JPH04351899A - Microwave heat plasma reaction device - Google Patents
Microwave heat plasma reaction deviceInfo
- Publication number
- JPH04351899A JPH04351899A JP3152607A JP15260791A JPH04351899A JP H04351899 A JPH04351899 A JP H04351899A JP 3152607 A JP3152607 A JP 3152607A JP 15260791 A JP15260791 A JP 15260791A JP H04351899 A JPH04351899 A JP H04351899A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- outer tube
- heat resistance
- temperature
- good
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 8
- 229910052582 BN Inorganic materials 0.000 claims abstract description 19
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 9
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 8
- 239000000376 reactant Substances 0.000 claims description 15
- 239000012212 insulator Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000011147 inorganic material Substances 0.000 claims 1
- 239000002184 metal Substances 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 14
- 239000000498 cooling water Substances 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000009413 insulation Methods 0.000 abstract description 3
- 230000003405 preventing effect Effects 0.000 abstract description 3
- 101000635799 Homo sapiens Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Proteins 0.000 abstract 1
- 102100030852 Run domain Beclin-1-interacting and cysteine-rich domain-containing protein Human genes 0.000 abstract 1
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- 150000004767 nitrides Chemical class 0.000 abstract 1
- 210000002381 plasma Anatomy 0.000 description 53
- 239000007789 gas Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000009501 film coating Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/126—Microwaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、新素材の生成や新しい
応用分野の開拓を目標とする、高効率で高純度物質の合
成を行うマイクロ波熱プラズマ反応装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave thermal plasma reaction apparatus for synthesizing highly pure substances with high efficiency, with the aim of producing new materials and developing new fields of application.
【0002】0002
【従来の技術】従来の同軸管回路を使用するプラズマト
ーチ発生部では、内管先端を尖鋭にすると共に、金属製
外管の内径を狭めて、この部分のマイクロ波電界を高め
、渦巻状態にあるガスを電離し、雰囲気内にプラズマを
発生させていた。これを図に基づき説明すると、図3は
従来のマイクロ波熱プラズマ反応装置の縦断面図である
。図中1は内管、2は外管でいずれも金属製であり、マ
イクロ波電力を伝達するための同軸管回路を形成してい
る。内管1の中心には、反応物質投入用の細管11が通
っていて、細管11の上部の反応物質投入口16から反
応物質が投入される。この外側に冷却水路用の区画管3
が設けられ、冷却水は入口17から入り、出口18から
出て、内管1を冷却する。この内管1の先端5は尖って
いて、同軸管回路内を矢印Aの方向に伝送されたマイク
ロ波電力が集中してプラズマトーチ発生部4を形成する
。反応物質は発生したプラズマ炎7の上部に投入される
。外管2の先端は内側に絞られ、最狭部6を有し、プラ
ズマトーチ発生部を形成している。このプラズマトーチ
発生部の周辺の外管2の内側には冷却水溜13を設け、
冷却水の入口14から出口15に冷却水を流す。プラズ
マの安定性および制御性を増すために、ガスの噴出口は
プラズマトーチ発生部の上部に、円周方向用と半径方向
用の2系統が設けられている。図中円周方向用の噴出口
9と半径方向用の噴出口10はそれぞれ円周上に91、
101のごとく数個穿ち、ガスを渦巻状態として同軸管
中央部に収束させる。プラズマトーチ発生部4ではマイ
クロ波電界が最大になっているので、同軸管の内管1の
先端5の部分でガスが電離してプラズマが発生する。一
旦発生したプラズマは、このトーチ発生部の周囲に形成
される電界によって、エネルギーを供給されてプラズマ
炎7が安定に維持される。粉末状の反応物質は細管11
の上部の反応物質投入口16と側面の反応物質投入口1
2からプラズマ炎7の上部に投入され、プラズマ炎で溶
融され、高温化学反応を起こし、高温状態でプラズマ室
内に噴出される。19はプラズマ室壁である。[Prior Art] In a plasma torch generator using a conventional coaxial tube circuit, the tip of the inner tube is made sharp and the inner diameter of the metal outer tube is narrowed to increase the microwave electric field in this area and create a spiral state. A certain gas was ionized to generate plasma in the atmosphere. To explain this based on the drawings, FIG. 3 is a longitudinal sectional view of a conventional microwave thermal plasma reactor. In the figure, 1 is an inner tube, and 2 is an outer tube, both of which are made of metal and form a coaxial tube circuit for transmitting microwave power. A thin tube 11 for introducing a reactant passes through the center of the inner tube 1, and the reactant is introduced from a reactant inlet 16 at the top of the thin tube 11. A partition pipe 3 for the cooling waterway is placed on the outside of this
is provided, and cooling water enters through the inlet 17 and exits through the outlet 18 to cool the inner tube 1. The tip 5 of the inner tube 1 is sharp, and the microwave power transmitted in the direction of arrow A within the coaxial tube circuit is concentrated to form a plasma torch generating section 4. The reactant is introduced into the upper part of the generated plasma flame 7. The tip of the outer tube 2 is constricted inward and has the narrowest part 6, forming a plasma torch generating part. A cooling water reservoir 13 is provided inside the outer tube 2 around this plasma torch generation part,
Cooling water flows from a cooling water inlet 14 to an outlet 15. In order to increase the stability and controllability of the plasma, two systems of gas ejection ports, one for the circumferential direction and one for the radial direction, are provided above the plasma torch generating section. In the figure, the jet ports 9 for the circumferential direction and the jet ports 10 for the radial direction are located at 91 on the circumference, respectively.
Several holes like 101 are made to converge the gas in the center of the coaxial tube in a spiral state. Since the microwave electric field is at its maximum in the plasma torch generating section 4, gas is ionized at the tip 5 of the inner tube 1 of the coaxial tube and plasma is generated. Once generated, the plasma is supplied with energy by the electric field formed around the torch generating portion, and the plasma flame 7 is maintained stably. The powdered reactant is in the capillary 11
Reactant inlet 16 on the top and reactant inlet 1 on the side
2 into the upper part of the plasma flame 7, it is melted by the plasma flame, a high-temperature chemical reaction occurs, and it is ejected into the plasma chamber in a high-temperature state. 19 is a plasma chamber wall.
【0003】0003
【発明が解決しようとする課題】上記従来の装置では、
高温のプラズマ炎7によるプラズマトーチ発生部4の金
属表面8の溶解破損を防止するため、金属製の外管2の
内部に冷却水溜13を設けるとともに冷却水を流してい
た。しかしこの構造では、印加可能マイクロ波電力が数
キロワットに限定され、これ以上のマイクロ波電力を加
えると、冷却水量を増加させてもプラズマ炎7に近い外
管2の金属表面8は溶解破損されやすい。セラミックな
どの新素材の生成や新しい応用分野の開拓を目標とする
と、印加マイクロ波電力も10キロワット以上を必要と
するので、このトーチ発生部のアーク発生を押さえ、耐
熱性と絶縁性を向上させる必要がある。しかし、上記従
来の装置では、マイクロ波電力が5キロワット以上とな
るとトーチ発生部の外周が溶融破損し易く、長時間の操
作が困難であった。本発明は上記従来の問題にかんがみ
、強力なマイクロ波電力の継続的使用に耐えられるマイ
クロ波熱プラズマ反応装置の提供を目的とする。[Problem to be solved by the invention] In the above conventional device,
In order to prevent melting and damage to the metal surface 8 of the plasma torch generator 4 due to the high temperature plasma flame 7, a cooling water reservoir 13 was provided inside the metal outer tube 2 and cooling water was allowed to flow therethrough. However, with this structure, the microwave power that can be applied is limited to several kilowatts, and if more microwave power is applied, the metal surface 8 of the outer tube 2 near the plasma flame 7 will be melted and damaged even if the amount of cooling water is increased. Cheap. If the goal is to create new materials such as ceramics or develop new application fields, the applied microwave power will need to be 10 kilowatts or more, so it is necessary to suppress arcing in the torch generating part and improve heat resistance and insulation. There is a need. However, in the above-mentioned conventional apparatus, when the microwave power exceeds 5 kilowatts, the outer periphery of the torch generating part tends to melt and break, making it difficult to operate for a long time. In view of the above-mentioned conventional problems, the present invention aims to provide a microwave thermal plasma reactor that can withstand continuous use of strong microwave power.
【0004】0004
【課題を解決するための手段】本発明は、内管及び外管
で構成されるマイクロ波電力を伝送するための同軸管回
路、該内管の先端が狭められて形成されたプラズマトー
チ発生部、該内管の円周方向及び半径方向に対してガス
を噴出する手段、同軸管回路の上部に設けられた反応物
質投入口を有するマイクロ波熱プラズマ反応装置におい
て、該外管の内側でかつプラズマトーチ発生部の周辺に
無機化合物絶縁体を形成したことを特徴をするマイクロ
波熱プラズマ反応装置である。本発明はプラズマトーチ
発生部におけるアーク発生を押さえ、耐熱性を向上させ
るために、高熱耐熱性、高温安定性に優れた無機化合物
をプラズマトーチ発生部の周辺における外管の内側に形
成することによって、所期の目的を達成するものである
。無機化合物としては窒化硼素を用い、その成型体を形
成するか、外管の表面に窒化硼素の膜を形成させて被覆
すると特に耐熱性を向上させることができる。[Means for Solving the Problems] The present invention provides a coaxial tube circuit for transmitting microwave power consisting of an inner tube and an outer tube, and a plasma torch generating section formed by narrowing the tip of the inner tube. , a means for ejecting gas in the circumferential direction and radial direction of the inner tube, and a reactant inlet provided at the top of the coaxial tube circuit, in a microwave thermal plasma reactor having a reactant inlet provided inside the outer tube and This is a microwave thermal plasma reactor characterized by forming an inorganic compound insulator around the plasma torch generating part. The present invention suppresses arc generation in the plasma torch generation area and improves heat resistance by forming an inorganic compound with excellent high heat resistance and high temperature stability on the inside of the outer tube around the plasma torch generation area. , which achieves the intended purpose. The heat resistance can be particularly improved by using boron nitride as the inorganic compound and forming a molded body thereof or forming a film of boron nitride on the surface of the outer tube to cover it.
【0005】[0005]
【作用】窒化硼素等の高温耐熱性無機化合物は電気絶縁
体であるから、これをプラズマトーチ発生部の周辺の外
管に形成すれば、全部金属で製作した場合と比べて、電
圧分布が絶縁体部と空間部とに分割されるので、同一寸
法においては、トーチ発生部の空間のマイクロ波電界強
度が低下する。しかし、窒化硼素成型体の誘電率が3乃
至4の程度になるから、使用範囲では10%程度の減少
にすぎない。従って必要ならば、外周(窒化硼素成型体
が形成される部分)の内径を少し細めれば同一結果が得
られる。また熱伝導率が鉄程度だから、底部を水冷にす
れば冷却効果も良い。上記の諸特徴は全てプラズマトー
チ発生部の外周として最適であることを示している。な
お金属製プラズマトーチ発生部の外周表面に窒化硼素懸
濁液を噴射して薄膜を形成させ被覆させても、放電を防
止できるので、印加マイクロ波電力の増加に効果がある
。[Function] High temperature heat-resistant inorganic compounds such as boron nitride are electrical insulators, so if they are formed on the outer tube around the plasma torch generation part, the voltage distribution will be more insulated than if it were made entirely of metal. Since it is divided into a body part and a space part, the microwave electric field strength in the space of the torch generating part decreases when the dimensions are the same. However, since the dielectric constant of the boron nitride molded body is about 3 to 4, the reduction is only about 10% within the range of use. Therefore, if necessary, the same result can be obtained by slightly reducing the inner diameter of the outer periphery (the part where the boron nitride molded body is formed). Also, since its thermal conductivity is comparable to that of iron, the cooling effect will be good if the bottom is water-cooled. All of the above features indicate that it is optimal as the outer periphery of the plasma torch generating section. Incidentally, even if a boron nitride suspension is injected onto the outer circumferential surface of the metal plasma torch generation part to form a thin film to cover it, discharge can be prevented and the applied microwave power can be increased.
【0006】[0006]
【実施例】図1は本発明の実施例を示す縦断面図、図2
は他の実施例を示す縦断面図である。図において図1と
同一の符号は同一のものを示す。図1は、無機化合物絶
縁体として窒化硼素の成型体を用いた例である。窒化硼
素(ボロン)の特徴は次のとおりである。
1.熱伝導率は常温付近で25乃至80W/mKと鉄に
近い値を示している。
2.不活性雰囲気内で、2200度Cまでの高温安定性
を持っている。
3.各種素材の溶融体と反応しにくい化学的安定性があ
る。
4.熱膨張率が小さく、耐熱衝撃性も優れている。
5.電気絶縁耐力も30乃至40kV/mmと優れてい
る。
6.成型体の機械加工が容易である。
7.懸濁液は均一な被膜(粉体平面層)を形成する。
従って、この窒化硼素成型体を加工してプラズマトーチ
発生部4の外周とすれば、印加マイクロ波電力が10キ
ロワット以上となっても、金属導電体よりもアーク放電
し難く、耐熱性を向上させる事ができる。また金属導体
で製作したトーチ発生部の外周の表面に窒化硼素懸濁液
を噴射して薄膜を形成させても、絶縁性耐熱性の向上と
放電防止に効果がある。[Embodiment] Fig. 1 is a vertical cross-sectional view showing an embodiment of the present invention, and Fig. 2
FIG. 3 is a vertical cross-sectional view showing another embodiment. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. FIG. 1 shows an example in which a molded body of boron nitride is used as the inorganic compound insulator. The characteristics of boron nitride (boron) are as follows. 1. The thermal conductivity is 25 to 80 W/mK at room temperature, which is close to that of iron. 2. It has high temperature stability up to 2200 degrees Celsius in an inert atmosphere. 3. It has chemical stability that makes it difficult to react with melts of various materials. 4. It has a low coefficient of thermal expansion and excellent thermal shock resistance. 5. The electrical dielectric strength is also excellent at 30 to 40 kV/mm. 6. Machining of the molded body is easy. 7. The suspension forms a uniform film (planar layer of powder). Therefore, if this boron nitride molded body is processed to form the outer periphery of the plasma torch generation part 4, even if the applied microwave power is 10 kilowatts or more, arc discharge will be less likely to occur than a metal conductor, and the heat resistance will be improved. I can do things. Furthermore, forming a thin film by spraying a boron nitride suspension on the outer peripheral surface of a torch generating part made of a metal conductor is also effective in improving insulating heat resistance and preventing discharge.
【0007】図1において21は最狭部6において内径
が絞り込まれた窒化硼素の成型体であり、外管2に組み
込まれている。成型体21の底部22においては外管2
が薄くなっており、その薄い外管2の金属壁を隔てて冷
却水溜23が設けられて、窒化硼素成型体21の良好な
熱伝導度を利用して十分な冷却を施している。これによ
り、先端5の部分で電離したガスがトーチ発生部4で強
力なプラズマ炎7となる。粉末状反応物質は反応物質投
入口16と側面の投入口12からプラズマ炎7の上部に
投入され、溶融され、高温化学反応を起こし、プラズマ
室の壁16を通して高温状態でプラズマ室内部に噴出さ
れる。In FIG. 1, 21 is a boron nitride molded body whose inner diameter is narrowed at the narrowest part 6, and is incorporated into the outer tube 2. At the bottom 22 of the molded body 21, the outer tube 2
A cooling water reservoir 23 is provided across the thin metal wall of the outer tube 2 to provide sufficient cooling by utilizing the good thermal conductivity of the boron nitride molded body 21. As a result, the gas ionized at the tip 5 becomes a powerful plasma flame 7 at the torch generating section 4. The powdered reactant is introduced into the upper part of the plasma flame 7 through the reactant inlet 16 and the side inlet 12, where it is melted, causes a high-temperature chemical reaction, and is ejected into the plasma chamber at a high temperature through the wall 16 of the plasma chamber. Ru.
【0008】図2は図3における金属導体製トーチ発生
部の金属表面8に窒化硼素の懸濁液を噴射して薄膜被覆
25を形成させて保護させた実施例であり、放電防止に
効果がある。この方法によっても、マイクロ波電力の増
加が可能となった。FIG. 2 shows an embodiment in which a suspension of boron nitride is sprayed onto the metal surface 8 of the metal conductor torch generation part in FIG. 3 to form a thin film coating 25 for protection, which is effective in preventing discharge. be. This method also made it possible to increase microwave power.
【0009】上記いずれの実施例においても、同軸部の
外管内径を40mm、内管外径を26mmとし、トーチ
発生部の外周最小直径は20mmとした。これに周波数
2.45GHzのマイクロ波電力10kWを印加して、
水素とアルゴンの混合ガスを流したところ、安定に強力
なプラズマを発生し、良質な反応物質が生成できた。In all of the above embodiments, the inner diameter of the outer tube of the coaxial portion was 40 mm, the outer diameter of the inner tube was 26 mm, and the minimum diameter of the outer periphery of the torch generating portion was 20 mm. Applying 10kW of microwave power with a frequency of 2.45GHz to this,
When a mixed gas of hydrogen and argon was flowed through it, a strong and stable plasma was generated and high-quality reactants were produced.
【0010】0010
【発明の効果】従来のマイクロ波熱プラズマ発生装置で
は、10kW以上といった強力なマイクロ波電力を使用
した大出力反応装置が得られなかった。しかし本発明の
マイクロ波熱プラズマ反応装置を使用すれば、強力なプ
ラズマ炎を安定に発生・維持できるのでこの問題が解決
される。本発明のマイクロ波熱プラズマ反応装置の特徴
を掲げれば、次のようになる。
(1) 本発明の窒化硼素等の成型体や被膜をトーチ
発生部に使用したマイクロ波熱プラズマ反応装置では、
放電防止効果と絶縁性耐熱性の向上によって、印加可能
のマイクロ波電力を従来よりも著しく向上できた。
(2) 本発明のマイクロ波熱プラズマ反応装置では
、不純物を含まない反応物質が得られる。
(3) 直流アークジェットや高周波プラズマなどと
比較して、大気圧純水素プラズマを維持する電力が、格
段に低い。即ち、4MHzの高周波プラズマでは、50
0kW以上必要とするのに対して、マイクロ波では、1
.8kW程度の低電力で十分である。
(4) 実験から、マイクロ波熱プラズマ反応装置で
はプラズマ中の温度勾配・濃度勾配が共にかなり小さい
と考えられるので、物質合成に適している。
(5) 電極の溶解が殆ど無いから、電極に関する問
題も少ない。
(6) 強力で安定なプラズマ炎を長時間発生し、能
率よく高純度の生成物が得られる。Effects of the Invention With conventional microwave thermal plasma generators, it has not been possible to obtain a high-output reactor using powerful microwave power of 10 kW or more. However, if the microwave thermal plasma reactor of the present invention is used, this problem can be solved because a powerful plasma flame can be stably generated and maintained. The features of the microwave thermal plasma reactor of the present invention are as follows. (1) In a microwave thermal plasma reactor using the boron nitride molded body or coating of the present invention in the torch generating part,
By improving the discharge prevention effect and insulation heat resistance, the microwave power that can be applied has been significantly increased compared to conventional methods. (2) In the microwave thermal plasma reactor of the present invention, a reactant containing no impurities can be obtained. (3) The electric power required to maintain atmospheric pressure pure hydrogen plasma is significantly lower than that of DC arc jets, high frequency plasmas, etc. That is, in 4 MHz high frequency plasma, 50
Microwaves require 1 kW or more, whereas microwaves require 1 kW or more.
.. A low power of about 8 kW is sufficient. (4) Experiments have shown that the microwave thermal plasma reactor is suitable for material synthesis because both the temperature gradient and the concentration gradient in the plasma are considered to be quite small. (5) Since there is almost no melting of the electrodes, there are fewer problems with the electrodes. (6) Generates a strong and stable plasma flame for a long time and efficiently produces high-purity products.
【図1】窒化硼素の成型体を使用した場合の本発明の実
施例の縦断面図。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention in which a boron nitride molded body is used.
【図2】窒化硼素の薄膜被膜を使用した場合の他の実施
例の縦断面図。FIG. 2 is a longitudinal cross-sectional view of another embodiment in which a thin film coating of boron nitride is used.
【図3】従来のマイクロ波熱プラズマ反応装置の縦断面
図。FIG. 3 is a longitudinal cross-sectional view of a conventional microwave thermal plasma reactor.
1 内管 2 外管 3 区画管 4 プラズマトーチ発生部 5 先端 6 最狭部 7 プラズマ炎 8 金属表面 9、91 円周方向用噴出口 10、101 半径方向用噴出口 11 細管 12、16 反応物質投入口 13、23 冷却水溜 14、17 冷却水入口 15、18 冷却水出口 19 プラズマ室壁 21 成型体 22 底部 25 薄膜被膜 1 Inner pipe 2 Outer tube 3 Division pipe 4 Plasma torch generation part 5 Tip 6 Narrowest part 7 Plasma flame 8 Metal surface 9, 91 Circumferential jet nozzle 10, 101 Radial jet nozzle 11 Thin tube 12, 16 Reactant input port 13, 23 Cooling water reservoir 14, 17 Cooling water inlet 15, 18 Cooling water outlet 19 Plasma chamber wall 21 Molded body 22 Bottom 25 Thin film coating
Claims (3)
電力を伝送するための同軸管回路、該内管の先端が狭め
られて形成されたプラズマトーチ発生部、該内管の円周
方向及び半径方向に対してガスを噴出する手段、同軸管
回路の上部に設けられた反応物質投入口を有するマイク
ロ波熱プラズマ反応装置において、該外管の内側でかつ
プラズマトーチ発生部の周辺に無機化合物絶縁体を形成
したことを特徴をするマイクロ波熱プラズマ反応装置。1. A coaxial tube circuit for transmitting microwave power consisting of an inner tube and an outer tube, a plasma torch generating section formed by narrowing the tip of the inner tube, and a circumferential direction of the inner tube. In a microwave thermal plasma reactor having a means for ejecting gas in the radial direction, and a reactant inlet provided at the top of a coaxial tube circuit, an inorganic material is provided inside the outer tube and around the plasma torch generating part. A microwave thermal plasma reaction device characterized by forming a compound insulator.
求項1記載のマイクロ波熱プラズマ反応装置。2. The microwave thermal plasma reactor according to claim 1, wherein the inorganic compound insulator is boron nitride.
ある請求項1記載のプラズマ反応装置。3. The plasma reactor according to claim 1, wherein the inorganic compound insulator is a film of boron nitride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3152607A JPH04351899A (en) | 1991-05-28 | 1991-05-28 | Microwave heat plasma reaction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3152607A JPH04351899A (en) | 1991-05-28 | 1991-05-28 | Microwave heat plasma reaction device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04351899A true JPH04351899A (en) | 1992-12-07 |
Family
ID=15544099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3152607A Pending JPH04351899A (en) | 1991-05-28 | 1991-05-28 | Microwave heat plasma reaction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04351899A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996041505A1 (en) * | 1995-06-07 | 1996-12-19 | Physical Sciences, Inc. | Microwave-driven plasma spraying apparatus and method for spraying |
US6362449B1 (en) | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
JP2006202662A (en) * | 2005-01-24 | 2006-08-03 | Univ Nagoya | Plasma generator and its optimization method of power feed efficiency |
JP2013109961A (en) * | 2011-11-21 | 2013-06-06 | National Univ Corp Shizuoka Univ | Charged particle beam generation device and charged particle beam generation method |
WO2023095420A1 (en) * | 2021-11-29 | 2023-06-01 | 株式会社日立製作所 | Plasma generator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49127839A (en) * | 1973-04-11 | 1974-12-06 | ||
JPH0357199A (en) * | 1989-07-25 | 1991-03-12 | Toyonobu Yoshida | Microwave hot plasma torch |
-
1991
- 1991-05-28 JP JP3152607A patent/JPH04351899A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49127839A (en) * | 1973-04-11 | 1974-12-06 | ||
JPH0357199A (en) * | 1989-07-25 | 1991-03-12 | Toyonobu Yoshida | Microwave hot plasma torch |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996041505A1 (en) * | 1995-06-07 | 1996-12-19 | Physical Sciences, Inc. | Microwave-driven plasma spraying apparatus and method for spraying |
US5793013A (en) * | 1995-06-07 | 1998-08-11 | Physical Sciences, Inc. | Microwave-driven plasma spraying apparatus and method for spraying |
US5973289A (en) * | 1995-06-07 | 1999-10-26 | Physical Sciences, Inc. | Microwave-driven plasma spraying apparatus and method for spraying |
US6362449B1 (en) | 1998-08-12 | 2002-03-26 | Massachusetts Institute Of Technology | Very high power microwave-induced plasma |
JP2006202662A (en) * | 2005-01-24 | 2006-08-03 | Univ Nagoya | Plasma generator and its optimization method of power feed efficiency |
JP4577684B2 (en) * | 2005-01-24 | 2010-11-10 | 国立大学法人名古屋大学 | Plasma generator and method for optimizing its power supply efficiency |
JP2013109961A (en) * | 2011-11-21 | 2013-06-06 | National Univ Corp Shizuoka Univ | Charged particle beam generation device and charged particle beam generation method |
WO2023095420A1 (en) * | 2021-11-29 | 2023-06-01 | 株式会社日立製作所 | Plasma generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100189311B1 (en) | Microwave plasma torch and method for generating plasma | |
CA1326886C (en) | Plasma generating apparatus and method | |
US3401302A (en) | Induction plasma generator including cooling means, gas flow means, and operating means therefor | |
CA2144834C (en) | Method and apparatus for generating induced plasma | |
US5144110A (en) | Plasma spray gun and method of use | |
KR100941479B1 (en) | Multi-coil induction plasma torch for solid state power supply | |
US4871580A (en) | Method of treating surfaces of substrates with the aid of a plasma | |
JP2950988B2 (en) | Plasma torch | |
US2960594A (en) | Plasma flame generator | |
CA2221624C (en) | Microwave-driven plasma spraying apparatus and method for spraying | |
US20030172772A1 (en) | Microwave plasma chemical synthesis of ultrafine powders | |
JP2005539143A (en) | Plasma spraying equipment | |
JP3733461B2 (en) | Composite torch type plasma generation method and apparatus | |
US5159173A (en) | Apparatus for reducing plasma constriction by intermediate injection of hydrogen in RF plasma gun | |
Heberlein | Generation of thermal and pseudo-thermal plasmas | |
JP2527150B2 (en) | Microwave thermal plasma torch | |
JPH04351899A (en) | Microwave heat plasma reaction device | |
US5095189A (en) | Method for reducing plasma constriction by intermediate injection of hydrogen in RF plasma gun | |
JP3662621B2 (en) | Induction plasma generation method and apparatus | |
JPH08236293A (en) | Microwave plasma torch and plasma generating method | |
WO1992010077A1 (en) | Gas plasma generating system | |
JP4719877B2 (en) | Microwave plasma torch and microwave plasma spraying device | |
US7665416B2 (en) | Apparatus for generating excited and/or ionized particles in a plasma and a method for generating ionized particles | |
JPH03211284A (en) | Multistage thermal plasma reaction apparatus | |
JPH03214600A (en) | Microwave heated plasma reaction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19950328 |