WO2023095420A1 - Plasma generator - Google Patents

Plasma generator Download PDF

Info

Publication number
WO2023095420A1
WO2023095420A1 PCT/JP2022/034027 JP2022034027W WO2023095420A1 WO 2023095420 A1 WO2023095420 A1 WO 2023095420A1 JP 2022034027 W JP2022034027 W JP 2022034027W WO 2023095420 A1 WO2023095420 A1 WO 2023095420A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
antenna
plasma generation
section
Prior art date
Application number
PCT/JP2022/034027
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 白石
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023095420A1 publication Critical patent/WO2023095420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a plasma generator that generates plasma.
  • Atmospheric pressure plasma does not require a vacuum vessel or exhaust equipment, and has the advantage that the particle density of active species in the plasma is higher than in a low-pressure environment, enabling high-speed processing.
  • discharge plasma is generated by ionizing neutral particles by giving energy to electrons by the electric field of the microwaves radiated into space.
  • Microwave discharge does not require electrodes or dielectrics (insulators) in contact with the plasma, which are required for dielectric barrier discharge, which is well known for atmospheric pressure plasma generation, and can suppress the contamination of plasma with impurities. .
  • the microwave plasma generator has a track record of plasma generation with many gas species such as argon, nitrogen, hydrogen, and air, and has the advantage of being able to handle various plasma irradiation conditions.
  • Patent Document 1 describes a plasma processing apparatus that can point-pointly irradiate plasma.
  • an antenna (radiator) for inputting and radiating a high-frequency signal and an insulator are provided in a torch-shaped housing, and the inner diameter of one end is larger than the inner diameter of the part where plasma is generated.
  • the insulator is formed to have a small diameter, so that a sufficient amount of plasma discharge gas can be positioned around the antenna by securing a sufficient space around the antenna. Plasma can be applied pointwise to an extremely narrow area on the top.”
  • Patent Literature 1 describes a plasma processing apparatus that irradiates plasma of various diameters pointwise by using an insulating tube whose inner diameter at one end is smaller than the inner diameter of the portion where plasma is generated. It is
  • a gas supply source that supplies gas to the inside of the plasma generation part, a high frequency power supply that supplies high frequency power to the inside of the plasma generation part, and a plasma generation part disposed in the plasma generation part.
  • An insulator is disposed between the discharge antenna in the plasma generating part and a metal housing surrounding it, and the gas flow path inside the insulator is directed to the gas upstream.
  • a plasma generator comprising a gas retention portion, a tapered portion, a throat portion, and a diverging portion in order from the side, wherein the tip of the discharge antenna is disposed between the inlet of the tapered portion and the throat portion. ”.
  • FIG. 1 is a front cross-sectional view showing a schematic configuration of a plasma generation apparatus for generating plasma according to Embodiment 1 of the present invention
  • 7 is a graph showing the frequency characteristics of the S-parameters of the transmission path with respect to the antenna length;
  • the plasma generator of the present invention is intended to be used for improving hydrophilicity by modifying the surface of culture substrates such as culture plates made of organic materials used for cell culture. .
  • the culture substrate which is an organic material
  • active species that are generated in plasma and readily cause chemical reactions are important for surface modification of culture substrates.
  • the generation efficiency of active species can be increased by increasing the interaction between the high electric field at the tip of the antenna and the gas.
  • the lifetime of active species is as short as 1 ⁇ s to 1 ms, and the percentage of active species in the plasma decreases sharply as the distance between the plasma generation section and the irradiation section increases.
  • FIG. 1 is a front cross-sectional view showing a configuration example of a plasma generation apparatus 100 according to an embodiment of the present invention.
  • the plasma generation apparatus 100 includes a plasma generation unit 1, a gas supply source 60 that supplies a working gas to the inside of the plasma generation unit 1, and electric power for generating plasma inside the plasma generation unit 1.
  • a high frequency power supply 50 is provided to supply power.
  • the working gas is supplied from the gas supply source 60 to the inside of the plasma generation unit 1, and the high frequency power oscillated from the high frequency power supply 50 is supplied to the plasma excitation unit 90 to generate plasma.
  • Plasma is delivered through the plasma delivery unit 91 to irradiate the object to be processed, thereby performing plasma processing.
  • the plasma generator 1 includes an outer conductor 3, a coaxial cable 51, a coaxial connector 52, a supply conductor 10, an antenna 11 as a radiation conductor, an insulating cylinder 5, and a holding conductor 70, as shown in FIG.
  • the outer conductor 3 is a conductive cylindrical body with an opening on at least one side, and the opening is formed with a plasma sending part 91 constituted by the insulating cylinder 5 .
  • the insulating cylinder 5 is composed of a dielectric such as a quartz tube or an alumina tube.
  • the insulating tube 5 is arranged coaxially with the antenna 11 with a holding conductor 70 having O-rings 40a and 40b.
  • the O-rings 40 a and 40 b are in close contact with the outer peripheral surface of the insulating cylinder 5 while being mounted in the recesses 70 and 71 provided in the holding conductor 70 .
  • the O-rings 40a, 40b are dielectric with high heat resistance.
  • One end of the antenna 11 is fixed to the center of the bottom surface 301 inside the cylinder of the outer conductor 3, and the other end protrudes inside the insulating cylinder 5 held by the holding conductor 70 mounted inside the outer conductor 3. are arranged to In this state, the central axis of the insulating tube 5 and the central axis of the antenna 11 are aligned.
  • the O-ring 40 a in a state of being mounted in a recess 71 formed in the holding conductor 70 , is positioned below the end 5 a of the insulating tube 5 near the bottom surface 301 of the cylindrical body of the outer conductor 3 to insulate the antenna 11 . It is arranged at the same position as the tip portion 11a of the antenna 11 projecting into the tube 5 or above it (on the side near the bottom surface 301 of the tube of the outer conductor 3).
  • a high-frequency power supply 50 generates a high-frequency signal in a quasi-microwave band (1 GHz to 3 GHz) or a microwave band (3 GHz to 30 GHz) with a predetermined power, and is connected to an external conductor by a coaxial connector 52 via a coaxial cable 51. to output high-frequency power to the plasma generator 1 .
  • the microwave energy is concentrated to the antenna 11 installed adjacent and parallel to the supply conductor 10. configured to be sent.
  • a magnetic field is generated concentrically around the axis through which the current flows.
  • an antenna with a length equivalent to 1/4 (30.6 mm) of the wavelength 11 a microwave electric field is generated at the tip 11a of the antenna 11, and plasma is generated.
  • a matching box may be provided between the high frequency power supply 50 and the plasma generating section 1 in order to increase the efficiency of supplying the high frequency signal for generating plasma from the high frequency power supply 50 .
  • the working gas for plasma discharge is supplied from the gas supply unit 60 through the gas pipe 61 and the flow rate is adjusted by the mass flow controller 62. Introduced in 92.
  • the plasma 99 generated in the plasma excitation part 90 inside the insulating cylinder 5 is supplied from the gas supply source 60 and is emitted from the plasma sending part 91 along the flow controlled by the flow path provided inside the insulating cylinder 5. It flows out of the generator 1 .
  • the inside of the insulating cylinder 5 has a nozzle shape that tapers and diverges from the end portion 5a toward the plasma delivery portion 91 downstream. Downstream from the end 5a is a gas retention section 200 followed by a tapered section 201, a throat section 202 and a diverging section 203.
  • FIG. 1 A gas retention section 200 followed by a tapered section 201, a throat section 202 and a diverging section 203.
  • the tip portion 11 a of the antenna 11 is arranged between the entrance of the tapered portion 201 and the entrance of the throat portion 202 .
  • the flow speeds up toward the tip portion 11a of the antenna 11 where plasma is generated, and the flow concentrates to increase the flow rate of the gas that interacts with the high electric field portion near the tip portion 11a of the antenna 11.
  • the efficiency of plasma generation can be increased.
  • the temperature of the plasma can also be lowered by arranging an insulator having a higher thermal conductivity than the gas near the plasma generating section to improve the heat radiation efficiency.
  • the shape of the tapered and divergent nozzle inside the insulating cylinder 5 is determined so that the plasma irradiation speed is low.
  • the plasma irradiation at a low speed is assumed to be a speed at which scattering or movement of the culture substrate, which is an object, is not a problem due to plasma irradiation even if it is not held down by a special jig. Since the appropriate speed at this time varies depending on the method of surface treatment of the object, it is preferable to set it appropriately. s or less is desirable.
  • the flow area of the end portion 5a of the insulating cylinder 5 is S2
  • the flow area of the inlet of the nozzle throat 202 is S3
  • the flow area of the plasma delivery portion 91 at the outlet of the divergent portion is S4
  • the relationship between the flow passage areas of the respective portions is set to S2>S4>S3>S1 in order to realize low-speed plasma irradiation.
  • the flow rate is 2 L/min
  • the inner diameter of the gas introduction pipe 63 is 2 mm
  • the flow area is 3.14 mm 2
  • the flow velocity of the working gas is 10.6 m/s.
  • the flow velocity is 0.4 m/s.
  • the flow velocity is 5.2 m/s, and the flow velocity is 0.1 m/s if the flow area of the outlet of the divergent portion is multiplied by 150.
  • FIG. 2 shows, as an example, the frequency characteristics of the S parameter for evaluating the reflected power of the transmission line for microwaves of 2.45 GHz.
  • the plasma temperature is lowered by increasing the gas flow rate in the high electric field portion at the tip of the antenna, and the high electric field portion at the tip of the antenna and the gas Therefore, it is possible to provide a plasma generation apparatus capable of realizing low-speed plasma irradiation by flowing gas from the throat portion to the diverging portion.
  • This structure is similar to the structure of Patent Document 1 in that the inside of the insulating cylinder 5 has a tapered and diverging nozzle shape, but it differs greatly in the following two points.
  • the first point is that the tip portion 11a of the antenna 11 is arranged between the entrance of the tapered portion 201 and the entrance of the throat portion 202 (in other words, inside the tapered portion 201).
  • a tip portion 11 a of the antenna 11 is arranged in the gas retention portion 200 .
  • the second point is the shape of the antenna 11.
  • the gas flow passes between the two antennas arranged around the inside of the insulating cylinder 5. is to allow the gas stream to pass through.
  • 1 plasma generator
  • 3 external conductor
  • 5 insulating cylinder
  • 5a insulating cylinder end
  • 10 supply conductor
  • 11 antenna
  • 11a antenna tip
  • 40a, 40b O-ring
  • 50 high frequency power supply
  • 51 coaxial cable
  • 52 coaxial connector
  • 60 gas supply source
  • 61 gas pipe
  • 62 mass flow controller
  • 63 gas introduction pipe
  • 70 holding conductor
  • 90 plasma excitation section
  • 91 plasma delivery section
  • 92 gas rectifying section
  • 99 plasma
  • 200 gas retention section
  • 201 tapered section
  • 202 throat section
  • 203 divergent section

Abstract

Provided is a plasma generator with which: reduction in plasma temperature and improvement of active species generation efficiency can be achieved; and an object can be irradiated with plasma while an increase in the speed of plasma generated in a plasma generation part is suppressed. This plasma generator comprises: a gas supply source for supplying gas into a plasma generation part; a high frequency power source for supplying high frequency power into the plasma generation part; and a discharge antenna that is provided inside the plasma generation part and in which plasma is generated. The plasma generator is characterized in that: an insulating material is disposed between the discharge antenna and a metal casing that surrounds the antenna in the plasma generation part; a gas flow passage in the insulating material is formed from a gas retention part, a taper part, a throat part, and a divergent part in this order from the gas upstream side; and the tip of the discharge antenna is located between the inlet of the taper part and the throat part.

Description

プラズマ生成装置Plasma generator
 本発明は、プラズマを生成するプラズマ生成装置に関する。 The present invention relates to a plasma generator that generates plasma.
 大気圧プラズマは、真空容器や排気設備が不要であり、減圧環境に比べてプラズマ内の活性種の粒子密度が高く、高速処理が可能であるという利点がある。プラズマの生成法にマイクロ波を使った場合、放電プラズマは空間に放射されるマイクロ波の電界により電子にエネルギーを与え、中性粒子を電離することにより生成される。 Atmospheric pressure plasma does not require a vacuum vessel or exhaust equipment, and has the advantage that the particle density of active species in the plasma is higher than in a low-pressure environment, enabling high-speed processing. When microwaves are used to generate plasma, discharge plasma is generated by ionizing neutral particles by giving energy to electrons by the electric field of the microwaves radiated into space.
 マイクロ波放電では、大気圧プラズマ生成でよく知られた誘電体バリア放電に必要となる電極やプラズマに接する誘電体(絶縁体)が不要であり、プラズマへの不純物の混入を抑制することができる。 Microwave discharge does not require electrodes or dielectrics (insulators) in contact with the plasma, which are required for dielectric barrier discharge, which is well known for atmospheric pressure plasma generation, and can suppress the contamination of plasma with impurities. .
 また、マイクロ波放電によって生成されたプラズマをガス流によって放電部から移送することで、プラズマ生成部と照射部を分離したリモート処理を行うことが可能であり、原理的には対象物の寸法やどのような形状の表面でも処理することができる。リモート処理に用いられる方式の一つに低周波大気圧プラズマジェットがあるが、低周波大気圧プラズマジェットの場合、放電ガスがヘリウムに限定される。 In addition, by transferring the plasma generated by the microwave discharge from the discharge part by gas flow, it is possible to perform remote processing with the plasma generation part and the irradiation part separated. Surfaces of any shape can be treated. One method used for remote processing is a low-frequency atmospheric pressure plasma jet, but in the case of the low-frequency atmospheric pressure plasma jet, the discharge gas is limited to helium.
 一方、マイクロ波プラズマ発生装置では、アルゴン、窒素、水素、空気など、多くのガス種によるプラズマ生成実績があり、様々なプラズマ照射条件に対応できる利点がある。 On the other hand, the microwave plasma generator has a track record of plasma generation with many gas species such as argon, nitrogen, hydrogen, and air, and has the advantage of being able to handle various plasma irradiation conditions.
 プラズマを点的に照射し得るプラズ処理装置が特許文献1に記載されている。この特許文献1には、「トーチ型の筐体内に、高周波信号を入力して放射するアンテナ(放射器)と絶縁体を備え、プラズマが発生する部位の内径よりも一端部の内径の方が小径となるように絶縁体を形成する。これにより、アンテナの周囲に十分なスペースを確保して十分な量のプラズマ放電用ガスをアンテナの周囲に位置させることができ、さらには、処理対象体上の極く狭い領域に対してプラズマを点的に照射することができる。」と記載されている。 Patent Document 1 describes a plasma processing apparatus that can point-pointly irradiate plasma. In this patent document 1, "an antenna (radiator) for inputting and radiating a high-frequency signal and an insulator are provided in a torch-shaped housing, and the inner diameter of one end is larger than the inner diameter of the part where plasma is generated. The insulator is formed to have a small diameter, so that a sufficient amount of plasma discharge gas can be positioned around the antenna by securing a sufficient space around the antenna. Plasma can be applied pointwise to an extremely narrow area on the top."
特開2010-056002号公報Japanese Patent Application Laid-Open No. 2010-056002
 特許文献1には、プラズマが発生する部位の内径よりも一端部の内径の方が小径となるような絶縁管を使用することで、各種径のプラズマを点的に照射するプラズマ処理装置が記載されている。 Patent Literature 1 describes a plasma processing apparatus that irradiates plasma of various diameters pointwise by using an insulating tube whose inner diameter at one end is smaller than the inner diameter of the portion where plasma is generated. It is
 この場合、プラズマが発生する部位の内径が広いためアンテナ先端の高電界部での流速が遅く相互作用するガス流量が少ないため、生成されるプラズマのガス温度が上昇し、さらには活性種の生成効率が抑制される。また、高速の大気圧プラズマが、点的に対象物にあたると、対象物が飛散、移動してしまうという問題があった。 In this case, since the inner diameter of the part where the plasma is generated is wide, the flow velocity in the high electric field part at the tip of the antenna is low and the flow rate of interacting gas is small. Efficiency is suppressed. Moreover, when the high-speed atmospheric pressure plasma hits the object pointwise, there is a problem that the object scatters and moves.
 以上のことから本発明の目的は、プラズマ温度の低温化と活性種の生成効率の向上を実現することができるプラズマ生成装置を提供することにある。さらには、プラズマ生成部で生成したプラズマの高速化を抑制して、対象物にプラズマを照射できる、プラズマ生成装置を提供することにある。 In view of the above, an object of the present invention is to provide a plasma generation apparatus capable of lowering the plasma temperature and improving the generation efficiency of active species. Another object of the present invention is to provide a plasma generation apparatus capable of irradiating an object with plasma while suppressing the acceleration of the plasma generated in the plasma generation section.
 以上のことから本発明においては、「プラズマ生成部の内部にガスを供給するガス供給源と、プラズマ生成部の内部に高周波電力を供給する高周波電源と、プラズマ生成部内に配置されてプラズマを発生する放電用アンテナを備えたプラズマ発生装置であって、プラズマ生成部内の放電用アンテナとそれを囲む金属筐体との間に絶縁物を配置し、絶縁物の内部のガス流路が、ガス上流側から順にガス滞留部、先細部、スロート部、末広部で構成されており、放電用アンテナの先端が先細部の入口とスロート部との間に配置されていることを特徴とするプラズマ発生装置」としたものである。 From the above, in the present invention, "a gas supply source that supplies gas to the inside of the plasma generation part, a high frequency power supply that supplies high frequency power to the inside of the plasma generation part, and a plasma generation part disposed in the plasma generation part. An insulator is disposed between the discharge antenna in the plasma generating part and a metal housing surrounding it, and the gas flow path inside the insulator is directed to the gas upstream. A plasma generator comprising a gas retention portion, a tapered portion, a throat portion, and a diverging portion in order from the side, wherein the tip of the discharge antenna is disposed between the inlet of the tapered portion and the throat portion. ”.
 本発明によれば、プラズマ温度の低温化と活性種の生成効率の向上を実現することができ、さらには、プラズマ生成部で生成したプラズマの高速化を抑制して、対象物にプラズマを照射できる。 According to the present invention, it is possible to lower the plasma temperature and improve the generation efficiency of active species. can.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施例1に係るプラズマ生成に係るプラズマ生成装置の概略の構成を示す正面の断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front cross-sectional view showing a schematic configuration of a plasma generation apparatus for generating plasma according to Embodiment 1 of the present invention; アンテナ長に対する伝送路のSパラメータの周波数特性を示すグラフ。7 is a graph showing the frequency characteristics of the S-parameters of the transmission path with respect to the antenna length;
 以下、本発明の実施例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 ただし、本発明は以下に示す実施例の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 However, the present invention should not be construed as being limited to the contents of the examples shown below. Those skilled in the art will easily understand that the specific configuration can be changed without departing from the idea or gist of the present invention.
 本発明のプラズマ生成装置は、細胞培養に使われる有機材料で形成された培養皿などの培養基材を対象物として、その表面改質による親水性の向上などに使用することを想定している。 The plasma generator of the present invention is intended to be used for improving hydrophilicity by modifying the surface of culture substrates such as culture plates made of organic materials used for cell culture. .
 この場合、プラズマ照射により、有機材料である培養基材の変形・変質がないためには、プラズマの低温化が必要である。さらに、培養基材の表面改質には、プラズマ中に生成され、化学反応を起こしやすい活性種が重要である。活性種の生成は、アンテナ先端の高電界部とガスとの相互作用を増やすことで生成効率を高めることができる。活性種の寿命は1μsから1msと短く、プラズマ生成部と照射部との距離が長くなるとプラズマ中の活性種の割合は急激に少なくなる。 In this case, it is necessary to lower the plasma temperature so that the culture substrate, which is an organic material, is not deformed or degraded by plasma irradiation. Furthermore, active species that are generated in plasma and readily cause chemical reactions are important for surface modification of culture substrates. The generation efficiency of active species can be increased by increasing the interaction between the high electric field at the tip of the antenna and the gas. The lifetime of active species is as short as 1 μs to 1 ms, and the percentage of active species in the plasma decreases sharply as the distance between the plasma generation section and the irradiation section increases.
 プラズマの対象物までの到達時間を短くするために高速流とすると、重量の軽い対象物の場合には、飛散や移動が問題になる場合がある。 If a high-speed flow is used to shorten the arrival time of the plasma to the target, scattering and movement may become a problem for light-weight targets.
 実施例では、上記した用途に好適なプラズマ生成装置について説明する。図1は、本発明の実施例に係るプラズマ生成装置100の構成例を示す正面の断面図である。 In the embodiment, a plasma generator suitable for the above applications will be described. FIG. 1 is a front cross-sectional view showing a configuration example of a plasma generation apparatus 100 according to an embodiment of the present invention.
 本実施例に係るプラズマ生成装置100は、プラズマ生成部1と、プラズマ生成部1の内部に動作ガスを供給するガス供給源60と、プラズマ生成部1の内部にプラズマを発生させるための電力を供給する高周波電源50を備えている。 The plasma generation apparatus 100 according to the present embodiment includes a plasma generation unit 1, a gas supply source 60 that supplies a working gas to the inside of the plasma generation unit 1, and electric power for generating plasma inside the plasma generation unit 1. A high frequency power supply 50 is provided to supply power.
 このプラズマ生成装置100では、プラズマ生成部1の内部にガス供給源60から動作ガスを供給し、高周波電源50から発振された高周波電力をプラズマ励起部90に供給してプラズマを生成し、生成したプラズマを、プラズマ送出部91を通して送出して被処理物に照射しプラズマによる処理を行う。 In this plasma generation apparatus 100, the working gas is supplied from the gas supply source 60 to the inside of the plasma generation unit 1, and the high frequency power oscillated from the high frequency power supply 50 is supplied to the plasma excitation unit 90 to generate plasma. Plasma is delivered through the plasma delivery unit 91 to irradiate the object to be processed, thereby performing plasma processing.
 プラズマ生成部1は、図1に示すように、外部導体3、同軸ケーブル51、同軸コネクタ52、供給導体10、放射導体としてのアンテナ11、絶縁筒5、保持導体70を備えている。 The plasma generator 1 includes an outer conductor 3, a coaxial cable 51, a coaxial connector 52, a supply conductor 10, an antenna 11 as a radiation conductor, an insulating cylinder 5, and a holding conductor 70, as shown in FIG.
 このうち外部導体3は、少なくとも片側が開口した導電性の筒体になっており、開口部に絶縁筒5によって構成された、プラズマ送出部91が形成されている。 Among them, the outer conductor 3 is a conductive cylindrical body with an opening on at least one side, and the opening is formed with a plasma sending part 91 constituted by the insulating cylinder 5 .
 絶縁筒5は、石英管やアルミナ管などの誘電体で構成されている。絶縁筒5は、Oリング40a、40bを設置した保持導体70でアンテナ11と同軸に配置される。Oリング40a、40bは、保持導体70に設けた凹部70.71に装着された状態で絶縁筒5の外周面に密着している。例えば、Oリング40a、40bは、耐熱性の高い、誘電体である。 The insulating cylinder 5 is composed of a dielectric such as a quartz tube or an alumina tube. The insulating tube 5 is arranged coaxially with the antenna 11 with a holding conductor 70 having O- rings 40a and 40b. The O- rings 40 a and 40 b are in close contact with the outer peripheral surface of the insulating cylinder 5 while being mounted in the recesses 70 and 71 provided in the holding conductor 70 . For example, the O- rings 40a, 40b are dielectric with high heat resistance.
 アンテナ11の一端は、外部導体3の筒体の内部の底面301の中心に固定され、他端は外部導体3の内部に装着された保持導体70に保持されている絶縁筒5の内部に突出するように配置されている。この状態で、絶縁筒5の中心軸とアンテナ11の中心軸が一致する構成となっている。 One end of the antenna 11 is fixed to the center of the bottom surface 301 inside the cylinder of the outer conductor 3, and the other end protrudes inside the insulating cylinder 5 held by the holding conductor 70 mounted inside the outer conductor 3. are arranged to In this state, the central axis of the insulating tube 5 and the central axis of the antenna 11 are aligned.
 Oリング40aは、保持導体70に形成された凹部71に装着された状態で、外部導体3の筒体の底面301に近い側の絶縁筒5の端部5aより下側で、アンテナ11の絶縁筒5内に突出したアンテナ11の先端部11aの位置と同じか、それよりも上側(外部導体3の筒体の底面301に近い側)に配置される。 The O-ring 40 a , in a state of being mounted in a recess 71 formed in the holding conductor 70 , is positioned below the end 5 a of the insulating tube 5 near the bottom surface 301 of the cylindrical body of the outer conductor 3 to insulate the antenna 11 . It is arranged at the same position as the tip portion 11a of the antenna 11 projecting into the tube 5 or above it (on the side near the bottom surface 301 of the tube of the outer conductor 3).
 高周波電源50は、準マイクロ波帯(1GHz~3GHz)またはマイクロ波帯(3GHz~30GHz)の高周波信号を所定の電力で生成すると共に、同軸ケーブル51を介して同軸コネクタ52で外部導体を接続されてプラズマ生成部1に高周波電力を出力する。同軸ケーブル51の終端を供給導体10と接続して逆L字で外部導体3の底面301と短絡させることで、供給導体10と隣接して平行に設置したアンテナ11へマイクロ波エネルギーを集中的に送ることができるように構成されている。 A high-frequency power supply 50 generates a high-frequency signal in a quasi-microwave band (1 GHz to 3 GHz) or a microwave band (3 GHz to 30 GHz) with a predetermined power, and is connected to an external conductor by a coaxial connector 52 via a coaxial cable 51. to output high-frequency power to the plasma generator 1 . By connecting the terminal end of the coaxial cable 51 to the supply conductor 10 and short-circuiting it with the bottom surface 301 of the outer conductor 3 in an inverted L shape, the microwave energy is concentrated to the antenna 11 installed adjacent and parallel to the supply conductor 10. configured to be sent.
 このような構成において、電流が流れる軸を中心に同心円状に磁場が発生するので、一例として、2.45GHzマイクロ波の場合、その波長の1/4(30.6mm)に値する長さのアンテナ11との共振が起き、アンテナ11の先端部11aでマイクロ波電界が作られ、プラズマが発生する。このとき、高周波電源50からプラズマを生成する高周波信号の供給効率を高めるため、高周波電源50とプラズマ生成部1との間に整合器を配設することもできる。 In such a configuration, a magnetic field is generated concentrically around the axis through which the current flows. As an example, in the case of a 2.45 GHz microwave, an antenna with a length equivalent to 1/4 (30.6 mm) of the wavelength 11, a microwave electric field is generated at the tip 11a of the antenna 11, and plasma is generated. At this time, a matching box may be provided between the high frequency power supply 50 and the plasma generating section 1 in order to increase the efficiency of supplying the high frequency signal for generating plasma from the high frequency power supply 50 .
 プラズマ放電用の動作ガスは、ガス供給部60からガス配管61を通してマスフローコントローラ62で流量が調整されたうえで、外部導体3に設けたガス導入管63を介して外部導体3内のガス整流部92に導入される。絶縁筒5の内部のプラズマ励起部90で発生したプラズマ99は、ガス供給源60から供給され、絶縁筒5の内部に設けた流路で制御された流れに沿って、プラズマ送出部91からプラズマ生成部1の外部に流れ出る。 The working gas for plasma discharge is supplied from the gas supply unit 60 through the gas pipe 61 and the flow rate is adjusted by the mass flow controller 62. Introduced in 92. The plasma 99 generated in the plasma excitation part 90 inside the insulating cylinder 5 is supplied from the gas supply source 60 and is emitted from the plasma sending part 91 along the flow controlled by the flow path provided inside the insulating cylinder 5. It flows out of the generator 1 .
 絶縁筒5の内部は、端部5aから下流のプラズマ送出部91に向かって先細末広ノズル形状となっている。端部5aから下流にガス滞留部200があり、続いて先細部201と、スロート部202と、末広部203が設けられている。 The inside of the insulating cylinder 5 has a nozzle shape that tapers and diverges from the end portion 5a toward the plasma delivery portion 91 downstream. Downstream from the end 5a is a gas retention section 200 followed by a tapered section 201, a throat section 202 and a diverging section 203. FIG.
 このとき、先細部201の入り口とスロート部202の入り口の間にアンテナ11の先端部11aが配置されている。これにより、プラズマが生成されるアンテナ11の先端部11aに向かって流れが早くなるとともに、流れが集中して、アンテナ11の先端部11a近傍の高電界部と相互作用するガス流量が増加することで、プラズマの生成効率を高めることができる。さらに、高電界部で発生したプラズマの滞在時間が短くなるため、プラズマが高温になることを抑制することができる。また、一般に、ガスよりも熱伝導率の高い絶縁物をプラズマ生成部の近傍に配置して、放熱効率を高めることでもプラズマの低温化をはかることができる。 At this time, the tip portion 11 a of the antenna 11 is arranged between the entrance of the tapered portion 201 and the entrance of the throat portion 202 . As a result, the flow speeds up toward the tip portion 11a of the antenna 11 where plasma is generated, and the flow concentrates to increase the flow rate of the gas that interacts with the high electric field portion near the tip portion 11a of the antenna 11. , the efficiency of plasma generation can be increased. Furthermore, since the residence time of the plasma generated in the high electric field portion is shortened, it is possible to suppress the plasma from becoming hot. In general, the temperature of the plasma can also be lowered by arranging an insulator having a higher thermal conductivity than the gas near the plasma generating section to improve the heat radiation efficiency.
 絶縁筒5の内部の先細末広ノズル形状は、プラズマ照射が低速になるように決める。ここで低速でのプラズマ照射とは、プラズマの照射により対象物である培養基材が、特別な治具で抑えなくても飛散や移動が問題にならない速度を想定している。このときの適切な速度は、対象物の表面処理の仕方に応じても変わるため、適宜に設定されるのがよいが、具体的な数値としては、対象物に届く時の流速が数m/s以下であることが望ましい。 The shape of the tapered and divergent nozzle inside the insulating cylinder 5 is determined so that the plasma irradiation speed is low. Here, the plasma irradiation at a low speed is assumed to be a speed at which scattering or movement of the culture substrate, which is an object, is not a problem due to plasma irradiation even if it is not held down by a special jig. Since the appropriate speed at this time varies depending on the method of surface treatment of the object, it is preferable to set it appropriately. s or less is desirable.
 照射プラズマの流速が数m/s以下になるように、絶縁筒5の内部の先細末広ノズル形状の各部の流路面積は決められる。マスフローコントローラ62で調整された動作ガスの流量をQL/minガス導入管63の流路面積をS1mとすると、ガスの流速v1は、v1=Q/(60×S1)m/sとなる。各流路での流量が保存されるとして、絶縁筒5の端部5aの流路面積をS2、ノズルスロート202の入口の流路面積をS3、末広部出口のプラズマ送出部91の流路面積をS4とすると、低速でのプラズマ照射を実現するため、各部の流路面積の関係をS2>S4>S3>S1とする。例えば、流量2L/minで、ガス導入管63の内径が2mmで流路面積が3.14mmの場合、動作ガスの流速は10.6m/sとなる。ガス導入管63の流路面積に対して、絶縁筒5の端部5aの流路面積を25倍にすると流速は0.4m/s、ノズルスロート202の入口の流路面積を2倍とすると流速は5.2m/s、末広部出口の流路面積を150倍とすれば流速は0.1m/sとなる。 The flow area of each portion of the tapered nozzle inside the insulating cylinder 5 is determined so that the flow velocity of the irradiated plasma is several m/s or less. Assuming that the flow rate of the working gas adjusted by the mass flow controller 62 is QL/min and the flow area of the gas introduction pipe 63 is S1m3 , the flow velocity v1 of the gas is v1=Q/(60*S1)m/s. . Assuming that the flow rate in each flow path is preserved, the flow area of the end portion 5a of the insulating cylinder 5 is S2, the flow area of the inlet of the nozzle throat 202 is S3, and the flow area of the plasma delivery portion 91 at the outlet of the divergent portion is is S4, the relationship between the flow passage areas of the respective portions is set to S2>S4>S3>S1 in order to realize low-speed plasma irradiation. For example, when the flow rate is 2 L/min, the inner diameter of the gas introduction pipe 63 is 2 mm, and the flow area is 3.14 mm 2 , the flow velocity of the working gas is 10.6 m/s. When the flow area of the end portion 5a of the insulating cylinder 5 is 25 times the flow area of the gas introduction pipe 63, the flow velocity is 0.4 m/s. The flow velocity is 5.2 m/s, and the flow velocity is 0.1 m/s if the flow area of the outlet of the divergent portion is multiplied by 150.
 図2は、一例として、2.45GHzのマイクロ波に対する伝送路の反射電力を評価するSパラメータの周波数特性である。マイクロ波の伝送路の特性を表すSパラメータ(S11=反射波/入射波)の吸収ピークの周波数が2.45 GHzに近く、また、吸収が大きいほど供給した電力がアンテナ先端部で消費されていることを表すため、吸収ピークは負に大きいほど伝送路インピーダンス整合が良いと言える。吸収ピークが2.45GHzからずれてしまうような場合には、プラズマの点火の不具合が発生し、あるいは伝送路の反射電力が大きくなってプラズマの生成効率が低下してしまう。 FIG. 2 shows, as an example, the frequency characteristics of the S parameter for evaluating the reflected power of the transmission line for microwaves of 2.45 GHz. The frequency of the absorption peak of the S-parameter (S11 = reflected wave/incident wave), which represents the characteristics of the microwave transmission path, is close to 2.45 GHz, and the greater the absorption, the more power is consumed at the tip of the antenna. Therefore, it can be said that the larger the negative absorption peak is, the better the transmission line impedance matching is. If the absorption peak deviates from 2.45 GHz, plasma ignition failure occurs, or the reflected power in the transmission line increases, resulting in a decrease in plasma generation efficiency.
 絶縁筒5の端部5aから下流にガス滞留部200を設けることで、ガスの流れを良くするのと合わせて、アンテナ11と絶縁物5との距離を確保することができるので、伝送路の反射電力を抑えるための伝送路インピーダンス整合の調整が容易になる。 By providing the gas retention portion 200 downstream from the end portion 5a of the insulating tube 5, it is possible to improve the flow of gas and secure the distance between the antenna 11 and the insulator 5, thereby improving the transmission path. Adjustment of transmission line impedance matching for suppressing reflected power is facilitated.
 上記した本発明の実施例によれば、このような構成にすることで、アンテナ先端の高電界部のガス流量を増やすことでプラズマ温度の低温度化と、アンテナ先端の高電界部とガスとの相互作用が増えるので、高い活性種の生成効率が実現でき、さらにはスロート部から末広部にガスを流すことで、低速でのプラズマ照射を実現できるプラズマ生成装置を提供することができる。 According to the above-described embodiment of the present invention, with such a configuration, the plasma temperature is lowered by increasing the gas flow rate in the high electric field portion at the tip of the antenna, and the high electric field portion at the tip of the antenna and the gas Therefore, it is possible to provide a plasma generation apparatus capable of realizing low-speed plasma irradiation by flowing gas from the throat portion to the diverging portion.
 以上本発明の実施例について説明した。この構造は、絶縁筒5の内部が先細末広ノズル形状になっている点において特許文献1の構造と共通するが、大きく以下の2点で相違する。第1点は先細部201の入り口とスロート部202の入り口の間(別な言い方をすると先細部201内)にアンテナ11の先端部11aが配置されていることであり、この点特許文献1のものはガス滞留部200内にアンテナ11の先端部11aが配置されている。また第2点は、アンテナ11の形状であり、特許文献1では絶縁筒5の内部周囲に配置された2つのアンテナ間をガス流が通過するに対し、本発明では1つの棒状のアンテナの周囲をガス流が通過するようにされたことである。 The embodiments of the present invention have been described above. This structure is similar to the structure of Patent Document 1 in that the inside of the insulating cylinder 5 has a tapered and diverging nozzle shape, but it differs greatly in the following two points. The first point is that the tip portion 11a of the antenna 11 is arranged between the entrance of the tapered portion 201 and the entrance of the throat portion 202 (in other words, inside the tapered portion 201). A tip portion 11 a of the antenna 11 is arranged in the gas retention portion 200 . The second point is the shape of the antenna 11. In Patent Document 1, the gas flow passes between the two antennas arranged around the inside of the insulating cylinder 5. is to allow the gas stream to pass through.
 以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the invention made by the present inventor has been specifically described above based on the embodiments, it goes without saying that the invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. stomach. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
1:プラズマ生成部、3:外部導体、5:絶縁筒、5a:絶縁筒端部、10:供給導体、11:アンテナ、11a:アンテナ先端部、40a、40b:Oリング、50:高周波電源、51:同軸ケーブル、52:同軸コネクタ、60:ガス供給源、61:ガス配管、62:マスフローコントローラ、63:ガス導入管、70:保持導体、90:プラズマ励起部、91:プラズマ送出部、92:ガス整流部、99:プラズマ、200:ガス滞留部、201:先細部、202:スロート部、203:末広部 1: plasma generator, 3: external conductor, 5: insulating cylinder, 5a: insulating cylinder end, 10: supply conductor, 11: antenna, 11a: antenna tip, 40a, 40b: O-ring, 50: high frequency power supply, 51: coaxial cable, 52: coaxial connector, 60: gas supply source, 61: gas pipe, 62: mass flow controller, 63: gas introduction pipe, 70: holding conductor, 90: plasma excitation section, 91: plasma delivery section, 92 : gas rectifying section, 99: plasma, 200: gas retention section, 201: tapered section, 202: throat section, 203: divergent section

Claims (5)

  1.  プラズマ生成部の内部にガスを供給するガス供給源と、プラズマ生成部の内部に高周波電力を供給する高周波電源と、プラズマ生成部内に配置されてプラズマを発生する放電用アンテナを備えたプラズマ生成装置であって、
     前記プラズマ生成部内の前記放電用アンテナとそれを囲む金属筐体との間に絶縁物を配置し、絶縁物の内部のガス流路が、ガス上流側から順にガス滞留部、先細部、スロート部、末広部で構成されており、前記放電用アンテナの先端が前記先細部の入口と前記スロート部との間に配置されていることを特徴とするプラズマ生成装置。
    A plasma generating apparatus comprising a gas supply source for supplying gas to the inside of a plasma generating section, a high frequency power supply for supplying high frequency power to the inside of the plasma generating section, and a discharge antenna arranged in the plasma generating section for generating plasma. and
    An insulator is arranged between the discharge antenna in the plasma generation section and a metal housing surrounding it, and the gas flow path inside the insulator is arranged in order from the upstream side of the gas retention section, the tapered section, and the throat section. , and a divergent portion, wherein the tip of the discharge antenna is arranged between the entrance of the tapered portion and the throat portion.
  2.  請求項1に記載のプラズマ生成装置であって、
     前記放電用アンテナは、前記絶縁物の内部のガス流路に沿って配置された1本のアンテナであり、前記放電用アンテナの外部をガスが流れることを特徴とするプラズマ生成装置。
    The plasma generation device according to claim 1,
    The plasma generation apparatus according to claim 1, wherein the discharge antenna is a single antenna arranged along a gas flow path inside the insulator, and gas flows outside the discharge antenna.
  3.  請求項1に記載のプラズマ生成装置であって、
     プラズマ送出部の背圧が大気圧であり、前記先細部と、前記スロート部と、前記末広部における、前記絶縁物内のガス流の流速が数m/sであることを特徴とするプラズマ生成装置。
    The plasma generation device according to claim 1,
    Plasma generation characterized in that the back pressure of the plasma sending part is the atmospheric pressure, and the flow velocity of the gas flow in the insulator is several m/s at the tapered part, the throat part, and the diverging part. Device.
  4.  請求項1に記載のプラズマ生成装置であって、
     細胞培養に使われる有機材料で形成された培養基材を対象物としてプラズマ照射するようにされたことを特徴とするプラズマ生成装置。
    The plasma generation device according to claim 1,
    1. A plasma generating apparatus characterized by irradiating plasma on a culture substrate made of an organic material used for cell culture as an object.
  5.  請求項4に記載のプラズマ生成装置であって、
     プラズマ照射するときの速度は、プラズマの照射により対象物である培養基材が、飛散し移動しない速度とされていることを特徴とするプラズマ生成装置。
    The plasma generation device according to claim 4,
    A plasma generating apparatus, wherein the plasma irradiation is performed at a speed at which the culture substrate, which is an object, does not scatter and move due to the plasma irradiation.
PCT/JP2022/034027 2021-11-29 2022-09-12 Plasma generator WO2023095420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-192822 2021-11-29
JP2021192822A JP2023079376A (en) 2021-11-29 2021-11-29 Plasma generation device

Publications (1)

Publication Number Publication Date
WO2023095420A1 true WO2023095420A1 (en) 2023-06-01

Family

ID=86539162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034027 WO2023095420A1 (en) 2021-11-29 2022-09-12 Plasma generator

Country Status (2)

Country Link
JP (1) JP2023079376A (en)
WO (1) WO2023095420A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351899A (en) * 1991-05-28 1992-12-07 Toyonobu Yoshida Microwave heat plasma reaction device
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow
JPH1027778A (en) * 1996-07-09 1998-01-27 Komatsu Ltd Surface treating device and nozzle provided thereto
JP2010056002A (en) * 2008-08-29 2010-03-11 Nagano Japan Radio Co Plasma treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351899A (en) * 1991-05-28 1992-12-07 Toyonobu Yoshida Microwave heat plasma reaction device
US5573682A (en) * 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow
JPH1027778A (en) * 1996-07-09 1998-01-27 Komatsu Ltd Surface treating device and nozzle provided thereto
JP2010056002A (en) * 2008-08-29 2010-03-11 Nagano Japan Radio Co Plasma treatment device

Also Published As

Publication number Publication date
JP2023079376A (en) 2023-06-08

Similar Documents

Publication Publication Date Title
KR100189311B1 (en) Microwave plasma torch and method for generating plasma
TWI732093B (en) Microwave chemical processing reactor
TWI643236B (en) Plasma processing device
US4611108A (en) Plasma torches
JP4607073B2 (en) Microwave resonance plasma generating apparatus and plasma processing system including the apparatus
CN107801286B (en) Microwave plasma excitation system based on dielectric barrier discharge pre-ionization
US4473736A (en) Plasma generator
JP5891341B2 (en) Plasma generating apparatus and method
US6396214B1 (en) Device for producing a free cold plasma jet
US10229814B2 (en) Plasma processing apparatus
JP5453271B2 (en) Apparatus and method for ultra-high frequency plasma assisted CVD under atmospheric pressure and its application
EP1976346A1 (en) Apparatus for generating a plasma
US6943316B2 (en) Arrangement for generating an active gas jet
JP4916776B2 (en) Blowout type microwave excitation plasma processing equipment
JP2017147129A (en) Plasma processing apparatus
US20130105460A1 (en) Plasma processing apparatus and plasma processing method
JP4953163B2 (en) Microwave excitation plasma processing equipment
JP5522887B2 (en) Plasma processing equipment
WO2003052806A1 (en) Plasma treatment apparatus and plasma generation method
WO2023095420A1 (en) Plasma generator
JP4684703B2 (en) Cleaning device, liquid crystal display substrate cleaning device, and liquid crystal display assembly device
CN112135409A (en) Air microwave plasma jet surface treatment device
JP4684725B2 (en) Hydrophilic treatment equipment
JPH0394422A (en) Method and apparatus for plasma cvd
JPH08236293A (en) Microwave plasma torch and plasma generating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898205

Country of ref document: EP

Kind code of ref document: A1