to the present invention.
- FIG. 2 is a cross-sectional view showing a configuration of a vapor phase growth apparatus provided with a surface treatment apparatus according to the present invention.
- FIG. 3 is a cross-sectional view showing one configuration example of the thermal plasma generating means.
- FIG. 4 is a cross-sectional view showing one configuration example of the raw material radical generating means.
- FIG. 5 is a diagram showing a Raman spectrum of a diamond film produced according to the present invention.
- FIG. 6 is a sectional view showing a second configuration of the force sword 1. As shown in FIG.
- FIG. 7 is a conceptual diagram showing the configuration of an experimental apparatus used for determining the tip angle of the tungsten electrode rod 102.
- FIG. 8 is a view showing an inclination angle of a tapered surface used in the experimental apparatus shown in FIG.
- FIG. 9 is a sectional view showing a third configuration of the force sword 1.
- FIG. 10 is a sectional view showing a conventional DC arc jet method.
- FIG. 11 is a sectional view showing a conventional DC arc jet method. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 is a cross-sectional view showing one configuration example of a surface treatment apparatus according to the present invention.
- a schematic configuration of a surface treatment apparatus according to the present invention will be described with reference to FIG.
- the surface treatment apparatus shown in the figure is provided with a thermal plasma generating means for converting an energy transfer gas into a thermal plasma.
- argon gas is used as the energy transfer gas.
- the thermal plasma generating means is provided with a force source 1 and an anode 3 for generating an arc discharge, and the anode 3 is disposed so as to surround the power source 1 via a ceramic shield tube 2.
- the shield cylinder 2 defines a discharge point that exposes the tip of the force sword 1 to generate an arc discharge.
- a raw material radical generating means Downstream of the thermal plasma generating means, there is provided a raw material radical generating means for reacting the raw material gas with the thermal plasma to excite it to generate a raw material radical.
- a mixed gas of CH 4 and H 2 is used as a source gas.
- a non-equilibrium plasma generating means is provided downstream of the raw material radical generating means for converting the thermal radicalized raw material radical into non-equilibrium plasma by adiabatic expansion.
- the non-equilibrium plasma generating means mainly includes an enlarged nozzle 5.
- FIG. 2 is a cross-sectional view showing a configuration of a vapor phase growth apparatus provided with the surface treatment apparatus according to the present invention.
- the vapor phase growth apparatus shown in the figure grows a diamond thin film on the surface of a substrate 22 made of glass.
- FIG. number 3 The figure is a cross-sectional view showing one configuration example of the thermal plasma generating means.
- an electrode rod 102 made of tungsten is fixed to a body 101 made of copper by brazing.
- the inside of the cathode is hollow, and a cooling water introduction space 103 is formed.
- the cooling water is introduced from the first nipple 8 shown in FIG. 1, passes through the cooling water introduction pipe 104, is guided to the cooling water introduction space 103, cools the power sword 1, and cools the water.
- the cooling water is discharged from the second nipple 9 through the cooling water discharge space 105 outside the pipe 104.
- a heat-resistant ceramic insulating cylinder 2 is formed around the force sword 1 so as to cover the tip, and an anode 3 is disposed outside the insulating cylinder 2.
- FIG. 3 (b) is a diagram showing an AA cross section of FIG. 3 (a).
- the first swirler 201 has four energy gas inlets 210 for introducing an energy transfer gas, and an energy gas swirling circuit for swirling the energy transfer gas introduced from the inlet. It consists of 2 1 2.
- the energy transmission gas introduction port 210 is disposed at a position deviated from the center of the energy gas rotation circuit 212.
- the energy transfer gas introduced from the third nipple 6 passes through the insulating cylinder 2 and the gap 202 between the anode 3 and forms a vortex in the first swirler 201 configured as described above.
- the anode 3 is provided with a plasma jet outlet 301 and a cooling water introduction space 302, and cooling water is introduced from the fourth nipple 11 and is cooled in the cooling water introduction space 302. After cooling the anode 3, it is discharged from a fifth nipple (not shown).
- the surface treatment apparatus shown in this embodiment is provided with a DC power supply 13 in which the negative electrode side is connected to the first nipple 8 and the positive electrode side is connected to the third nipple 6.
- the current supplied from the DC power supply 13 is supplied from the third nipple 6 to the cover 15, cap 14, divergent nozzle 5, anode 3, arc 16, power source 1, conductive cylinder 106, Takes a current path called nipple 8.
- FIG. 4 is a cross-sectional view showing one configuration example of the raw material radical generating means.
- the raw material radical generating means is a conical raw material generating space as shown in FIG. 3A, and is provided downstream of the plasma jet outlet 301 as shown in FIG. Two swirlers 4 0 1 are provided.
- FIG. 4 (b) is a diagram showing a BB cross section of FIG. 4 (a).
- the plasma jet outlet 301 forms a flow path of thermal plasma extending in a constant cross section as shown in FIG. 3A, and rectifies the thermal plasma passing through the flow path.
- the second swirler 401 has four source gas inlets 410 for introducing a source gas and a source gas swirler for swirling the source gas introduced from the inlet, as shown in FIG. Road 4 1 2
- the source gas inlet 4 10 is disposed at a position deviated from the center of the source gas circuit 4 12.
- the raw material gas introduction port 410 is formed, for example, by a linear flow path having a hole diameter of 2 mm, and is provided from the central axis direction of the nozzle to the tangential direction of the inner wall of the nozzle.
- the raw material gas introduced from the sixth nipple 7 shown in FIG. 1 passes through the space 10, passes through the raw material gas inlet 4 12 shown in FIG.
- the gas is injected in the circumferential direction of the gas spiral circuit to form a swirling flow along the circumference, and is injected into the raw material radical generation space 4 shown in FIG.
- the swirling flow of the ejected source gas collides with and mixes with the thermal plasma ejected from the plasma jet outlet 301, and the energy of the thermal plasma is transmitted to the source gas.
- the source gas to which the energy has been transferred becomes high-activity and high-density source radicals in the form of thermal plasma.
- the raw material radicals are ejected to an expansion nozzle configured as a non-equilibrium plasma generating means, and are adiabatically expanded while passing through the expansion nozzle to be converted into a low-temperature non-equilibrium plasma while maintaining high activity. Is done.
- the enlarged nozzle 5 is a medium-sized nozzle, and is formed such that the opening cross section gradually increases toward the downstream of the flow path.
- the non-equilibrium plasma generated as described above is applied to the substrate 2 as shown in Fig. 2. It is sprayed on the surface of 2 to grow a film on the surface.
- a heater 21 is provided in a decompression chamber 120, and a substrate 22 is used as a substrate heater. Fixed on one.
- the substrate heater 21 can perform both substrate heating and substrate cooling, so that the temperature of the substrate 22 can always be maintained at an appropriate temperature.
- the substrate heater 21 is fixed to an elevating mechanism (not shown) via a bellows 27, and the non-equilibrium plasma jet 501 and the distance 24 to the substrate can be set arbitrarily within a certain range. It is configured to be able to.
- the following table shows the film forming conditions and the shape of the enlarged nozzle when performing vapor phase growth using the vapor phase growth apparatus configured as described above.
- FIG. 5 shows the Raman spectrum at this time.
- the thin film on the substrate treated according to the present invention becomes an extremely high quality diamond thin film with few impurities.
- a thin film having a diameter of about 50 mm can be grown, and the area can be increased as compared with the related art.
- FIG. 6 is a sectional view showing a second configuration of the force sword 1.
- the force source 1 according to the second configuration has a recess 23 formed in a copper electrode holder 101, and a brazing material 25 mainly composed of silver is formed in the recess 23.
- the electrode 28 is provided with a groove 28 having a depth of about 0.5 mm and a tungsten electrode rod 102 obtained by mixing about 2% of thorium.
- the tungsten electrode rod 102 is formed with a tapered surface 30 having a tip angle of 55 ° to 65 °, and a flat surface 29 formed at the foremost end thereof.
- a hole 26 is formed at the center of.
- the joint between the distal end surface 29 and the tapered surface 30 has a gentle shape.
- the electrode holder 101 When the tungsten electrode rod 102 configured as described above is swaged to the electrode holder 101, the electrode holder 101 is plastically deformed, enters the groove 28, and is fitted with the electrode rod 102. Combine. As a result, even if a gap is formed between the electrode and the electrode holder due to the difference in the coefficient of thermal expansion between the electrode material and the electrode holder material when an arc is generated, the part fitted with the groove 28 prevents the electrode from falling off. .
- the tip angle of the tungsten electrode rod 102 was determined by the following experiment.
- FIG. 7 is a conceptual diagram showing the configuration of an experimental apparatus used for determining the tip angle of the tungsten electrode rod 102.
- a nozzle anode 32 is provided so as to surround the cathode 1, and a water-cooled copper anode 33 is provided outside the nozzle anode 32 at a predetermined interval. It was established. Then, the insulation between the force sword 1 and the nozzle anode 32 is broken down by the high-frequency power supply 36, and then the arc between the force sword 1 and the nozzle anode 32 is generated by the power of the non-transferable DC power supply 34.
- the non-transitional DC power supply 34 is turned off, and instead the transitional DC power supply 35 is turned on, and the power source 1 and the water-cooled copper anode 3 are turned on.
- An arc is generated between three.
- the switching of the output from the non-transitional DC power supply 34 to the transitional DC power supply 35 is instantaneous, and the arc generated between the power source 31 and the nozzle anode 32 is unstable. No arc is ignited between force sword 1 and water-cooled copper anode 3 3 State, that is, an ignition error occurs.
- the inclination angle of the taper surface 30 was set to 75 °, 70 °, 65 °, 60 °, 55 °, 50 °, 45 °.
- the ignition frequency and the series arc frequency were measured for each inclination angle under the following conditions.
- the electrode holder was made of copper, and the electrode rod was made of tungsten mixed with about 2% of thorium.
- copper, silver, aluminum, and aluminum were used as electrode holders. It may be one containing brass, molybdenum, tungsten, niobium, tantalum, or copper, or an alloy containing at least two of them.
- any of calcium oxide, thorium oxide, and yttrium oxide or an alloy thereof may be used.
- at least one of lanthanum, trim, strontium, cerium, yttrium or an oxide thereof may be mixed with these materials.
- FIG. 9 is a sectional view showing a third configuration of the force sword 1. As shown in FIG.
- hafnium oxide is formed on the surface of hafnium. Since hafnium oxide is a very stable substance as compared with hafnium, the melting point of the electrode is increased, and the consumption is reduced. Since hafnium has a lower thermal conductivity than tungsten, it is desirable to cover the whole with an electrode holder.
- a groove is formed on the periphery of the electrode.
- a groove may be formed on the electrode holder and a protrusion corresponding to the groove may be formed on the electrode, or a protrusion may be formed on the electrode side. It may be.
- the non-equilibrium plasma generating section is constituted by the enlarged nozzle.
- the present invention is not limited to the enlarged nozzle, and may use a cylindrical nozzle or the like.
- an insulating cylinder is interposed between the force sword and the anode to define the discharge space.
- the present invention is applicable even when there is no insulating cylinder.
- the shielding body is provided with a swirl flow generating means for swirling the source gas at the tip of an insulating cylinder disposed so as to surround the force source. It may be formed.
- the raw material radicals are ejected to the decompression chamber as a supersonic plasma jet, so that the raw material radicals reach the substrate while maintaining high activity, and the film quality and the film forming speed are increased. Can be improved.
- an inert gas such as argon or helium can be used as the energy transfer gas. This makes it possible to suppress electrode wear and mixing of electrode materials.
- the electrode can be prevented from falling.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma Technology (AREA)
Abstract
A surface-treating device which generates radicals by exciting a gaseous starting material and brings the generated radicals into contact with the surface of a substrate is provided with a means which mixes the gaseous starting material by turning the material, a means which makes arc discharge by turning an energy transmitting gas, or a means which generates unbalanced plasma in an expansion nozzle. It is preferable to fix an electrode to an electrode holder by forming a groove on the periphery of the electrode and a tapered surface of 55° to 65°. It is more preferable to selectively use an electrode material having low reactivity to the gaseous starting material in accordance with the kind of the used gaseous starting material.
Description
明 細 書 表面処理装置および表面処理方法 技術分野 Description Surface treatment equipment and surface treatment method
本発明は、 表面処理装置に係り、 特に、 原料ガスを効率よく励起して活性度の 高いラジカルとし、 このラジカルを基板表面に接触させ、 基板の表面処理を行う 表面処理装置に関する。 背景技術 The present invention relates to a surface treatment apparatus, and more particularly to a surface treatment apparatus that efficiently excites a raw material gas to form radicals having high activity, and makes the radicals contact the substrate surface to perform a surface treatment of the substrate. Background art
従来の表面処理装置における気相励起方法としては、 As a gas phase excitation method in a conventional surface treatment apparatus,
( 1 ) 高周波を用いて原料ガスを励起する高周波励起法 (1) High frequency excitation method to excite source gas using high frequency
( 2 ) マイクロ波を用いて原料ガスを励起するマイクロ波励起法 (2) Microwave excitation method that excites source gas using microwaves
( 3 ) 電子線を原料ガスに照射して原料ガスを励起する電子線照射法 (3) Electron beam irradiation method to excite source gas by irradiating source gas with electron beam
( 4 ) 熱フィラメントに原料ガスを供給し熱励起する熱フイラメント法 (4) Thermal filament method in which raw material gas is supplied to the hot filament and thermally excited
( 5 ) D Cァ一クジエツトを用いた D Cアークジエツト法などが採用されている。 上記方法のうち、 原料ガスに非常に高い活性度を与える必要のある用途、 例え ばダイヤモンド膜の気相合成には特公平 4— 7 7 7 1 0号公報、 特開平 1— 1 0 0 0 9 2号公報などに開示されているような D Cアークジエツト法が採用される。 この特公平 4一 7 7 7 1 0号公報に開示された気相合成法は、 第 1 0図に示す ように、 陽極 2および陰極 1を有するプラズマ発生装置に、 水素および気体の炭 化化合物を含むガスを供給し、 電極間の直流アーク放電によってこのガスをラジ カル化して熱プラズマとし、 原料チャンバ一内に熱プラズマジエツト 1 9として 噴出し、 この熱プラズマジェットを冷却された基板 2 2に衝突させて急冷し、 基 板 2 2上にダイヤモンド膜 Cを気相成長させるものでる。 (5) The DC arc jet method using the DC arc jet is adopted. Of the above-mentioned methods, for applications requiring very high activity to the raw material gas, for example, for the vapor phase synthesis of diamond films, Japanese Patent Publication No. 4-77710, Japanese Patent Application Laid-open No. The DC arc jet method as disclosed in Japanese Patent Publication No. 92 is adopted. As shown in FIG. 10, the gas-phase synthesis method disclosed in Japanese Patent Publication No. Hei 4-77770 discloses that a hydrogen and gaseous carbonized compound is added to a plasma generator having an anode 2 and a cathode 1. Is supplied, and the gas is radialized by a DC arc discharge between the electrodes to form a thermal plasma, which is jetted into the raw material chamber 1 as a thermal plasma jet 19, and the thermal plasma jet is cooled to a cooled substrate 2 The diamond film C is quenched by colliding with the substrate 2 to vapor-grow the diamond film C on the substrate 22.
また、 特開平 1一 1 0 0 0 9 2号公報に記載された気相合成法は、 第 1 1図に 示すように、 陽極 2および陰極 1を有するプラズマ発生装置にガスを供給し、 電 極間の直流アーク放電によってこのガスをラジカル化して熱プラズマとし、 生じ
た熱プラズマをプラズマジエツト 19と て、 トーチ先端のノズルから噴出し、 この噴出したプラズマジエツト 19に原料ガスを吹き付けて非平衡プラズマを生 成し、 この非平衡プラズマに基板 22を接触させて該基板 22上にダイヤモンド 膜 Cを気相成長させるものである。 Further, as shown in FIG. 11, the gas phase synthesis method described in Japanese Patent Application Laid-Open No. 11-100092 supplies a gas to a plasma generator having an anode 2 and a cathode 1, This gas is radicalized by a direct current arc discharge between the electrodes to form thermal plasma, which is generated The heated thermal plasma is ejected from the nozzle at the tip of the torch as a plasma jet 19, and a raw material gas is sprayed on the ejected plasma jet 19 to generate a non-equilibrium plasma. Then, a diamond film C is vapor-phase grown on the substrate 22.
上記各 DCアークジエツト法によれば、 高エネルギーをもつラジカルを生成す ることができるので、 ダイヤモンド成膜などの高エネルギーを必要とする気相成 長においても高い成長レートを示し、 高い生産性を得ることができる。 According to each of the above-mentioned DC arc jet methods, radicals having high energy can be generated, so that they exhibit a high growth rate even in vapor-phase growth requiring high energy such as diamond film formation, and have high productivity. Obtainable.
さらに、 後者の技術では原料ガスをプラズマジエツトに吹き付けることにより プラズマジエツトを急冷し、 熱プラズマをいわゆる非平衡プラズマの状態にして 生産性の向上を図っている。 Furthermore, in the latter technology, the raw material gas is sprayed onto the plasma jet to rapidly cool the plasma jet, and the thermal plasma is changed to a so-called non-equilibrium plasma state to improve productivity.
しかし、 前者の技術では、 原料ラジカルが 1万度以上の高温熱プラズマとなり 得るため、 基板の溶融や破壊といった問題が発生しやすかつた。 さらに、 DCプ ラズマジェットの特性上、 アークの照射範囲でしか成膜できないため、 成膜可能 な面積が小さいという問題もある。 However, with the former technology, the raw material radicals can be converted into high-temperature thermal plasma of 10,000 degrees or more, which easily causes problems such as melting and destruction of the substrate. Furthermore, due to the characteristics of the DC plasma jet, a film can be formed only within the arc irradiation range, and thus there is a problem that the area where the film can be formed is small.
また、 原料ガスの種類によっては、 タングステン製の放電電極が激しく消耗す る場合がある。 例えば、 原料ガスが炭素原子を含む場合には、 タングステンカー バイドが生成され、 原料ガスが酸素原子を含む場合には、 酸化タングステンが生 成されて放電電極が消耗する。 さらに、 このようにして生成されたタングステン 化合物は、 基板表面に付着するため、 膜質の劣化の原 s因となる。 In addition, depending on the type of the source gas, the tungsten discharge electrode may be severely consumed. For example, when the source gas contains carbon atoms, tungsten carbide is generated, and when the source gas contains oxygen atoms, tungsten oxide is generated and the discharge electrode is consumed. Further, the tungsten compound generated in this way adheres to the substrate surface, which causes deterioration of the film quality.
例えば、 以下の条件下で CH4を 0. 8%混合したガスを 2時間放電した場合 電極が大きく消耗することが観察された。 For example, it was observed that the electrode was greatly consumed when a gas containing 0.8% CH 4 was discharged for 2 hours under the following conditions.
NO 項目 条件 NO Item Condition
1 アーク電流 非移行式 15 [A] 1 Arc current Non-transfer type 15 [A]
2 アーク電圧 50〜70 [V] (大きく変動する) 2 Arc voltage 50 to 70 [V] (Varies greatly)
3 反応ガス Ar : 6. 5 [L/m i n] 3 Reaction gas Ar: 6.5 [L / min]
H2 : 0. 75 [L/m i n] H 2 : 0.75 [L / min]
CH4 : 0. 06 [L/m i n] これらの混合ガス CH 4 : 0.06 [L / min] These mixed gases
4 力ソード 電極ホルダ:銅 4 Force Sword Electrode Holder: Copper
電極: 2%トリア入りタングステン
5 アノード 材質:銅 Electrode: Tungsten with 2% thoria 5 Anode Material: Copper
ノズル径: Φ 2 . 2 一方、 後者の従来技術では、 原料ガスが放電電極に接触しないため、 上述した ような電極の消耗および電極材料の混入という問題は発生しないが、 プラズマガ スとして不活性ガスを使用した場合には、 アークが不安定となりやすいため、 原 料ガスに伝達されるエネルギーにばらつきが生じ、 このばらつきが膜質に影響を 与えるという問題がある。 Nozzle diameter: Φ 2.2 On the other hand, in the latter conventional technique, since the source gas does not come into contact with the discharge electrode, the problem of electrode consumption and mixing of the electrode material as described above does not occur, but the inert gas is used as the plasma gas. When using, the arc is likely to be unstable, so that the energy transmitted to the source gas varies, and this variation affects the film quality.
さらに、 減圧チャンバ一内に噴射されたプラズマジェットは、 熱膨張により擬 似的に超音速流になるにも拘わらず、 原料ガスの流速が遅いため、 超音速のブラ ズマジエツ卜と原料ガスとがうまく混合されず、 原料ガスへのエネルギーの伝達 効率およびプラズマジエツ卜の冷却効率が低下するという問題もある。 発明の開示 Furthermore, despite the fact that the plasma jet injected into the decompression chamber becomes a supersonic flow due to thermal expansion, the flow velocity of the raw material gas is low, so that the supersonic plasma jet and the raw material gas are separated. There is also a problem that mixing is not performed well, and energy transfer efficiency to the raw material gas and cooling efficiency of the plasma jet are reduced. Disclosure of the invention
本発明は、 気相の励起効率を向上させるのに有効な表面処理装置を提供するこ とを目的とする。 An object of the present invention is to provide a surface treatment apparatus effective for improving the excitation efficiency of a gas phase.
上記目的を達成するため請求項 1記載の発明は、 To achieve the above object, the invention described in claim 1 is
原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触させる 表面処理装置において、 In a surface treatment device that excites the source gas to form radicals, and the generated radicals contact the substrate surface,
前記原料ガスを供給する原料ガス供給手段と、 Source gas supply means for supplying the source gas,
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスを 供給するエネルギー伝達ガス供給手段と、 Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas,
前記エネルギー伝達ガス供給手段が供給したエネルギー伝達ガスを熱プラズマ 化する熱プラズマ生成手段と、 Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma;
前記熱プラズマ生成手段が生成した熱プラズマと前記原料ガス供給手段が供糸 ί した原料ガスとを混合し、 原料ラジカルを生成する原料ラジカル生成手段とを具 備し、 A material radical generating means for mixing the thermal plasma generated by the thermal plasma generating means with the raw material gas supplied by the raw material gas supply means to generate a raw material radical;
前記原料ガス供給手段は、 The source gas supply means,
供給する原料ガスを旋回させる原料ガス旋回手段を具備する
ことを特徴とする。 Equipped with source gas swirling means for swirling the source gas to be supplied It is characterized by the following.
ここで、 原料ガス供給手段は、 基板表面に接触させる物質を含む気相に圧力を 加えて、 当該気相を所定形状の流路中に流し、 原料ガスの励起ポイントに送り込 むものである。 原料ガスとは、 例えば、 基板表面にダイヤモンド薄膜を形成する 場合には、 炭素化合物を使用し、 C -B Nを成膜する場合には、 NH ガスと B 2 Hsガス等の反応性ガスを使用する。 その他、 エッチング、 酸化、 窒化等の各種 表面処理に応じた反応性ガスを使用する。 Here, the source gas supply means applies pressure to a gas phase containing a substance to be brought into contact with the substrate surface, causes the gas phase to flow through a flow path having a predetermined shape, and sends the gas to an excitation point of the source gas. The raw material gas, for example, in the case of forming a diamond film on the substrate surface, using a carbon compound, in the case of forming an C -BN is a reactive gas such as NH 3 gas and B 2 H s gas use. In addition, use a reactive gas corresponding to various surface treatments such as etching, oxidation, and nitriding.
エネルギー伝達ガス供給手段は、 励起エネルギーのキャリアとなる気相に圧力 を加えて、 当該気相を所定形状の流路中に流し、 当該気相を熱プラズマ化するポ ィントに送り込むものである。 The energy transfer gas supply means applies pressure to a gaseous phase serving as a carrier of excitation energy, flows the gaseous phase into a flow path having a predetermined shape, and sends the gaseous phase to a point for thermal plasma conversion.
熱プラズマ生成手段は、 エネルギー伝達ガスを急速に加熱して熱プラズマ化す る手段であり、 点火、 アーク放電、 高周波励起、 マイクロ波励起、 電子線励起、 熱フィラメント励起等が適用される。 The thermal plasma generating means is a means for rapidly heating an energy transfer gas to generate thermal plasma, and applies ignition, arc discharge, high frequency excitation, microwave excitation, electron beam excitation, hot filament excitation, and the like.
原料ラジカル生成手段は、 熱プラズマ化したエネルギー伝達ガスと原料ガスと を混合して、 エネルギー伝達ガスに充填されたエネルギーを原料ガスに送り込み、 この原料ガスをラジカル化させるものである。 この両者を混合させる空間として は、 流路の下流に向かって開口断面が徐々に小さくなる縮小ノズルや開口断面が 一定で伸長する筒状のノズル等の気相の膨張を抑制する空間を使用することが好 ましい。 The raw material radical generating means mixes the energy transfer gas converted into the thermal plasma with the raw material gas, sends the energy filled in the energy transfer gas to the raw material gas, and radicalizes the raw material gas. As a space for mixing the two, use a space that suppresses the expansion of the gas phase, such as a reduced nozzle whose opening cross section gradually decreases toward the downstream of the flow path or a cylindrical nozzle whose opening cross section is constant and elongated. It is preferable.
原料ガス旋回手段は、 原料ガスの流出方向に回転成分を加えて、 原料ガスを旋 回させる手段であり、 湾曲した流路に原料ガスを衝突させて、 原料ガスの流出方 向に回転成分を加える構成や回転羽を使用した攪拌手段が適用される。 The raw material gas swirling means is a means for rotating the raw material gas by adding a rotational component to the flow direction of the raw material gas. An additional configuration or a stirring means using a rotary blade is applied.
この原料ガス旋回手段が設けられることにより、 原料ガスと熱プラズマ化した エネルギー伝達ガスの混合が円滑に行われ、 エネルギーの伝達効率を向上させる ことが可能となる。 By providing the raw material gas swirling means, the raw material gas and the energy transfer gas converted into thermal plasma are smoothly mixed, and the energy transfer efficiency can be improved.
また、 請求項 2記載の発明は、 請求項 1記載の発明において、 The invention described in claim 2 is the invention according to claim 1,
前記エネルギー伝達ガス供給手段は、 The energy transfer gas supply means,
供給するエネルギー伝達ガスを旋回させるエネルギー伝達ガス旋回手段を具備
する Equipped with an energy transfer gas swirling means for swirling the supplied energy transfer gas Do
ことを特徴とする。 It is characterized by the following.
このエネルギー伝達ガス旋回手段は、 前述した原料ガス旋回手段と同様の手段 によってエネルギー伝達ガスを旋回させるものである。 This energy transfer gas swirl means swirls the energy transfer gas by the same means as the above-described source gas swirl means.
このように、 エネルギー伝達ガス旋回手段を設けることにより、 エネルギー伝 達ガスは、 旋回した状態で熱プラズマ生成手段に供給されるため、 当該熱プラズ マ生成手段に放電を使用する場合には、 当該旋回によって形成された圧力勾配に よって安定した放電状態を得ることができる。 従って、 エネルギー伝達ガスとし てアルゴン等の不活性ガスを安定して使用することができる。 As described above, by providing the energy transfer gas swirling means, the energy transfer gas is supplied to the thermal plasma generation means in a swirled state. A stable discharge state can be obtained by the pressure gradient formed by the turning. Therefore, an inert gas such as argon can be stably used as the energy transfer gas.
また、 請求項 3記載の発明は、 請求項 1または請求項 2記載の発明において、 前記原料ラジカル生成手段が生成した原料ラジカルを断熱膨張させて非平衡プ ラズマを生成する非平衡プラズマ生成手段をさらに具備する The invention according to claim 3 is the invention according to claim 1 or claim 2, wherein the non-equilibrium plasma generation means for generating a non-equilibrium plasma by adiabatically expanding the source radical generated by the source radical generation means. Furthermore
ことを特徴とする。 It is characterized by the following.
前記非平衡プラズマ生成手段は、 原料ラジカルを断熱膨張させて、 当該原料ラ ジカルの流速を増加させるとともに、 広面積の噴射幅を構成する。 尚、 ここでい う 「断熱」 には、 完全な断熱状態のほか、 熱の出入りを極めて少なくした状態も 含まれる。 この非平衡プラズマ生成手段としては、 流路の下流に向かって開口断 面が徐々に大きくなる拡大ノズルのほか、 前記原料ラジカルの流路よりも開口断 面の広いノズルが使用される。 The non-equilibrium plasma generating means adiabatically expands the raw material radicals, increases the flow rate of the raw material radicals, and configures a wide area spray width. The term “insulation” as used herein includes not only a completely insulated state, but also a state in which heat flow is extremely low. As the non-equilibrium plasma generating means, an enlarged nozzle whose opening section gradually increases toward the downstream of the flow path, and a nozzle having an opening cross section wider than the flow path of the raw material radical are used.
ここで、 一般に、 原料ラジカルが断熱膨張した場合には、 当該膨張したガス流 の外周に向かって粒子密度が小さくなり、 噴出された原料ラジカルの粒子密度が 不均一なものとなる場合、 いわゆる散逸効果が生じる。 Here, in general, when the material radicals are adiabatically expanded, the particle density decreases toward the outer periphery of the expanded gas flow, and when the particle density of the ejected material radicals becomes non-uniform, so-called dissipation is performed. The effect occurs.
そこで、 本発明では、 原料ラジカルの均一性を向上させるため、 原料ガス旋回 手段を設け、 原料ガスを旋回させている。 即ち、 原料ガス旋回手段が旋回させた 原料ガスは、 原料ラジカル生成手段で旋回した状態でラジカル化し、 生成された 原料ラジカルのガス粒子に遠心力が働いて、 旋回流の外周に向かってラジカル密 度の高いガス流となる。 その結果、 前述した散逸効果が補完され、 粒子密度が均 一な原料ラジカル流を噴出することができる。
また、 請求項 4記載の発明は、 請求項 1乃至請求項 3のいずれかに記載の発明 において、 Therefore, in the present invention, in order to improve the uniformity of the source radical, a source gas swirling means is provided to swirl the source gas. That is, the raw material gas swirled by the raw material swirling means is radicalized while being swirled by the raw material radical generating means. The gas flow becomes high. As a result, the above-mentioned dissipative effect is complemented, and a raw material radical stream having a uniform particle density can be ejected. The invention described in claim 4 is the invention according to any one of claims 1 to 3,
前記原料ガス旋回手段は、 The source gas swirling means,
前記熱プラズマ生成手段が生成した熱プラズマ流を環囲する環状の原料ガス旋 回路と、 An annular source gas circuit surrounding the thermal plasma flow generated by the thermal plasma generating means;
前記原料ガス旋回路の周縁に配設され、 該原料ガス旋回路の中心から偏移した 方向に前記原料ガス供給手段が供給した原料ガスを導入する原料ガス導入路とを 具備する ' A source gas introduction passage disposed at a periphery of the source gas circulation circuit, for introducing the source gas supplied by the source gas supply unit in a direction deviated from the center of the source gas circulation circuit.
ことを特徴とする。 It is characterized by the following.
上記原料ガス旋回路は、 前記熱プラズマ生成手段が生成した熱プラズマを取り 囲むように配設された環状の流路である。 また、 原料ガス導入路は、 原料ガス線 回路の外周から原料ガスを導入する流路であり、 当該原料ガス導入路から導入さ れた原料ガスは、 原料ガス旋回路の中心をはずして熱プラズマ流に混入する。 ここで、 好ましくは、 前記原料ガス導入路を前記原料ガス旋回路の外周接線上 に複数配設し、 各原料ガス導入路から導入される原料ガスの回転方向が同一とな るように、 導入方向を統一する。 The source gas circuit is an annular flow path arranged so as to surround the thermal plasma generated by the thermal plasma generating means. The source gas introduction path is a flow path for introducing the source gas from the outer periphery of the source gas wire circuit, and the source gas introduced from the source gas introduction path is separated from the center of the source gas rotation circuit by thermal plasma. Mix into the stream. Here, preferably, a plurality of the source gas introduction paths are arranged on the outer peripheral tangent of the source gas rotation circuit, and the source gas introduction paths are introduced so that the rotation directions of the source gases introduced from the respective source gas introduction paths are the same. Unify the directions.
また、 請求項 5記載の発明は、 請求項 1乃至請求項 4のいずれかに記載の発明 において、 In addition, the invention described in claim 5 is the invention according to any one of claims 1 to 4,
前記熱プラズマ生成手段は、 The thermal plasma generating means,
前記エネルギー伝達ガスの流路と、 A flow path for the energy transfer gas,
前記流路中に配設された力ソードおよびアノードと、 A force sword and an anode disposed in the flow path;
前記力ソードの先端を露出させた状態で該カソードの周緣を取り囲む絶縁部材 とを具備する An insulating member surrounding the periphery of the cathode with the tip of the force sword being exposed.
ことを特徴とする。 It is characterized by the following.
ここで、 上記力ソードおよびアノードは、 放電電極として使用されるものであ り、 互いに近接して配設される。 該カソードの周縁を取り囲む絶縁部材は、 該カ ソードとアノードとの絶緣性を保持するために介在させるものであり、 力ソード の形状に適合して構成することが好ましい。 例えば、 力ソードが円柱形状であれ
ば、 絶縁部材には円筒形状を使用する。 この絶緣部材は、 力ソードの放電ポイン トを露出させた状態で力ソードとアノードとの間に配設される。 前記原料ガス旋 回手段は、 上記絶縁部材の先端に配設することが好ましい。 Here, the force source and the anode are used as discharge electrodes, and are arranged close to each other. The insulating member surrounding the periphery of the cathode is interposed to maintain the insulated property between the cathode and the anode, and is preferably configured to conform to the shape of the force source. For example, if the force sword is cylindrical For example, a cylindrical shape is used for the insulating member. This insulating member is disposed between the power source and the anode with the discharge point of the power source exposed. It is preferable that the source gas swirling means is provided at a tip of the insulating member.
このように、 力ソードの周緣を絶縁部材で取り囲むことにより、 放電ポイント が規定されるため、 放電の安定化が図られる。 As described above, since the discharge point is defined by surrounding the periphery of the force sword with the insulating member, the discharge is stabilized.
また、 請求項 6記載の発明は、 請求項 5記載の発明において、 The invention described in claim 6 is the invention according to claim 5,
前記エネルギー伝達ガス旋回手段は、 The energy transfer gas swirl means,
前記力ソードの先端を環囲する環状のエネルギー伝達ガス旋回路と、 An annular energy transfer gas swirling circuit surrounding the tip of the force sword;
前記エネルギー伝達ガス旋回路の周縁に配設され、 該エネルギー伝達ガス旋回 路の中心から偏移した方向に前記エネルギー伝達ガス供給手段が供給したェネル ギー伝達ガスを導入するエネルギー伝達ガス導入路とを具備する An energy transfer gas introduction path, which is provided at a periphery of the energy transfer gas swirling circuit and that introduces the energy transfer gas supplied by the energy transfer gas supply unit in a direction deviated from the center of the energy transfer gas swirl path. Have
ことを特徴とする。 It is characterized by the following.
上記エネルギー伝達ガス旋回路は、 力ソードの先端 (好ましくは放電ポイン ト) を取り囲むように配設された環状の流路である。 また、 上記エネルギー伝達 ガス導入路は、 エネルギー伝達ガス旋回路にエネルギー伝達ガスを導入する流路 である。 このエネルギー伝達ガス導入路から導入されたエネルギー伝達ガスは、 エネルギー伝達ガス旋回路の中心を避けて該エネルギー伝達ガス旋回路の内壁に 衝突し、 この内壁に沿って旋回する。 このようにして旋回したエネルギー伝達ガ スは、 力ソードの先端付近に圧力勾配を形成し、 放電を安定化させる。 The energy transfer gas swirl circuit is an annular flow path arranged so as to surround a tip (preferably, a discharge point) of a force source. The energy transfer gas introduction path is a flow path for introducing the energy transfer gas into the energy transfer gas circuit. The energy transfer gas introduced from the energy transfer gas introduction path collides with the inner wall of the energy transfer gas swirl circuit, avoiding the center of the energy transfer gas swirl circuit, and turns along the inner wall. The energy transfer gas swirled in this manner forms a pressure gradient near the tip of the force sword, stabilizing the discharge.
また、 請求項 7記載の発明は、 請求項 5または請求項 6記載の発明において、 前記力ソードは、 The invention according to claim 7 is the invention according to claim 5 or claim 6, wherein the force sword is:
周縁に溝が形成された高融点金属からなる電極と、 An electrode made of a high melting point metal with a groove formed on the periphery,
先端に凹部を有し該凹部に前記電極を保持する電極ホルダとを具備する ことを特徴とする。 An electrode holder having a concave portion at the tip and holding the electrode in the concave portion is provided.
ここで、 前記電極は、 放電ポイントとなる部分であり、 タングステン等の高融 点金属から形成される。 この電極の周縁には一又は複数の溝が形成される。 また、 電極ホルダは、 前記電極を保持するための凹部を有し、 前記電極はこの凹部に嵌 合した状態で保持される。 この凹部には、 前記電極に形成された溝に適合する突
起部が形成するかまたは、 ろう材を充填し、 前記電極との嵌合性を高めることが 望ましい。 Here, the electrode is a portion serving as a discharge point, and is formed of a high melting point metal such as tungsten. One or more grooves are formed on the periphery of this electrode. Further, the electrode holder has a concave portion for holding the electrode, and the electrode is held in a state fitted in the concave portion. This recess has a protrusion that fits into the groove formed in the electrode. It is desirable that the raised portion be formed or filled with a brazing material to enhance the fitting property with the electrode.
前記電極を前記凹部に挿嵌すると、 該凹部の塑性変形により、 該凹部の一部が 前記電極に形成された溝に入り込み、 前記電極と前記電極ホルダの熱膨張率の差 異により、 該電極と該凹部との間に隙間が生じた場合でも当該溝に入り込んだ部 分が電極の落下を防止する。 When the electrode is inserted into the recess, a part of the recess enters a groove formed in the electrode due to plastic deformation of the recess, and the electrode expands due to a difference in the coefficient of thermal expansion between the electrode and the electrode holder. Even if a gap is formed between the electrode and the concave portion, the portion that enters the groove prevents the electrode from falling.
また、 前記電極がろう付けで固定される場合でも、 前記凹部に充填されたろう 材は、 前記電極に形成された溝部にも入り込むため、 上記と同様に、 熱膨張率の 差によって隙間が生じた場合でも当該溝に入り込んだろう材が電極の落下を防止 する。 Further, even when the electrode is fixed by brazing, the brazing material filled in the recess enters the groove formed in the electrode, so that a gap is generated due to the difference in the coefficient of thermal expansion as described above. Even in this case, the material that has entered the groove prevents the electrode from falling.
また、 請求項 8記載の発明は、 請求項 7記載の発明において、 The invention described in claim 8 is the invention according to claim 7,
前記電極は、 The electrode is
平面状の先端面と、 A flat tip surface,
前記先端面の中央に形成された凹部とを有する Having a recess formed at the center of the tip surface
ことを特徴とする。 It is characterized by the following.
上記先端面の中央に形成された凹部により、 アークが安定化し、 アーク発生電 圧の変動が防止される。 その結果、 本発明によって処理された基板表面は安定し たものとなり、 また、 電極の消耗によって電極材料が処理表面に混入することを 抑制できる。 The arc is stabilized by the concave portion formed at the center of the tip surface, and the fluctuation of the arc generating voltage is prevented. As a result, the surface of the substrate treated according to the present invention becomes stable, and it is possible to prevent the electrode material from being mixed into the treated surface due to the consumption of the electrode.
また、 請求項 9記載の発明は、 The invention according to claim 9 is
原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触させる 表面処理装置において、 In a surface treatment device that excites the source gas to form radicals, and the generated radicals contact the substrate surface,
前記原料ガスを供給する原料ガス供給手段と、 Source gas supply means for supplying the source gas,
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスを 供給するェネルギー伝達ガス供給手段と、 Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas,
前記エネルギー伝達ガス供給手段が供給したエネルギー伝達ガスを熱プラズマ 化する熱プラズマ生成手段と、 Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma;
前記熱プラズマ生成手段が生成した熱プラズマと前記原料ガス供給手段が供給
した原料ガスとを混合し、 原料ラジカルを生成する原料ラジカル生成手段とを具 備し、 The thermal plasma generated by the thermal plasma generating means is supplied by the raw gas supply means. A raw material radical generating means for mixing the raw material gas with the raw material gas to generate a raw material radical,
前記エネルギー伝達ガス供給手段は、 The energy transfer gas supply means,
供給するエネルギー伝達ガスを旋回させるエネルギー伝達ガス旋回手段を具備 する Equipped with energy transfer gas swirl means for swirling the energy transfer gas to be supplied
ことを特徴とする。 It is characterized by the following.
また、 請求項 1 0記載の発明は、 The invention according to claim 10 is
原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触させる 表面処理装置において、 In a surface treatment device that excites the source gas to form radicals, and the generated radicals contact the substrate surface,
前記原料ガスを供給する原料ガス供給手段と、 Source gas supply means for supplying the source gas,
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスを 供給するエネルギー伝達ガス供給手段と、 Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas,
前記エネルギー伝達ガス供給手段が供給したエネルギー伝達ガスを熱プラズマ 化する熱プラズマ生成手段と、 Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma;
前記熱プラズマ生成手段が生成した熱プラズマと前記原料ガス供給手段が供給 した原料ガスとを混合する混合空間と、 A mixing space for mixing the thermal plasma generated by the thermal plasma generating means with the raw material gas supplied by the raw gas supply means,
前記混合空間の下流に接続され、 該混合空間で混合された混合ガスを断熱膨張 させる拡大ノズルとを具備する An expansion nozzle connected downstream of the mixing space and adiabatically expanding the mixed gas mixed in the mixing space.
ことを特徴とする。 It is characterized by the following.
上記拡大ノズルは、 超音速ノズルを構成し、 当該超音速ノズルを通過したガス 流は、 音速以上の流速で噴射される。 その結果、 原料ラジカルは高反応状態を維 持したまま短時間で基板表面に到達するため、 原料の密着性および処理速度の向 上が図られる。 また、 拡大ノズルを通過した原料ラジカルの温度は、 断熱膨張に よって低下するため、 基板表面の劣化が抑制される。 The enlarged nozzle constitutes a supersonic nozzle, and a gas flow passing through the supersonic nozzle is jetted at a flow velocity higher than the sonic velocity. As a result, the raw material radicals reach the substrate surface in a short time while maintaining a high reaction state, so that the adhesion of the raw materials and the processing speed are improved. In addition, the temperature of the raw material radicals that have passed through the expansion nozzle is reduced by adiabatic expansion, so that deterioration of the substrate surface is suppressed.
また、 請求項 1 1記載の発明は、 The invention described in claim 11 is
原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触させる 表面処理装置において、 In a surface treatment device that excites the source gas to form radicals, and the generated radicals contact the substrate surface,
周縁に溝が形成された高融点金属からなる電極と、
先端に凹部を有し該凹部に充填されたろう材を介して前記電極を保持する電極 ホルダとを具備する An electrode made of a high melting point metal with a groove formed on the periphery, An electrode holder having a concave portion at the tip and holding the electrode via a brazing filler material filled in the concave portion.
ことを特徴とする。 It is characterized by the following.
また、 請求項 1 2記載の発明は、 請求項 1 1記載の発明において、 The invention of claim 12 is the invention of claim 11,
前記電極は、 The electrode is
5 5 ° 乃至 6 5 ° の角度で縮径したテーパ部を有する It has a tapered part whose diameter is reduced from 55 ° to 65 °.
ことを特徴とする。 It is characterized by the following.
このように、 前記電極に 5 5 ° 乃至 6 5 ° テ一パ部を設けることにより、 ァ一 ク発生電圧の安定化がより図られることになる。 As described above, by providing the 55 ° to 65 ° taper portion on the electrode, the arc generation voltage can be further stabilized.
また、 請求項 1 3記載の発明は、 請求項 1 1または請求項 1 2記載の発明にお いて、 The invention described in claim 13 is the invention according to claim 11 or claim 12,
前記電極は、 The electrode is
平面状の先端面と、 A flat tip surface,
前記先端面の中央に形成された凹部とを有する Having a recess formed at the center of the tip surface
ことを特徴とする。 It is characterized by the following.
また、 請求項 1 4記載の発明は、 請求項 1 1乃至請求項 1 3のいずれかに記載 の発明において、 The invention described in claim 14 is the invention according to any one of claims 11 to 13,
前記電極ホルダは、 The electrode holder,
銅、 銀、 アルミニウム、 黄銅、 モリブデン、 タングステン、 ニオブ、 タンタル、 銅の内何れかまたはそれらの内 2つ以上からなる合金を主成分として構成される ことを特徴とする。 It is characterized by being composed mainly of any one of copper, silver, aluminum, brass, molybdenum, tungsten, niobium, tantalum, and copper, or an alloy of two or more thereof.
上記金属によって形成された電極ホルダは、 電極材料の消耗が抑制されるため、 長時間にわたって安定したアーク放電を得ることができるとともに、 電極材料の 処理表面への混入が防止される。 Since the electrode holder made of the above metal suppresses the consumption of the electrode material, a stable arc discharge can be obtained for a long time, and the electrode material is prevented from being mixed into the treated surface.
また、 請求項 1 5記載の発明は、 請求項 1 1乃至請求項 1 4のいずれかに記載 の発明において、 The invention described in claim 15 is the invention according to any one of claims 11 to 14,
前記電極は、 The electrode is
タングステン、 酸化カルシウム、 酸化トリウム、 酸化イットリウム、 ジルコ二
ゥム、 ハフニウムの内何れかまたはそれらの内 2つ以上からなる合金を主成分と して構成される Tungsten, calcium oxide, thorium oxide, yttrium oxide, zirconium The main component is an alloy consisting of at least one of palladium and hafnium or two or more of them
ことを特徵とする。 It is characterized.
上記金属によって形成された電極は、 電極材料の消耗が抑制されるため、 長時 間にわたって安定したアーク放電を得ることができるとともに、 電極材料の処理 表面への混入が防止される。 特に、 ジルコニウムまたはハフニウムが混入された 電極は、 酸素原子を含む気相を励起させる場合に消耗抑制の効果が顕著に現れる。 また、 請求項 1 6記載の発明は、 請求項 1 1乃至請求項 1 5のいずれかに記載 の発明において、 Since the electrode made of the above-mentioned metal suppresses the consumption of the electrode material, a stable arc discharge can be obtained for a long time, and the electrode material is prevented from being mixed into the treated surface. In particular, an electrode containing zirconium or hafnium has a remarkable effect of suppressing consumption when exciting a gas phase containing oxygen atoms. The invention described in claim 16 is the invention according to any one of claims 11 to 15,
前記電極は、 The electrode is
ランタン、 トリウム、 ストロンチウム、 セリウム、 イットリウムまたはそれら の酸化物の内少なくとも 1つを混入して構成される Contained by mixing at least one of lanthanum, thorium, strontium, cerium, yttrium or their oxides
ことを特徴とする。 It is characterized by the following.
上記金属が混入された電極は、 電極材料の消耗を抑制する。 The electrode mixed with the metal suppresses consumption of the electrode material.
また、 請求項 1 7記載の発明は、 The invention described in claim 17 is
原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触させる 表面処理装置において、 In a surface treatment device that excites the source gas to form radicals, and the generated radicals contact the substrate surface,
高融点金属からなる電極と、 An electrode made of a high melting point metal,
先端に凹部を有し該凹部に充填されたろう材を介して前記電極を保持する電極 ホルダとを具備し、 An electrode holder having a concave portion at the tip and holding the electrode via a brazing filler material filled in the concave portion,
前記電極は、 The electrode is
平面状の先端面と、 A flat tip surface,
前記先端面の中央に形成された凹部とを有する Having a recess formed at the center of the tip surface
ことを特徴とする。 It is characterized by the following.
また、 請求項 1 8記載の発明は、 The invention of claim 18 is
原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に噴射して該 基板表面を処理する表面処理方法において、 In a surface treatment method for treating a substrate surface by exciting a source gas to form radicals and injecting the generated radicals onto the substrate surface,
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスに、
前記原料ガスを旋回させながら混入して、 旋回しながら流出する原料ラジカルを 生成し、 An energy transfer gas serving as a transfer medium of energy for exciting the source gas, The raw material gas is mixed while swirling to generate a raw material radical that flows out while swirling,
前記原料ラジカルを断熱膨張させて、 該原料ラジカルを旋回させながら前記基 板表面に噴射する The raw material radical is adiabatically expanded, and is sprayed on the substrate surface while rotating the raw material radical.
ことを特徴とする。 It is characterized by the following.
上記のように原料ガスを旋回させながらエネルギー伝達ガスに混入することに より、 両者をスムーズに混合するとともに、 生成された原料ラジカルにも旋回成 分が与えられるため、 当該原料ラジカルの粒子密度が旋回流の外周に向かって密 となり、 断熱膨張時の散逸効果が補完される。 By mixing the raw material gas into the energy transfer gas while swirling as described above, the two are mixed smoothly, and the generated raw material radicals are also given a swirl component. It becomes denser toward the outer circumference of the swirling flow, complementing the dissipation effect during adiabatic expansion.
また、 請求項 1 9記載の発明は、 請求項 1 8記載の発明において、 The invention of claim 19 is the invention of claim 18, wherein
前記エネルギー伝達ガスを前記原料ガスを旋回させる方向と同一の方向で旋回 させて、 該エネルギー伝達ガスと該原料ガスを混合する The energy transfer gas is swirled in the same direction as the swirling direction of the source gas to mix the energy transfer gas and the source gas.
ことを特徴とする。 It is characterized by the following.
このように、 エネルギー伝達ガスと原料ガスの両者を同一方向で旋回させるこ とにより、 両者の混合がスムーズに行なわれるとともに、 生成された原料ラジカ ルの旋回成分がより強くなるため、 散逸効果の補完効果がより一層図られる。 図面の簡単な説明 In this way, by swirling both the energy transfer gas and the source gas in the same direction, the mixing of the two can be performed smoothly and the swirling component of the generated raw material radical becomes stronger, so that the dissipative effect is reduced. The complementing effect is further enhanced. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る表面処理装置の一構成例を示す断面図である。 FIG. 1 is a cross-sectional view showing one configuration example of a surface treatment apparatus according to the present invention.
第 2図は、 本発明に係る表面処理装置を具備する気相成長装置の構成を示す断 面図である。 FIG. 2 is a cross-sectional view showing a configuration of a vapor phase growth apparatus provided with a surface treatment apparatus according to the present invention.
第 3図は、 熱プラズマ生成手段の一構成例を示す断面図である。 FIG. 3 is a cross-sectional view showing one configuration example of the thermal plasma generating means.
第 4図は、 原料ラジカル生成手段の一構成例を示す断面図である。 FIG. 4 is a cross-sectional view showing one configuration example of the raw material radical generating means.
第 5図は、 本発明によって生成されたダイヤモンド膜のラマンスぺクトルを示 す図である。 FIG. 5 is a diagram showing a Raman spectrum of a diamond film produced according to the present invention.
第 6図は、 力ソード 1の第 2の構成を示す断面図である。 FIG. 6 is a sectional view showing a second configuration of the force sword 1. As shown in FIG.
第 7図は、 タングステン電極棒 1 0 2の先端角度を決定するために使用した実 験装置の構成を示す概念図である。
第 8図は、 第 7図に示す実験装置で使用したテーパ面の傾斜角を示す図である。 第 9図は、 力ソード 1の第 3の構成を示す断面図である。 FIG. 7 is a conceptual diagram showing the configuration of an experimental apparatus used for determining the tip angle of the tungsten electrode rod 102. FIG. 8 is a view showing an inclination angle of a tapered surface used in the experimental apparatus shown in FIG. FIG. 9 is a sectional view showing a third configuration of the force sword 1.
第 1 0図は、 従来の D Cアークジエツト法を示す断面図である。 FIG. 10 is a sectional view showing a conventional DC arc jet method.
第 1 1図は、 従来の D Cアークジェット法を示す断面図である。 発明を実施するための最良の形態 FIG. 11 is a sectional view showing a conventional DC arc jet method. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例について図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第 1図は、 本発明に係る表面処理装置の一構成例を示す断面図である。 まず、 同図を使用して本発明に係る表面処理装置の概略構成を説明する。 FIG. 1 is a cross-sectional view showing one configuration example of a surface treatment apparatus according to the present invention. First, a schematic configuration of a surface treatment apparatus according to the present invention will be described with reference to FIG.
同図に示す表面処理装置には、 エネルギー伝達ガスを熱プラズマ化する熱ブラ ズマ生成手段が設けられる。 本実施例では、 エネルギー伝達ガスとしてアルゴン ガスを使用する。 The surface treatment apparatus shown in the figure is provided with a thermal plasma generating means for converting an energy transfer gas into a thermal plasma. In this embodiment, argon gas is used as the energy transfer gas.
この熱プラズマ生成手段には、 アーク放電を発生する力ソード 1およびァノ一 ド 3が設けられ、 該アノード 3は、 セラミック製の遮蔽筒 2を介して力ソード 1 を取り囲むように配設される。 この遮蔽筒 2は、 力ソード 1の先端を露出させて アーク放電を生起させる放電ボイン卜を規定する。 The thermal plasma generating means is provided with a force source 1 and an anode 3 for generating an arc discharge, and the anode 3 is disposed so as to surround the power source 1 via a ceramic shield tube 2. You. The shield cylinder 2 defines a discharge point that exposes the tip of the force sword 1 to generate an arc discharge.
上記熱プラズマ生成手段の下流には、 原料ガスを上記熱プラズマと反応させて 励起し、 原料ラジカルを生成する原料ラジカル生成手段が設けられる。 本実施例 では、 原料ガスとして C H 4と H 2の混合ガスを使用する。 Downstream of the thermal plasma generating means, there is provided a raw material radical generating means for reacting the raw material gas with the thermal plasma to excite it to generate a raw material radical. In this embodiment, a mixed gas of CH 4 and H 2 is used as a source gas.
上記原料ラジカル生成手段の下流には、 熱プラズマ化した原料ラジカルを断熱 膨張によって非平衡プラズマ化する非平衡プラズマ生成手段が設けられる。 この 非平衡プラズマ生成手段は、 拡大ノズル 5を主として構成される。 A non-equilibrium plasma generating means is provided downstream of the raw material radical generating means for converting the thermal radicalized raw material radical into non-equilibrium plasma by adiabatic expansion. The non-equilibrium plasma generating means mainly includes an enlarged nozzle 5.
上記のように構成される表面処理装置は、 第 2図に示すような気相成長装置の 原料プラズマ噴出手段として用いられる。 ここで、 第 2図は、 本発明に係る表面 処理装置を具備する気相成長装置の構成を示す断面図である。 同図に示す気相成 長装置は、 ガラスで形成された基板 2 2の表面にダイヤモンド薄膜を成長させる ものである。 The surface treatment apparatus configured as described above is used as a source plasma jetting means of a vapor phase growth apparatus as shown in FIG. Here, FIG. 2 is a cross-sectional view showing a configuration of a vapor phase growth apparatus provided with the surface treatment apparatus according to the present invention. The vapor phase growth apparatus shown in the figure grows a diamond thin film on the surface of a substrate 22 made of glass.
次に、 第 3図を使用して熱プラズマ生成手段の構成例を詳細に説明する。 第 3
図は、 熱プラズマ生成手段の一構成例を示す断面図である。 Next, a configuration example of the thermal plasma generating means will be described in detail with reference to FIG. number 3 The figure is a cross-sectional view showing one configuration example of the thermal plasma generating means.
同図 (a ) に示すように、 この熱プラズマ生成手段は、 銅製のポデー 1 0 1に、 ろう付けによりタングステン製の電極棒 1 0 2が固定されている。 そしてカソ一 ドの内部は中空となっており、 冷却水導入空間 1 0 3が形成される。 冷却水は、 第 1図に示す第 1のニップル 8より導入され、 冷却水導入管 1 0 4を通って冷却 水導入空間 1 0 3に導かれて力ソード 1を冷却するとともに、 冷却水導入管 1 0 4の外側の冷却水排出空間 1 0 5を通って第 2のニップル 9より排出される。 ま た、 力ソード 1の周りには先端部まで覆うように耐熱性の高いセラミック製の絶 緣筒 2が形成され、 この外側にアノード 3が配設されている。 またこの絶緣筒 2 の先端には、 第 3図 (b ) に示すようにエネルギー伝達ガスを旋回させながら放 電空間 1 7に吹き出すための第 1のスワラ 2 0 1が設けられている。 ここで、 第 3図 (b ) は、 第 3図 (a ) の A— A断面を示す図である。 As shown in FIG. 1A, in this thermal plasma generating means, an electrode rod 102 made of tungsten is fixed to a body 101 made of copper by brazing. The inside of the cathode is hollow, and a cooling water introduction space 103 is formed. The cooling water is introduced from the first nipple 8 shown in FIG. 1, passes through the cooling water introduction pipe 104, is guided to the cooling water introduction space 103, cools the power sword 1, and cools the water. The cooling water is discharged from the second nipple 9 through the cooling water discharge space 105 outside the pipe 104. Further, a heat-resistant ceramic insulating cylinder 2 is formed around the force sword 1 so as to cover the tip, and an anode 3 is disposed outside the insulating cylinder 2. In addition, a first swirler 201 for blowing the energy transfer gas into the discharge space 17 while turning the energy transfer gas is provided at the tip of the insulating cylinder 2 as shown in FIG. 3 (b). Here, FIG. 3 (b) is a diagram showing an AA cross section of FIG. 3 (a).
同図に示すように、 第 1のスワラ 2 0 1は、 エネルギー伝達ガスを導入する 4 つのエネルギーガス導入口 2 1 0と、 当該導入口から導入されたエネルギー伝達 ガスを旋回させるエネルギーガス旋回路 2 1 2から構成される。 ここで、 ェネル ギ一伝達ガス導入口 2 1 0は、 エネルギーガス旋回路 2 1 2の中心から偏移した 位置に配設される。 As shown in the figure, the first swirler 201 has four energy gas inlets 210 for introducing an energy transfer gas, and an energy gas swirling circuit for swirling the energy transfer gas introduced from the inlet. It consists of 2 1 2. Here, the energy transmission gas introduction port 210 is disposed at a position deviated from the center of the energy gas rotation circuit 212.
第 3のニップル 6より導入されたエネルギー伝達ガスは、 絶縁筒 2とアノード 3の隙間 2 0 2とを経由して、 上記のように構成された第 1のスワラ 2 0 1で旋 回流となって放電空間 1 7へ放出される。 また、 アノード 3はプラズマジェット 吹き出し口 3 0 1と、 冷却水導入空間 3 0 2とを備えており、 冷却水は第 4の二 ップル 1 1から導入され、 冷却水導入空間 3 0 2にてアノード 3を冷却したのち、 図示しない第 5のニップルから排出される。 The energy transfer gas introduced from the third nipple 6 passes through the insulating cylinder 2 and the gap 202 between the anode 3 and forms a vortex in the first swirler 201 configured as described above. To the discharge space 17. Further, the anode 3 is provided with a plasma jet outlet 301 and a cooling water introduction space 302, and cooling water is introduced from the fourth nipple 11 and is cooled in the cooling water introduction space 302. After cooling the anode 3, it is discharged from a fifth nipple (not shown).
本実施例で示す表面処理装置には、 第 2図に示すように、 負極側が第 1のニッ プル 8に、 正極側が第 3のニップル 6に接続された直流電源 1 3が設けられてお り、 当該直流電源 1 3から供給される電流は第 3のニップル 6からカバ一 1 5、 キャップ 1 4、 末広ノズル 5、 アノード 3、 アーク 1 6、 力ソード 1、 導電筒 1 0 6、 第 1のニップル 8という電流経路をとる。
次に、 第 4図を使用して原料ラジカル生成手段の構成例を詳細に説明する。 第 4図は、 原料ラジカル生成手段の一構成例を示す断面図である。 As shown in FIG. 2, the surface treatment apparatus shown in this embodiment is provided with a DC power supply 13 in which the negative electrode side is connected to the first nipple 8 and the positive electrode side is connected to the third nipple 6. The current supplied from the DC power supply 13 is supplied from the third nipple 6 to the cover 15, cap 14, divergent nozzle 5, anode 3, arc 16, power source 1, conductive cylinder 106, Takes a current path called nipple 8. Next, a configuration example of the raw material radical generating means will be described in detail with reference to FIG. FIG. 4 is a cross-sectional view showing one configuration example of the raw material radical generating means.
原料ラジカル生成手段は、 同図 (a ) に示すように、 円錐状の原料ラジカル発 生空間となっており、 プラズマジェット吹き出し口 3 0 1の下流に、 同図 (b ) に示すような第 2のスワラ 4 0 1が設けられる。 ここで、 第 4図 (b ) は、 同図 ( a ) の B— B断面を示す図である。 The raw material radical generating means is a conical raw material generating space as shown in FIG. 3A, and is provided downstream of the plasma jet outlet 301 as shown in FIG. Two swirlers 4 0 1 are provided. Here, FIG. 4 (b) is a diagram showing a BB cross section of FIG. 4 (a).
プラズマジェット吹き出し口 3 0 1は、 同図 (a ) に示すように、 一定断面で 伸長する熱プラズマの流路を形成し、 当該流路を通過する熱プラズマを整流する。 第 2のスワラ 4 0 1は、 同図 (b ) に示すように、 原料ガスを導入する 4つの 原料ガス導入口 4 1 0と、 当該導入口から導入された原料ガスを旋回させる原料 ガス旋回路 4 1 2から構成される。 ここで、 原料ガス導入口 4 1 0は、 原料ガス 旋回路 4 1 2の中心から偏移した位置に配設される。 原料ガス導入口 4 1 0は、 例えば、 孔径 2 mmの直線状の流路で形成され、 ノズルの中心軸方向からノズル 内壁の接線方向に向かって配設される。 The plasma jet outlet 301 forms a flow path of thermal plasma extending in a constant cross section as shown in FIG. 3A, and rectifies the thermal plasma passing through the flow path. The second swirler 401 has four source gas inlets 410 for introducing a source gas and a source gas swirler for swirling the source gas introduced from the inlet, as shown in FIG. Road 4 1 2 Here, the source gas inlet 4 10 is disposed at a position deviated from the center of the source gas circuit 4 12. The raw material gas introduction port 410 is formed, for example, by a linear flow path having a hole diameter of 2 mm, and is provided from the central axis direction of the nozzle to the tangential direction of the inner wall of the nozzle.
上記構成により、 第 1図に示す第 6のニップル 7から導入された原料ガスは空 間 1 0を経由して、 第 4図 (b ) に示す原料ガス導入口 4 1 2を通って、 原料ガ ス旋回路の円周方向に噴射されて、 当該円周に沿った旋回流となり、 同図 (a ) に示す原料ラジカル発生空間 4に噴出される。 With the above configuration, the raw material gas introduced from the sixth nipple 7 shown in FIG. 1 passes through the space 10, passes through the raw material gas inlet 4 12 shown in FIG. The gas is injected in the circumferential direction of the gas spiral circuit to form a swirling flow along the circumference, and is injected into the raw material radical generation space 4 shown in FIG.
当該噴出された原料ガスの旋回流は、 プラズマジエツト吹き出し口 3 0 1から 噴出された熱プラズマに衝突して混合され、 熱プラズマのエネルギーが原料ガス に伝達される。 その結果、 エネルギーが伝達された原料ガスは、 熱プラズマの状 態で、 高活性度および高密度の原料ラジカルとなる。 The swirling flow of the ejected source gas collides with and mixes with the thermal plasma ejected from the plasma jet outlet 301, and the energy of the thermal plasma is transmitted to the source gas. As a result, the source gas to which the energy has been transferred becomes high-activity and high-density source radicals in the form of thermal plasma.
そして、 上記原料ラジカルは、 非平衡プラズマ生成手段として構成された拡大 ノズルに噴出され、 当該拡大ノズルを通過する間に断熱膨張して高い活性度を維 持したまま低温の非平衡プラズマへと変換される。 Then, the raw material radicals are ejected to an expansion nozzle configured as a non-equilibrium plasma generating means, and are adiabatically expanded while passing through the expansion nozzle to be converted into a low-temperature non-equilibrium plasma while maintaining high activity. Is done.
拡大ノズル 5は、 中細のノズルであり、 開口断面が流路の下流に向かって徐々 に大きくなるように形成される。 The enlarged nozzle 5 is a medium-sized nozzle, and is formed such that the opening cross section gradually increases toward the downstream of the flow path.
上記のようにして生成された非平衡プラズマは、 第 2図に示すように、 基板 2
2の表面に対して噴射され、 当該表面上に簿膜を成長させる。 The non-equilibrium plasma generated as described above is applied to the substrate 2 as shown in Fig. 2. It is sprayed on the surface of 2 to grow a film on the surface.
ここで、 第 2図に示す気相成長装置を簡単に説明すると、 当該気相成長装置で は、 減圧チャンバ一 2 0にヒータ 2 1が配設されており、 基板 2 2は基板ヒー夕 2 1の上に固定されている。基板ヒータ 2 1は基板加熱と基板冷却の双方ができ るようになっており、 基板 2 2の温度を常に適温に保つことができるようになつ ている。 また基板ヒータ 2 1はべローズ 2 7を介して図示しない昇降機構に固定 されており、 非平衡プラズマ噴出口 5 0 1と基板までの距離 2 4とを一定の範囲 内で任意に設定することができるように構成されている。 Here, the vapor phase epitaxy apparatus shown in FIG. 2 will be briefly described. In this vapor phase epitaxy apparatus, a heater 21 is provided in a decompression chamber 120, and a substrate 22 is used as a substrate heater. Fixed on one. The substrate heater 21 can perform both substrate heating and substrate cooling, so that the temperature of the substrate 22 can always be maintained at an appropriate temperature. The substrate heater 21 is fixed to an elevating mechanism (not shown) via a bellows 27, and the non-equilibrium plasma jet 501 and the distance 24 to the substrate can be set arbitrarily within a certain range. It is configured to be able to.
上記のように構成される気相成長装置を用いて気相成長を行った時の成膜条件 および拡大ノズルの形状を次表に示す。 The following table shows the film forming conditions and the shape of the enlarged nozzle when performing vapor phase growth using the vapor phase growth apparatus configured as described above.
このようにして成膜をおこなった結果、 基板上には多結晶ダイヤモンド膜が形 成された。 粒径は 0 . 1 mから 5 Ai m程度で成膜レートは約 5 0 0 [ m/ h ] となり、 非常に早い成膜速度を実現することができた。 このときのラマンスぺク トルを第 5図に示す。 同図に示すように、 本発明によって処理された基板上の薄 膜は、 不純物が少なく極めて高品質のダイヤモンド薄膜となる。 さらに、 本発明 によれば、 直径約 5 0 mmの薄膜を成長させることも可能であり、 従来に比べて 大面積化が図られる。
次に、 第 6図を使用して熱プラズマ生成手段の第 2の構成例を説明する。 As a result of forming a film in this manner, a polycrystalline diamond film was formed on the substrate. The particle diameter was about 0.1 m to 5 Aim, and the film formation rate was about 500 [m / h], and a very high film formation rate could be realized. Figure 5 shows the Raman spectrum at this time. As shown in the figure, the thin film on the substrate treated according to the present invention becomes an extremely high quality diamond thin film with few impurities. Further, according to the present invention, a thin film having a diameter of about 50 mm can be grown, and the area can be increased as compared with the related art. Next, a second configuration example of the thermal plasma generating means will be described with reference to FIG.
第 6図は、 力ソード 1の第 2の構成を示す断面図である。 同図に示すように、 第 2の構成に係る力ソード 1は、 銅製の電極ホルダー 1 0 1に、 凹部 2 3が形成 され、 この凹部 2 3内に銀を主成分とするろう材 2 5を介して、 周囲に深さ 0 . 5 mm程度の溝 2 8を具備するとともに、 トリウムを約 2 %混合してなるタンダ ステン製の電極棒 1 0 2がかしめ込まれる。 このタングステン電極棒 1 0 2には 先端の角度が 5 5 ° から 6 5 ° となるようなテーパ面 3 0が形成され、 その最先 端に平坦面 2 9が形成され、 該平坦面 2 9の中心に孔 2 6が形成される。 ここで、 先端面 2 9とテーパ面 3 0のつなぎ目はなだらかな形状となっている。 FIG. 6 is a sectional view showing a second configuration of the force sword 1. As shown in FIG. As shown in the figure, the force source 1 according to the second configuration has a recess 23 formed in a copper electrode holder 101, and a brazing material 25 mainly composed of silver is formed in the recess 23. The electrode 28 is provided with a groove 28 having a depth of about 0.5 mm and a tungsten electrode rod 102 obtained by mixing about 2% of thorium. The tungsten electrode rod 102 is formed with a tapered surface 30 having a tip angle of 55 ° to 65 °, and a flat surface 29 formed at the foremost end thereof. A hole 26 is formed at the center of. Here, the joint between the distal end surface 29 and the tapered surface 30 has a gentle shape.
上記のように構成されるタングステン電極棒 1 0 2を電極ホルダ 1 0 1にかし めると、 該電極ホルダ 1 0 1が塑性変形して溝 2 8に入り込み、 電極棒 1 0 2と 嵌合する。 その結果、 アーク発生時に電極材と電極ホルダ材の熱膨張率の差異か ら、 電極と電極ホルダの間に隙間ができても、 溝 2 8と嵌合した部分が電極の脱 落を防止する。 When the tungsten electrode rod 102 configured as described above is swaged to the electrode holder 101, the electrode holder 101 is plastically deformed, enters the groove 28, and is fitted with the electrode rod 102. Combine. As a result, even if a gap is formed between the electrode and the electrode holder due to the difference in the coefficient of thermal expansion between the electrode material and the electrode holder material when an arc is generated, the part fitted with the groove 28 prevents the electrode from falling off. .
一方、 タングステン電極棒 1 0 2の先端角度は、 以下に示すような実験によつ て決定した。 On the other hand, the tip angle of the tungsten electrode rod 102 was determined by the following experiment.
第 7図は、 タングステン電極棒 1 0 2の先端角度を決定するために使用した実 験装置の構成を示す概念図である。 同図に示すように、 この実験装置は、 カソー ド 1を囲むようにノズルアノード 3 2を配設するとともに、 このノズルアノード 3 2から外側に所定の間隔を隔てて水冷銅アノード 3 3を配設したものである。 そして力ソード 1とノズルアノード 3 2の間の絶緣空間を高周波電源 3 6によつ て絶縁破壊し、 その後非移行式直流電源 3 4の電力によって力ソード 1とノズル アノード 3 2の間にアークを発生させ、 このアーク電流を電流計 3 8によって検 出すると即座に非移行式直流電源 3 4をオフにして、 代わりに移行式直流電源 3 5をオンにし、 力ソード 1と水冷銅アノード 3 3の間にアークを発生させる。 こ のとき非移行式直流電源 3 4から移行式直流電源 3 5への出力の切り換えは瞬時 に行われるので、 力ソード 3 1とノズルアノード 3 2との間に発生するアークが 不安定であると、 力ソード 1と水冷銅アノード 3 3の間にアークが着火しない状
態、 すなわち着火ミスが生じる。 FIG. 7 is a conceptual diagram showing the configuration of an experimental apparatus used for determining the tip angle of the tungsten electrode rod 102. As shown in the figure, in this experimental apparatus, a nozzle anode 32 is provided so as to surround the cathode 1, and a water-cooled copper anode 33 is provided outside the nozzle anode 32 at a predetermined interval. It was established. Then, the insulation between the force sword 1 and the nozzle anode 32 is broken down by the high-frequency power supply 36, and then the arc between the force sword 1 and the nozzle anode 32 is generated by the power of the non-transferable DC power supply 34. As soon as this arc current is detected by the ammeter 38, the non-transitional DC power supply 34 is turned off, and instead the transitional DC power supply 35 is turned on, and the power source 1 and the water-cooled copper anode 3 are turned on. An arc is generated between three. At this time, the switching of the output from the non-transitional DC power supply 34 to the transitional DC power supply 35 is instantaneous, and the arc generated between the power source 31 and the nozzle anode 32 is unstable. No arc is ignited between force sword 1 and water-cooled copper anode 3 3 State, that is, an ignition error occurs.
上記のように構成された実験装置を使用して、 第 8図に示すように、 テ一パ面 30の傾斜角を 75° 、 70° 、 65° 、 60° 、 55° 、 50° 、 45° の 7 基準に設定し、 各傾斜角ごとに以下に示す条件下で着火ミスの発生頻度およびシ リーズアークの発生頻度を測定した。 Using the experimental apparatus configured as described above, as shown in FIG. 8, the inclination angle of the taper surface 30 was set to 75 °, 70 °, 65 °, 60 °, 55 °, 50 °, 45 °. The ignition frequency and the series arc frequency were measured for each inclination angle under the following conditions.
この実験結果から明らかなように、 傾斜角が 55° 〜65° の時に、 着火ミス およびシリーズアークが発生しなかったため、 当該範囲の角度を好ましい角度と して選択した。 これにより、 アーク着火時、 アーク連続発生時いずれにおいても 安定なアークを発生させることが可能となる。
尚、 上記実施例では、 電極ホルダを銅で構成し、 電極棒をトリウムを約 2 %混 合してなるタングステンで形成したが、 このほか電極ホルダとしては銅、 銀、 ァ ルミ二ゥム、 黄銅、 モリブデン、 タングステン、 ニオブ、 タンタル、 銅の内何れ かまたはそれらの内 2つ以上からなる合金を主成分としたものでもよい。 また、 これらの他、 酸化カルシウム、 酸化トリウム、 酸化イットリウムの内何れかまた はその合金によって構成してもよい。 さらに、 これらの材料にランタン、 トリゥ ム、 ストロンチウム、 セリウム、 イットリウムまたはそれらの酸化物の内、 少な くとも 1つを混入してもよい。— As is evident from the experimental results, when the angle of inclination was 55 ° to 65 °, no ignition error and no series arc occurred, so the angle in this range was selected as a preferable angle. As a result, a stable arc can be generated both when the arc is ignited and when the arc is continuously generated. In the above embodiment, the electrode holder was made of copper, and the electrode rod was made of tungsten mixed with about 2% of thorium. In addition, copper, silver, aluminum, and aluminum were used as electrode holders. It may be one containing brass, molybdenum, tungsten, niobium, tantalum, or copper, or an alloy containing at least two of them. Further, in addition to these, any of calcium oxide, thorium oxide, and yttrium oxide or an alloy thereof may be used. Further, at least one of lanthanum, trim, strontium, cerium, yttrium or an oxide thereof may be mixed with these materials. —
また、 原料ガスとして C Oあるいは C〇2を用い、 放電ガスとして H2 あるい は A rなどを用いてダイヤモンド薄膜を形成する場合、 あるいは原料ガスとして C H4を用い、 放電ガスとして〇2 を用いてダイヤモンド薄膜を形成する場合な ど、 原料または放電ガスとして酸素を含む材料を用いた場合には、 ジルコニウム、 ハフニウムの内何れかまたはそれらの合金で構成するのが望ましい。 例えば、 第 9図に示すような力ソードを設け、 該カソードを構成する電極ホルダ 1 0 2の凹 部内に、 ハフニウムからなるカソード電極 1 0 1 S全体をろう材 2 5を介して固 定する。 ここで、 第 9図は、 力ソード 1の第 3の構成を示す断面図である。 Further, using a CO or C_〇 2 as a material gas, If you want some H 2 as the discharge gas to form a diamond thin film by using a A r, or CH 4 used as the raw material gas, the 〇 2 used as the discharge gas When a material containing oxygen is used as a raw material or a discharge gas, such as when a diamond thin film is formed, it is preferable to use zirconium or hafnium or an alloy thereof. For example, a force sword as shown in FIG. 9 is provided, and the entire cathode electrode 101S made of hafnium is fixed via a brazing material 25 in the concave portion of the electrode holder 102 constituting the cathode. . Here, FIG. 9 is a sectional view showing a third configuration of the force sword 1. As shown in FIG.
上記のような構成により、 原料または放電ガスとして酸素を含む材料を用いた 場合、 ハフニウムの表面には酸化ハフニウムが形成される。 この酸化ハフニウム はハフニウムと比較して非常に安定な物質であるため電極の融点が上昇し、 消耗 が少なくなる。 尚、 ハフニウムはタングステンにくらべて熱伝導性が悪いため、 電極ホルダで全体を覆うようにするのが望ましい。 With the above structure, when a material containing oxygen is used as a raw material or a discharge gas, hafnium oxide is formed on the surface of hafnium. Since hafnium oxide is a very stable substance as compared with hafnium, the melting point of the electrode is increased, and the consumption is reduced. Since hafnium has a lower thermal conductivity than tungsten, it is desirable to cover the whole with an electrode holder.
また、 上記実施例では電極の周縁に溝を形成したが、 電極ホルダに溝を形成し 電極にはこれに符合する突起を形成するようにしてもよいし、 また電極側に突起 を形成するようにしてもよい。 In the above embodiment, a groove is formed on the periphery of the electrode. However, a groove may be formed on the electrode holder and a protrusion corresponding to the groove may be formed on the electrode, or a protrusion may be formed on the electrode side. It may be.
また、 上記実施例では直流用として説明したが、 交流用にも適用可能である。 また、 上記実施例では、 非平衡プラズマ発生部を拡大ノズルで構成したが、 本 発明では拡大ノズルに限定されることなく、 筒状ノズルなどを用いるようにして ちょい。
また、 力ソードとアノードとの間に絶縁筒を介在させ、 放電空間を規定するよ うにしたが、 絶緣筒がない場合でも適用可能である。 Further, in the above-described embodiment, the description has been made for the DC use, but the present invention is also applicable to the AC use. Further, in the above embodiment, the non-equilibrium plasma generating section is constituted by the enlarged nozzle. However, the present invention is not limited to the enlarged nozzle, and may use a cylindrical nozzle or the like. In addition, an insulating cylinder is interposed between the force sword and the anode to define the discharge space. However, the present invention is applicable even when there is no insulating cylinder.
また、 前記実施例では、 前記遮蔽体は、 前記力ソードを囲むように配設された 絶縁筒の先端に原料ガスを旋回せしめる旋回流生成手段を配設したが、 旋回流生 成手段は別に形成してもよい。 産業上の利用可能性 Further, in the embodiment, the shielding body is provided with a swirl flow generating means for swirling the source gas at the tip of an insulating cylinder disposed so as to surround the force source. It may be formed. Industrial applicability
原料ガスを旋回させてエネルギー伝達ガスと混合することにより、 熱エネルギ —の伝達効率が向上し、 活性度が高く低温の原料ラジカルを生成することができ る。 By swirling the source gas and mixing it with the energy transfer gas, the transfer efficiency of heat energy is improved, and high activity and low temperature source radicals can be generated.
また、 拡大ノズルを設けることにより、 原料ラジカルは、 超音速プラズマジェ ットとして減圧チャンバ一に噴出されるため、 原料ラジカルは高い活性度を保つ たまま基板上に到達し、 膜質と成膜速度の向上を図ることができる。 In addition, by providing an expansion nozzle, the raw material radicals are ejected to the decompression chamber as a supersonic plasma jet, so that the raw material radicals reach the substrate while maintaining high activity, and the film quality and the film forming speed are increased. Can be improved.
また、 エネルギー伝達ガスを旋回させて供給することにより、 アーク放電が安 定するため、 エネルギー伝達ガスとしてアルゴンやヘリウム等の不活性ガスを使 用することができる。 これにより、 電極の消耗および電極材料の混入を抑制する ことが可能となる。 In addition, since the arc discharge is stabilized by swirling and supplying the energy transfer gas, an inert gas such as argon or helium can be used as the energy transfer gas. This makes it possible to suppress electrode wear and mixing of electrode materials.
また、 電極の周縁に溝を設けることにより、 電極の落下を防止できる。 Also, by providing a groove on the periphery of the electrode, the electrode can be prevented from falling.
また、 電極材料をガスの種類に応じて選択することにより、 電極の消耗が抑制 されるため、 安定で信頼性の高い放電および高品質の成膜が可能となる。
In addition, by selecting the electrode material according to the type of gas, consumption of the electrode is suppressed, so that stable and highly reliable discharge and high quality film formation can be achieved.
Claims
1 . 原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触させ る表面処理装置において、 1. In a surface treatment device that excites the source gas to form radicals and brings the generated radicals into contact with the substrate surface,
前記原料ガスを供給する原料ガス供給手段と、 Source gas supply means for supplying the source gas,
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスを 供給するエネルギー伝達ガス供給手段と、 Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas,
前記エネルギー伝達ガス供給手段が供給したエネルギー伝達ガスを熱プラズマ 化する熱プラズマ生成手段と、 Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma;
前記熱プラズマ生成手段が生成した熱プラズマと前記原料ガス供給手段が供給 した原料ガスとを混合し、 原料ラジカルを生成する原料ラジカル生成手段とを具 備し、 A source radical generating unit configured to mix the thermal plasma generated by the thermal plasma generating unit with the source gas supplied by the source gas supplying unit to generate a source radical;
前記原料ガス供給手段は、 The source gas supply means,
供給する原料ガスを旋回させる原料ガス旋回手段を具備する Equipped with source gas swirling means for swirling the source gas to be supplied
ことを特徴とする表面処理装置。 A surface treatment apparatus characterized by the above-mentioned.
2 . 前記エネルギー伝達ガス供給手段は、 2. The energy transfer gas supply means includes:
供給するエネルギー伝達ガスを旋回させるエネルギー伝達ガス旋回手段を具備 する Equipped with energy transfer gas swirl means for swirling the energy transfer gas to be supplied
ことを特徴とする請求項 1記載の表面処理装置。 2. The surface treatment apparatus according to claim 1, wherein:
3 . 前記原料ラジカル生成手段が生成した原料ラジカルを断熱膨張させて非平衡 プラズマを生成する非平衡プラズマ生成手段をさらに具備する 3. It further comprises a non-equilibrium plasma generating means for adiabatically expanding the raw material radicals generated by the raw material radical generating means to generate non-equilibrium plasma.
ことを特徴とする請求項 1または請求項 2記載の表面処理装置。 3. The surface treatment apparatus according to claim 1, wherein:
4 . 前記原料ガス旋回手段は、 4. The source gas swirling means is
前記熱プラズマ生成手段が生成した熱プラズマ流を環囲する環状の原料ガス旋 回路と、
前記原料ガス旋回路の周縁に配設され、 該原料ガス旋回路の中心から偏移した 方向に前記原料ガス供給手段が供給した原料ガスを導入する原料ガス導入路とを 具備する An annular source gas circuit surrounding the thermal plasma flow generated by the thermal plasma generating means; A source gas introduction passage disposed at a peripheral edge of the source gas circuit, for introducing the source gas supplied by the source gas supply unit in a direction deviated from the center of the source gas circuit.
ことを特徴とする請求項 1乃至請求項 3のいずれかに記載の表面処理装置。 4. The surface treatment apparatus according to claim 1, wherein:
5 . 前記熱プラズマ生成手段は、 5. The thermal plasma generating means includes:
前記エネルギー伝達ガスの流路と、 A flow path for the energy transfer gas,
前記流路中に配設された力ソードおよびアノードと、 A force sword and an anode disposed in the flow path;
前記力ソードの先端を露出させた状態で該カソードの周縁を取り囲む絶緣部材 とを具備する An insulating member that surrounds the periphery of the cathode with the tip of the force sword being exposed.
ことを特徴とする請求項 1乃至請求項 4のいずれかに記載の表面処理装置。 5. The surface treatment apparatus according to claim 1, wherein:
6 . 前記エネルギー伝達ガス旋回手段は、 6. The energy transfer gas swirl means is:
前記力ソードの先端を環囲する環状のエネルギー伝達ガス旋回路と、 前記エネルギー伝達ガス旋回路の周縁に配設され、 該エネルギー伝達ガス旋回 路の中心から偏移した方向に前記エネルギー伝達ガス供給手段が供給したェネル ギー伝達ガスを導入するエネルギー伝達ガス導入路とを具備する An annular energy transfer gas swirling circuit surrounding the tip of the force sword; and Means for introducing an energy transfer gas supplied by the means.
ことを特徴とする請求項 5記載の表面処理装置。 6. The surface treatment apparatus according to claim 5, wherein:
7 . 前記力ソードは、 7. The power sword is
周縁に溝が形成された高融点金属からなる電極と、 An electrode made of a high melting point metal with a groove formed on the periphery,
先端に凹部を有し該凹部に前記電極を保持する電極ホルダとを具備する ことを特徴とする請求項 5または請求項 6記載の表面処理装置。 7. The surface treatment apparatus according to claim 5, further comprising an electrode holder having a concave portion at a tip and holding the electrode in the concave portion.
8 . 前記電極は、 8. The electrode is
平面状の先端面と、 A flat tip surface,
前記先端面の中央に形成された凹部とを有する Having a recess formed at the center of the tip surface
ことを特徴とする請求項 7記載の表面処理装置。
8. The surface treatment device according to claim 7, wherein:
9 . 原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触させ る表面処理装置において、 9. In a surface treatment device that excites the source gas to form radicals and brings the generated radicals into contact with the substrate surface,
前記原料ガスを供給する原料ガス供給手段と、 Source gas supply means for supplying the source gas,
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスを 供給するエネルギー伝達ガス供給手段と、 Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas,
前記エネルギー伝達ガス供給手段が供給したエネルギー伝達ガスを熱プラズマ 化する熱プラズマ生成手段と、 ' Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma;
前記熱プラズマ生成手段が生成した熱プラズマと前記原料ガス供給手段が供給 した原料ガスとを混合し、 原料ラジカルを生成する原料ラジカル生成手段とを具 備し、 A source radical generating unit configured to mix the thermal plasma generated by the thermal plasma generating unit with the source gas supplied by the source gas supplying unit to generate a source radical;
前記エネルギー伝達ガス供給手段は、 The energy transfer gas supply means,
供給するエネルギー伝達ガスを旋回させるエネルギー伝達ガス旋回手段を具備 する Equipped with energy transfer gas swirl means for swirling the energy transfer gas to be supplied
ことを特徴とする表面処理装置。 A surface treatment apparatus characterized by the above-mentioned.
1 0 . 原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触さ せる表面処理装置において、 10. In a surface treatment device that excites the source gas to form radicals and contacts the generated radicals with the substrate surface,
前記原料ガスを供給する原料ガス供給手段と、 Source gas supply means for supplying the source gas,
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスを 供給するエネルギー伝達ガス供給手段と、 Energy transmission gas supply means for supplying an energy transmission gas serving as an energy transmission medium for exciting the source gas,
前記エネルギー伝達ガス供給手段が供給したエネルギー伝達ガスを熱プラズマ 化する熱プラズマ生成手段と、 Thermal plasma generating means for converting the energy transfer gas supplied by the energy transfer gas supply means into thermal plasma;
前記熱プラズマ生成手段が生成した熱プラズマと前記原料ガス供給手段が供給 した原料ガスとを混合する混合空間と、 A mixing space for mixing the thermal plasma generated by the thermal plasma generating means with the raw material gas supplied by the raw gas supply means,
前記混合空間の下流に接続され、 該混合空間で混合された混合ガスを断熱膨張 させる拡大ノズルとを具備する An expansion nozzle connected downstream of the mixing space and adiabatically expanding the mixed gas mixed in the mixing space.
ことを特徴とする表面処理装置。
A surface treatment apparatus characterized by the above-mentioned.
1 1 . 原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触さ せる表面処理装置において、 1 1. In a surface treatment device that excites the source gas to form radicals and brings the generated radicals into contact with the substrate surface.
周縁に溝が形成された高融点金属からなる電極と、 An electrode made of a high melting point metal with a groove formed on the periphery,
先端に凹部を有し該凹部に前記電極を保持する電極ホルダとを具備する ことを特徴とする表面処理装置。 A surface treatment apparatus, comprising: a concave portion at a tip, and an electrode holder that holds the electrode in the concave portion.
1 2 . 前記電極は、 1 2. The electrode is
5 5 ° 乃至 6 5 ° の角度で縮径したテ一パ部を有する It has a taper part whose diameter is reduced from 55 ° to 65 °.
ことを特徴とする請求項 1 1記載の表面処理装置。 The surface treatment apparatus according to claim 11, wherein:
1 3 . 前記電極は、 1 3. The electrode is
平面状の先端面と、 A flat tip surface,
前記先端面の中央に形成された凹部とを有する Having a recess formed at the center of the tip surface
ことを特徴とする請求項 1 1または請求項 1 2記載の表面処理装置。 The surface treatment apparatus according to claim 11 or 12, wherein:
1 4. 前記電極ホルダは、 1 4. The electrode holder
銅、 銀、 アルミニウム、 黄銅、 モリブデン、 タングステン、 ニオブ、 タンタル、 銅の内何れかまたはそれらの内 2つ以上からなる合金を主成分として構成される ことを特徴とする請求項 1 1乃至請求項 1 3のいずれかに記載の表面処理装置。 Claims 11 to 11 characterized in that it is composed mainly of any one of copper, silver, aluminum, brass, molybdenum, tungsten, niobium, tantalum and copper or an alloy composed of two or more thereof. 13. The surface treatment apparatus according to any one of 13.
1 5 . 前記電極は、 1 5. The electrode is
タングステン、 酸化カルシウム、 酸化トリウム、 酸化イットリウム、 ジルコ二 ゥム、 ハフニウムの内何れかまたはそれらの内 2つ以上からなる合金を主成分と して構成される It is composed mainly of tungsten, calcium oxide, thorium oxide, yttrium oxide, zirconium, hafnium, or an alloy composed of two or more of them.
ことを特徴とする請求項 1 1乃至請求項 1 4のいずれかに記載の表面処理装置。 The surface treatment apparatus according to any one of claims 11 to 14, wherein:
1 6 . 前記電極は、
ランタン、 トリウム、 ストロンチウム、 セリウム、 イットリウムまたはそれら の酸化物の内少なくとも 1つを混入して構成される 1 6. The electrode is Contained by mixing at least one of lanthanum, thorium, strontium, cerium, yttrium or their oxides
ことを特徴とする請求項 1 1乃至請求項 1 5のいずれかに記載の表面処理装置。 The surface treatment apparatus according to any one of claims 11 to 15, wherein:
1 7 . 原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に接触さ せる表面処理装置において、 17. In a surface treatment device that excites the source gas to form radicals and contacts the generated radicals to the substrate surface,
高融点金属からなる電極と、 An electrode made of a high melting point metal,
先端に凹部を有し該凹部に充填されたろう材を介して前記電極を保持する電極 ホルダとを具備し、 An electrode holder having a concave portion at the tip and holding the electrode via a brazing filler material filled in the concave portion,
前記電極は、 The electrode is
平面状の先端面と、 A flat tip surface,
前記先端面の中央に形成された凹部とを有する Having a recess formed at the center of the tip surface
ことを特徴とする表面処理装置。 A surface treatment apparatus characterized by the above-mentioned.
1 8 . 原料ガスを励起してラジカル化し、 発生したラジカルを基板表面に噴射し て該基板表面を処理する表面処理方法において、 18. A surface treatment method for treating a substrate surface by exciting a source gas to generate radicals and injecting the generated radicals onto the substrate surface.
前記原料ガスを励起させるエネルギーの伝達媒体となるエネルギー伝達ガスに、 前記原料ガスを旋回させながら混入して、 旋回しながら流出する原料ラジカルを 生成し、 The raw material gas is mixed into the energy transfer gas serving as a transmission medium of energy for exciting the raw material gas while swirling to generate raw material radicals flowing out while swirling,
前記原料ラジカルを断熱膨張させて、 該原料ラジカルを旋回させながら前記基 板表面に噴射する The raw material radical is adiabatically expanded, and is sprayed on the substrate surface while rotating the raw material radical.
ことを特徴とする表面処理方法。 A surface treatment method comprising:
1 9 . 前記エネルギー伝達ガスを前記原料ガスを旋回させる方向と同一の方向で 旋回させて、 該エネルギー伝達ガスと該原料ガスを混合する 1 9. The energy transfer gas is swirled in the same direction as the swirling direction of the source gas to mix the energy transfer gas and the source gas.
ことを特徴とする請求項 1 8記載の表面処理方法。
19. The surface treatment method according to claim 18, wherein:
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5931397 | 1997-03-13 | ||
JP9/59312 | 1997-03-13 | ||
JP5931497 | 1997-03-13 | ||
JP9/59313 | 1997-03-13 | ||
JP9/59314 | 1997-03-13 | ||
JP5931297 | 1997-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998040533A1 true WO1998040533A1 (en) | 1998-09-17 |
Family
ID=27296835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/001068 WO1998040533A1 (en) | 1997-03-13 | 1998-03-13 | Device and method for surface treatment |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1998040533A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004503680A (en) * | 2000-07-17 | 2004-02-05 | コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション | Manufacture of carbon and carbon-based materials |
JP2008218254A (en) * | 2007-03-06 | 2008-09-18 | Seiko Epson Corp | Plasma processing device |
EP3214204A4 (en) * | 2014-10-29 | 2018-06-13 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Gas jetting device |
USRE46925E1 (en) | 2001-03-09 | 2018-06-26 | Hypertherm, Inc. | Composite electrode for a plasma arc torch |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63250097A (en) * | 1987-04-06 | 1988-10-17 | 株式会社小松製作所 | Plasma torch |
JPH01100092A (en) * | 1987-10-13 | 1989-04-18 | Fujitsu Ltd | Diamond vapor-phase synthesis and device therefor |
JPH08990A (en) * | 1994-06-16 | 1996-01-09 | Komatsu Ltd | Surface treatment method by gas jet and apparatus therefor |
JPH08288095A (en) * | 1995-04-19 | 1996-11-01 | Komatsu Ltd | Electrode for plasma arc torch |
JPH0952177A (en) * | 1995-08-11 | 1997-02-25 | Komatsu Ltd | Plasma torch |
-
1998
- 1998-03-13 WO PCT/JP1998/001068 patent/WO1998040533A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63250097A (en) * | 1987-04-06 | 1988-10-17 | 株式会社小松製作所 | Plasma torch |
JPH01100092A (en) * | 1987-10-13 | 1989-04-18 | Fujitsu Ltd | Diamond vapor-phase synthesis and device therefor |
JPH08990A (en) * | 1994-06-16 | 1996-01-09 | Komatsu Ltd | Surface treatment method by gas jet and apparatus therefor |
JPH08288095A (en) * | 1995-04-19 | 1996-11-01 | Komatsu Ltd | Electrode for plasma arc torch |
JPH0952177A (en) * | 1995-08-11 | 1997-02-25 | Komatsu Ltd | Plasma torch |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004503680A (en) * | 2000-07-17 | 2004-02-05 | コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション | Manufacture of carbon and carbon-based materials |
USRE46925E1 (en) | 2001-03-09 | 2018-06-26 | Hypertherm, Inc. | Composite electrode for a plasma arc torch |
JP2008218254A (en) * | 2007-03-06 | 2008-09-18 | Seiko Epson Corp | Plasma processing device |
EP3214204A4 (en) * | 2014-10-29 | 2018-06-13 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Gas jetting device |
US11007497B2 (en) | 2014-10-29 | 2021-05-18 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Gas jetting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0368547B1 (en) | Plasma generating apparatus and method | |
CA2144834C (en) | Method and apparatus for generating induced plasma | |
US5144110A (en) | Plasma spray gun and method of use | |
CA1271229A (en) | Plasma flame spray gun method and apparatus with adjustable ratio of radial and tangential plasma gas flow | |
KR100189311B1 (en) | Microwave plasma torch and method for generating plasma | |
US5478608A (en) | Arc assisted CVD coating method and apparatus | |
EP2702839B1 (en) | Method for processing a gas and a device for performing the method | |
EP0002623B1 (en) | Electric arc apparatus and method for treating a flow of material by an electric arc | |
JP3203754B2 (en) | Diamond production method and production equipment | |
US20050223992A1 (en) | Miniature microwave plasma torch application and method of use thereof | |
WO2005079124A1 (en) | Plasma producing device | |
US6943316B2 (en) | Arrangement for generating an active gas jet | |
US3521106A (en) | Plasma burner with adjustable constriction structure in gas flow path | |
JP2527150B2 (en) | Microwave thermal plasma torch | |
JP2002231498A (en) | Composite torch type plasma generating method and device | |
US20040149700A1 (en) | Method for plasma welding | |
WO1998040533A1 (en) | Device and method for surface treatment | |
EP0522842A1 (en) | Method and apparatus for synthesizing diamond in vapor phase | |
JP3662621B2 (en) | Induction plasma generation method and apparatus | |
JPH08236293A (en) | Microwave plasma torch and plasma generating method | |
GB2534890A (en) | Thermal plasma torch | |
US3931542A (en) | Method and apparatus for energizing materials in an electric arc | |
US3472995A (en) | Electric arc torches | |
JPH09306695A (en) | Plasma generating device and surface processing device using it | |
JPH06290896A (en) | High frequency plasma heater and its operating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 2000572592 Format of ref document f/p: F |