TWI732093B - Microwave chemical processing reactor - Google Patents

Microwave chemical processing reactor Download PDF

Info

Publication number
TWI732093B
TWI732093B TW107102224A TW107102224A TWI732093B TW I732093 B TWI732093 B TW I732093B TW 107102224 A TW107102224 A TW 107102224A TW 107102224 A TW107102224 A TW 107102224A TW I732093 B TWI732093 B TW I732093B
Authority
TW
Taiwan
Prior art keywords
fewg
plasma
microwave energy
microwave
supply gas
Prior art date
Application number
TW107102224A
Other languages
Chinese (zh)
Other versions
TW201841681A (en
Inventor
麥可 W. 史托威爾
布萊斯 H. 安吉爾莫
湯瑪斯 里索
Original Assignee
美商萊登股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商萊登股份有限公司 filed Critical 美商萊登股份有限公司
Publication of TW201841681A publication Critical patent/TW201841681A/en
Application granted granted Critical
Publication of TWI732093B publication Critical patent/TWI732093B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A processing reactor includes a microwave energy source and a field-enhancing waveguide.The field-enhancing waveguide has a field-enhancing zone between a first cross-sectional area and a second cross-sectional area of the waveguide, and also has a plasma zone and a reaction zone.The second cross-sectional area is smaller than the first cross-sectional area, is farther away from the microwave energy source than the first cross-sectional area, and extends along a reaction length of the field-enhancing waveguide.The supply gas inlet is upstream of the reaction zone.In the reaction zone, a majority of the supply gas flow is parallel to the direction of the microwave energy propagation.A supply gas is used to generate a plasma in the plasma zone to convert a process input material into separated components in the reaction zone at a pressure of at least 0.1 atmosphere.

Description

微波化學處理反應器Microwave chemical treatment reactor

本申請案主張2017年8月14日申請之美國專利申請案第15/676,649號之優先權,該美國專利申請案為2017年2月9日申請且發佈為美國專利第9,767,992號之美國專利申請案第15/428,474號之延續;所有以上申請案特此以引用方式整體併入本文中。This application claims the priority of U.S. Patent Application No. 15/676,649 filed on August 14, 2017, which is a U.S. patent application filed on February 9, 2017 and published as U.S. Patent No. 9,767,992 Case No. 15/428,474 is a continuation; all the above applications are hereby incorporated by reference in their entirety.

本發明係關於微波化學處理反應器。The present invention relates to a microwave chemical treatment reactor.

在氣體之工業化學處理中使用微波電漿。這通常係藉由在將微波能量耦合至細長容器的同時使待反應之氣體流過該容器以產生電漿來完成。電漿使氣體分子裂解成組成物質。微波化學處理系統係有效的,因為微波電漿在相對高的功率耦合效率下以低離子能量操作,且能夠支援各種氣體反應,諸如甲烷向氫及碳微粒之轉化、二氧化碳向氧及碳之轉化,及利用其他層來塗佈微粒及其他種子材料以用於官能化及複合分層材料及聚集體處理。Microwave plasma is used in the industrial chemical treatment of gases. This is usually done by coupling microwave energy to an elongated container while flowing the gas to be reacted through the container to generate plasma. Plasma breaks gas molecules into constituent substances. The microwave chemical processing system is effective because microwave plasma operates with low ion energy with relatively high power coupling efficiency and can support various gas reactions, such as the conversion of methane to hydrogen and carbon particles, and the conversion of carbon dioxide to oxygen and carbon. , And the use of other layers to coat particles and other seed materials for functionalization and composite layered materials and aggregate processing.

用於化學氣體處理之典型系統包括製程材料流過之石英反應腔室,及經由波導耦合至反應腔室之微波磁控管源。輸入微波能量可為連續波或脈衝式的。系統經設計以控制微波能量至反應腔室中之有效耦合及反應腔室內之氣流,以改良流動氣體之能量吸收。系統常常包括位於微波導波與石英反應腔室相交之處的楔形物,用以將電場集中在小的區域內,且波導導電壁並不暴露於待處理之氣體。A typical system for chemical gas processing includes a quartz reaction chamber through which process materials flow, and a microwave magnetron source coupled to the reaction chamber via a waveguide. The input microwave energy can be continuous wave or pulsed. The system is designed to control the effective coupling of microwave energy into the reaction chamber and the gas flow in the reaction chamber to improve the energy absorption of the flowing gas. The system often includes a wedge at the intersection of the microwave guided wave and the quartz reaction chamber to concentrate the electric field in a small area, and the conductive wall of the waveguide is not exposed to the gas to be processed.

一種處理反應器包括:微波能量源,其提供微波能量;及場增強波導,其耦合至該微波能量源。該場增強波導具有第一橫截面積及第二橫截面積。該場增強波導包括位於該第一橫截面積與該第二橫截面積之間的場增強區。該場增強波導亦包括電漿區及反應區。該第二橫截面積小於該第一橫截面積,較該第一橫截面積更遠離該微波能量源,且沿形成該場增強波導之反應區的反應長度延伸。該微波能量在沿該反應長度的方向上傳播。該處理反應器亦包括:供應氣體入口,供應氣體流動至該供應氣體入口中;及製程入口,製程輸入材料流動至該製程入口中、進入該反應區中。該供應氣體入口位於該反應區上游。在該反應區中,大部分供應氣體流平行於微波能量傳播之方向。該供應氣體用來在該電漿區中產生電漿,以在該反應區中將該製程輸入材料轉化成分離組分,其中該製程輸入材料之該轉化在至少0.1個大氣壓之壓力下發生。A processing reactor includes: a microwave energy source, which provides microwave energy; and a field-enhanced waveguide, which is coupled to the microwave energy source. The field enhancement waveguide has a first cross-sectional area and a second cross-sectional area. The field enhanced waveguide includes a field enhanced region located between the first cross-sectional area and the second cross-sectional area. The field enhancement waveguide also includes a plasma region and a reaction region. The second cross-sectional area is smaller than the first cross-sectional area, farther away from the microwave energy source than the first cross-sectional area, and extends along the reaction length of the reaction zone forming the field-enhanced waveguide. The microwave energy propagates in the direction along the length of the reaction. The processing reactor also includes: a supply gas inlet, through which the supply gas flows into the supply gas inlet; and a process inlet, through which the process input material flows into the process inlet and into the reaction zone. The supply gas inlet is located upstream of the reaction zone. In this reaction zone, most of the supply gas flow is parallel to the direction of microwave energy propagation. The supply gas is used to generate plasma in the plasma zone to convert the process input material into separated components in the reaction zone, wherein the conversion of the process input material occurs under a pressure of at least 0.1 atmospheres.

現將參考所揭示發明之實施例,在隨附圖式中示出該等實施例之一或多個實例。以解釋本發明之技術而非限制本發明之技術的方式提供每一實例。實際上,熟習此項技術者將明白,可在不脫離本發明之技術之範疇的情況下對本發明之技術做出修改及變化。例如,作為一個實施例之部分所示出或描述的特徵可與另一實施例一起使用,以產生更進一步的實施例。因此,意欲本發明標的涵蓋所附申請專利範圍及其等效物之範疇內的所有此類修改及變化。Reference will now be made to the embodiments of the disclosed invention, and one or more examples of these embodiments are shown in the accompanying drawings. Each example is provided in a way of explaining the technology of the present invention rather than limiting the technology of the present invention. In fact, those familiar with the art will understand that modifications and changes can be made to the technology of the present invention without departing from the scope of the technology of the present invention. For example, features shown or described as part of one embodiment can be used with another embodiment to produce a still further embodiment. Therefore, it is intended that the subject matter of the present invention covers all such modifications and changes within the scope of the attached patent application and its equivalents.

本發明之系統及方法之實施例用於輸入材料之微波電漿化學處理。在一些實施例中,輸入材料可為氣體、液體或膠體分散液。在各種實施例之微波電漿化學處理反應器中,將輸入材料處理成分離組分係在波導之反應區中發生。在本揭示內容中,可使用一種類型之輸入材料(諸如氣體)作為示例性材料來描述實施例,但該等實施例可同等適用於其他類型之材料,諸如液體和/或膠體分散液。本揭示內容之微波化學處理反應器之波導係場增強波導,該等場增強波導實現待處理之輸入材料之高生產量,其中波導自身充當反應腔室而非如同在習知系統中一樣在與微波能量波導分離之石英腔室中具有經處理之材料。反應器系統之設計提供用於發生化學反應之大體積且降低微粒堆積及微粒量對反應腔室之壁之影響。習知系統中在石英壁上之微粒堆積降低化學處理之效率,因為微波能量必須穿透其內含有經處理之氣體之石英壁。在本發明之系統中,微波能量係在充當用於經處理之材料之反應腔室之波導中傳播,且因此微波能量將不受到可能沈積至腔室(亦即,波導)之壁上的微粒阻礙。The embodiments of the system and method of the present invention are used for microwave plasma chemical processing of input materials. In some embodiments, the input material may be a gas, liquid, or colloidal dispersion. In the microwave plasma chemical processing reactor of various embodiments, the processing of the input material into separate components takes place in the reaction zone of the waveguide. In the present disclosure, one type of input material (such as gas) can be used as an exemplary material to describe the embodiments, but the embodiments are equally applicable to other types of materials, such as liquid and/or colloidal dispersions. The waveguides of the microwave chemical processing reactor of the present disclosure are field-enhanced waveguides. These field-enhanced waveguides achieve high throughput of the input material to be processed. The waveguide itself acts as a reaction chamber instead of being in contact with the microwave as in the conventional system. There are processed materials in the quartz chamber separated by the energy waveguide. The design of the reactor system provides a large volume for chemical reactions and reduces the impact of particle accumulation and the amount of particles on the walls of the reaction chamber. The accumulation of particles on the quartz wall in the conventional system reduces the efficiency of the chemical treatment because the microwave energy must penetrate the quartz wall containing the processed gas. In the system of the present invention, the microwave energy is propagated in the waveguide acting as the reaction chamber for the processed material, and therefore the microwave energy will not be affected by particles that may be deposited on the walls of the chamber (ie, the waveguide) Hinder.

如本文所用,術語「場增強波導(FEWG)」係指具有第一橫截面積及第二橫截面積之波導,其中第二橫截面積小於第一橫截面積且較第一橫截面積更遠離微波能量。橫截面積之減小藉由集中該微波能量而增強場,且波導之尺寸經設定以維持所使用之特定微波頻率之傳播。FEWG之第二橫截面積沿形成FEWG之反應區之反應長度延伸。在FEWG之第一橫截面積與第二橫截面積之間存在場增強區。在一些實施例中,場增強區可以連續方式(例如,線性地或非線性地)或突然方式(例如,經由一或多個離散步階)改變橫截面積。在一些實施例中,FEWG內之壓力為0.1 atm至10 atm、或0.5 atm至10 atm、或0.9 atm至10 atm、或大於0.1 atm、或大於0.5 atm、或大於0.9 atm。As used herein, the term "field-enhanced waveguide (FEWG)" refers to a waveguide having a first cross-sectional area and a second cross-sectional area, wherein the second cross-sectional area is smaller than the first cross-sectional area and larger than the first cross-sectional area. Keep away from microwave energy. The reduction in cross-sectional area enhances the field by concentrating the microwave energy, and the size of the waveguide is set to maintain the propagation of the specific microwave frequency used. The second cross-sectional area of the FEWG extends along the reaction length of the reaction zone forming the FEWG. There is a field enhancement zone between the first cross-sectional area and the second cross-sectional area of the FEWG. In some embodiments, the field enhancement zone may change the cross-sectional area in a continuous manner (e.g., linearly or non-linearly) or abruptly (e.g., via one or more discrete steps). In some embodiments, the pressure in the FEWG is 0.1 atm to 10 atm, or 0.5 atm to 10 atm, or 0.9 atm to 10 atm, or greater than 0.1 atm, or greater than 0.5 atm, or greater than 0.9 atm.

在一些實施例中,本揭示內容之微波電漿化學處理反應器具有供應氣體流動至其中的一或多個供應氣體入口及輸入材料流動至其中的一或多個製程入口。供應氣體入口及製程入口位於反應區中或上游,且供應氣體用來在反應區中產生電漿。在一些實施例中,供應氣體流量為1 slm (標準公升/分鐘)至1000 slm、或2 slm至1000 slm、或5 slm至1000 slm、或大於1 slm、或大於2 slm、或大於5 slm。在一些實施例中,製程材料為氣體,且流率為1 slm (標準公升/分鐘)至1000 slm、或2 slm至1000 slm、或5 slm至1000 slm、或大於1 slm、或大於2 slm、或大於5 slm。在一些實施例中,製程材料為液體或膠體分散液,且流率為小於供應氣體流量之1%至大於100%。In some embodiments, the microwave plasma chemical processing reactor of the present disclosure has one or more supply gas inlets into which the supply gas flows and one or more process inlets into which the input material flows. The supply gas inlet and the process inlet are located in or upstream of the reaction zone, and the supply gas is used to generate plasma in the reaction zone. In some embodiments, the supply gas flow rate is 1 slm (standard liter per minute) to 1000 slm, or 2 slm to 1000 slm, or 5 slm to 1000 slm, or greater than 1 slm, or greater than 2 slm, or greater than 5 slm . In some embodiments, the process material is a gas, and the flow rate is 1 slm (standard liter/minute) to 1000 slm, or 2 slm to 1000 slm, or 5 slm to 1000 slm, or greater than 1 slm, or greater than 2 slm , Or greater than 5 slm. In some embodiments, the process material is a liquid or colloidal dispersion, and the flow rate is less than 1% to more than 100% of the supply gas flow rate.

在一些實施例中,本揭示內容之微波電漿化學處理反應器具有單一微波能量發生器,該單一微波能量發生器為耦合至一個或多於一個FEWG之微波能量源。在一些實施例中,本揭示內容之微波電漿化學處理反應器具有耦合至多於一個FEWG之多於一個微波能量發生器。在一些實施例中,微波能量係連續波或脈衝式的。在一些實施例中,微波能量發生器功率為1 kW至100 kW。In some embodiments, the microwave plasma chemical processing reactor of the present disclosure has a single microwave energy generator, which is a microwave energy source coupled to one or more FEWGs. In some embodiments, the microwave plasma chemical processing reactor of the present disclosure has more than one microwave energy generator coupled to more than one FEWG. In some embodiments, the microwave energy is continuous wave or pulsed. In some embodiments, the power of the microwave energy generator is 1 kW to 100 kW.

在一些實施例中,本揭示內容之微波電漿化學處理反應器具有多於一個反應區,該多於一個反應區連接在一起且具有一個或多於一個出口,分離組分係自該一個或多於一個出口收集。In some embodiments, the microwave plasma chemical treatment reactor of the present disclosure has more than one reaction zone, the more than one reaction zone is connected together and has one or more outlets, and the separated components are derived from the one or More than one outlet collection.

在一些實施例中,本揭示內容之微波電漿化學處理反應器含有具有不同幾何結構之多個FEWG,該等不同幾何結構包括歧管配置及網狀配置。本文將更充分地描述此等幾何結構。In some embodiments, the microwave plasma chemical processing reactor of the present disclosure contains a plurality of FEWGs with different geometric structures, and the different geometric structures include a manifold configuration and a mesh configuration. This article will describe these geometric structures more fully.

在一些實施例中,本揭示內容之微波電漿化學處理反應器具有帶有壁之反應區,且供應氣體入口及製程入口經由該等壁將供應氣體(用於產生微波電漿)及輸入材料提供至反應區。在一些實施例中,存在複數個供應氣體入口及製程入口,該等複數個供應氣體入口及製程入口經由該等壁以受控之質量分數將供應氣體及輸入材料提供至反應區。經由該等壁以受控之質量分數將供應氣體及輸入材料提供至反應區可減輕分離組分在反應區壁上之沈積。In some embodiments, the microwave plasma chemical processing reactor of the present disclosure has a reaction zone with walls, and the supply gas inlet and the process inlet supply gas (used to generate microwave plasma) and input materials through the walls. Provided to the reaction zone. In some embodiments, there are a plurality of supply gas inlets and process inlets, and the plurality of supply gas inlets and process inlets provide the supply gas and input materials to the reaction zone with a controlled mass fraction through the walls. Providing the supply gas and input material to the reaction zone with controlled mass fractions through the walls can reduce the deposition of separated components on the reaction zone walls.

一些實施例涉及使用各種技術對烴氣體進行之微波電漿化學處理,該等技術包括使微波能量脈衝化以控制電漿之能量。控制電漿之能量的能力使得能夠選擇在烴氣體向特定分離組分之轉化中的一或多個反應路徑。脈衝式微波能量可用來控制電漿之能量,因為當電漿點火時產生之短壽命高能物質可在每一新脈衝開始時重新產生。電漿能量經控制以具有比習知技術低的平均離子能量,但處於足夠高的位準以使得目標化學反應能夠在高氣體流量及高壓力下發生。Some embodiments involve microwave plasma chemical treatment of hydrocarbon gases using various techniques, including pulsing microwave energy to control the plasma energy. The ability to control the energy of the plasma enables the selection of one or more reaction paths in the conversion of hydrocarbon gas to specific separated components. Pulsed microwave energy can be used to control the energy of the plasma, because the short-lived high-energy matter generated when the plasma is ignited can be regenerated at the beginning of each new pulse. The plasma energy is controlled to have a lower average ion energy than the conventional technology, but at a high enough level to enable the target chemical reaction to occur under high gas flow and high pressure.

已發展出使用脈衝式微波能量之微波電漿化學處理系統,該等微波電漿化學處理系統控制電漿之能量且具有超過90%之極高裂解效率。然而,此等習知系統使用低於1標準公升/分鐘(slm)之低流率,及電漿內之小氣體體積,而結果為生產速率低且生產成本高。此等習知系統無法在使用高頻率微波脈衝(例如,高於大致100 Hz)的同時增加氣體流率及電漿內之氣體體積,因為在使用大體積及高流量氣體時電漿無法足夠快的點火以跟上脈衝。 微波化學處理系統Microwave plasma chemical processing systems using pulsed microwave energy have been developed. These microwave plasma chemical processing systems control the plasma energy and have extremely high cracking efficiency exceeding 90%. However, these conventional systems use a low flow rate of less than 1 standard liter per minute (slm) and a small gas volume in the plasma, resulting in a low production rate and high production cost. These conventional systems cannot increase the gas flow rate and the gas volume in the plasma while using high frequency microwave pulses (for example, higher than approximately 100 Hz), because the plasma cannot be fast enough when using large volume and high flow gas. To keep up with the pulse. Microwave chemical processing system

在本揭示內容中,微波電漿可在供應氣體及/或製程材料中產生,且電漿中之能量足以自製程材料分子形成分離組分。在一些實施例中,微波能量源耦合至FEWG,電漿係沿FEWG之電漿區產生,且製程材料係沿FEWG中之反應長度藉由電漿分離成組分。在一些實施例中,微波能量直接耦合至電漿中且不像習知方法中那樣經由介電壁耦合至電漿中。In the present disclosure, microwave plasma can be generated in the supply of gas and/or process materials, and the energy in the plasma is sufficient to form separate components of the process material molecules. In some embodiments, the microwave energy source is coupled to the FEWG, the plasma is generated along the plasma region of the FEWG, and the process materials are separated into components by the plasma along the reaction length in the FEWG. In some embodiments, the microwave energy is directly coupled into the plasma and is not coupled into the plasma through a dielectric wall as in conventional methods.

圖1A示出習知微波化學處理系統。如圖1A中所示,微波化學處理系統100大體上包括反應腔室101;一或多個氣體入口102,其經組配以接收流動至反應腔室中之製程材料108;一或多個出口103,其經組配以收集離開反應腔室101的分離產物;及微波能量源104,其經由波導105耦合至反應腔室;以及為簡單起見未示出之其他元件。微波能量109在反應腔室101中產生微波電漿106,且提供用於發生反應之能量。微波發射器電路107可將自微波能量源104發射之微波能量109控制為連續波或脈衝式的。在給定適當條件的情況下,電漿中之能量將足以自製程材料分子形成分離組分。 具有場增強波導(FEWG)之微波化學處理反應器Figure 1A shows a conventional microwave chemical processing system. As shown in FIG. 1A, the microwave chemical processing system 100 generally includes a reaction chamber 101; one or more gas inlets 102 configured to receive processing materials 108 flowing into the reaction chamber; one or more outlets 103, which is configured to collect the separated products leaving the reaction chamber 101; and the microwave energy source 104, which is coupled to the reaction chamber via the waveguide 105; and other elements not shown for simplicity. The microwave energy 109 generates microwave plasma 106 in the reaction chamber 101 and provides energy for reaction. The microwave transmitter circuit 107 can control the microwave energy 109 emitted from the microwave energy source 104 to be continuous wave or pulsed. Given appropriate conditions, the energy in the plasma will be sufficient to process the material molecules to form separate components. Microwave chemical processing reactor with field enhanced waveguide (FEWG)

本揭示內容之FEWG有效地傳遞微波頻率電磁能量。本揭示內容之FEWG由導電材料構成且橫截面可為矩形、圓形或橢圓形的。如圖1B中所示,波導之最寬尺寸稱為「a」尺寸且決定操作頻率之範圍。最窄尺寸決定波導之功率處置能力且稱為「b」尺寸。圖1C展示FEWG之場增強區域之實例,其中最寬尺寸「a」保持恆定以便有效地傳遞選定之微波能量頻率,且較窄尺寸「b」沿FEWG之長度減小以便集中微波能量密度。圖1C描繪尺寸「b」之線性減小;然而,尺寸「b」之減小可為非線性的(諸如抛物線形、雙曲線形等),沿長度具有不同的減小速率(諸如線性減小之不同斜率、在一個區段中之線性斜率及另一區段中之非線性斜率),或含有突然步階以減小尺寸「b」之長度。The FEWG of this disclosure effectively transmits microwave frequency electromagnetic energy. The FEWG of the present disclosure is made of conductive material and the cross-section can be rectangular, circular or elliptical. As shown in Figure 1B, the widest dimension of the waveguide is called the "a" dimension and determines the range of operating frequency. The narrowest dimension determines the power handling capability of the waveguide and is called the "b" dimension. Figure 1C shows an example of the field enhancement region of FEWG, where the widest dimension "a" is kept constant to effectively transmit the selected microwave energy frequency, and the narrower dimension "b" is reduced along the length of the FEWG to concentrate the microwave energy density. Figure 1C depicts the linear reduction of the size "b"; however, the reduction of the size "b" can be non-linear (such as parabolic, hyperbolic, etc.), with different reduction rates along the length (such as linear reduction) Different slopes, linear slopes in one section and non-linear slopes in another section), or contain sudden steps to reduce the length of the dimension "b".

本文所描述之實施例適用於定波系統(其中峰值保持在同一位置)及行波系統(其中峰值可移動)兩者。The embodiments described herein are applicable to both fixed wave systems (where the peak value is kept at the same position) and traveling wave systems (where the peak value can be moved).

圖2及圖3展示本揭示內容之微波化學處理系統之實施例,其中FEWG耦合至微波能量發生器(亦即,微波能量源),電漿係在FEWG之電漿區中自供應氣體產生,且FEWG之反應長度充當反應區以將製程材料分離成單獨的組分。如圖2及圖3所演示之本發明之反應器沒有位於場增強波導之場增強區與反應區之間的介電障壁。相比之下,習知系統之反應區係封閉在介電障壁(諸如先前闡述之石英腔室)內。微波能量之傳播方向平行於大部分供應氣體流及/或製程材料流,且微波能量在FEWG的產生分離組分之部分上游進入波導。Figures 2 and 3 show an embodiment of the microwave chemical processing system of the present disclosure, in which the FEWG is coupled to a microwave energy generator (ie, a microwave energy source), and plasma is generated from the gas supply in the plasma region of the FEWG, And the reaction length of FEWG serves as a reaction zone to separate the process materials into individual components. The reactor of the present invention as demonstrated in FIGS. 2 and 3 does not have a dielectric barrier between the field enhancement zone and the reaction zone of the field enhancement waveguide. In contrast, the reaction zone of the conventional system is enclosed in a dielectric barrier (such as the quartz chamber described earlier). The propagation direction of the microwave energy is parallel to most of the supply gas flow and/or the process material flow, and the microwave energy enters the waveguide upstream of the part of the FEWG where the separated components are generated.

如圖2中所示,根據一些實施例之微波化學處理反應器200大體上包括FEWG 205;一或多個入口202,其經組配以接收流動至FEWG 205中之供應氣體及/或製程材料208a;微波能量源204,其耦合至FEWG 205;以及為簡單起見未示出之其他元件。As shown in FIG. 2, the microwave chemical processing reactor 200 according to some embodiments generally includes FEWG 205; one or more inlets 202, which are configured to receive supply gas and/or process materials flowing into FEWG 205 208a; microwave energy source 204, which is coupled to FEWG 205; and other components not shown for simplicity.

在一些實施例中,微波電路207控制使來自微波能量源204之微波能量209脈衝化之脈衝頻率。在一些實施例中,來自微波能量源204之微波能量209係連續波。In some embodiments, the microwave circuit 207 controls the pulse frequency at which the microwave energy 209 from the microwave energy source 204 is pulsed. In some embodiments, the microwave energy 209 from the microwave energy source 204 is a continuous wave.

FEWG 205具有長度L。FEWG 205之具有長度LA (圖2及圖3中所示)之部分係較FEWG之具有長度LB (圖2及圖3中所示)之部分更靠近微波能量發生器。貫穿本揭示內容,FEWG之不同部分將由大寫字母L加上表示FEWG之某一部分之下標來描述(例如,LA 、L0 、LB 、L1 、L2 ),且同義地,FEWG之不同部分之長度亦將由大寫字母L加上表示FEWG之某一部分之長度之下標來描述(例如,LA 、L0 、LB 、L1 、L2 )。FEWG 205 has a length L. Portion of the system FEWG 205 has a length L A (shown in FIG. 2 and FIG. 3) as to have a length of more FEWG L B (2 and 3 shown in FIG. FIG.) Closer to the microwave energy generator. Throughout this disclosure, various portions of FEWG represented by capital letters below a portion plus L FEWG the standard described (e.g., L A, L 0, L B, L 1, L 2), and synonymously, the FEWG also different portions of the length by adding capital letter L represents the length of a portion under the standard of FEWG described (e.g., L A, L 0, L B, L 1, L 2).

FEWG在長度LB 中之橫截面積小於FEWG在長度LA 中之橫截面積。FEWG之長度L0 位於FEWG之長度LA 與LB 之間,且沿微波能量傳播之路徑具有遞減的橫截面積。在一些實施例中,FEWG沿長度L0 之橫截面積以連續方式減小。在一些實施例中,FEWG沿長度L0 之橫截面積在長度LA 與LB 之間線性地減小。在一些實施例中,FEWG沿長度L0 之橫截面積在LA 與LB 之間非線性地減小,諸如抛物線地、雙曲線地、指數地或對數地減小。在一些實施例中,FEWG沿長度L0 之橫截面積在長度LA 與LB 之間以突然方式減小,諸如經由一或多個離散步階減小。橫截面積之減小用來集中電場,由此增大微波能量密度,而同時仍提供相較於習知系統而言可在其中形成電漿之較大量之面積。當使用2.45 GHz之微波能量頻率時,FEWG之具有長度LB (圖2及圖3中所示)之部分可具有尺寸為0.75吋乘3.4吋之矩形橫截面。此橫截面積遠大於電漿產生面積通常小於一平方吋之習知系統。FEWG 205之不同部分之尺寸係根據微波頻率設定,以便適當地發揮波導之作用。例如,對於橢圓形波導,橫截面尺寸針對2.1GHz-2.7 GHz可為5.02吋乘2.83吋。The cross-sectional area of FEWG in length L B is smaller than the cross-sectional area of FEWG in length L A. The length L 0 FEWG FEWG positioned between the length L A and L B, and having a decreasing cross-sectional area along the propagation path of the microwave energy. In some embodiments, the cross-sectional area of the FEWG along the length L 0 decreases in a continuous manner. In some embodiments, L 0 FEWG the cross-sectional area decreases linearly along the length between the length L A and L B. In some embodiments, L 0 of the cross-sectional area along the length FEWG nonlinearly decreases between L A and L B, such as parabolically, hyperbolically, or exponentially decreases logarithmically. In some embodiments, L 0 in the cross-sectional area along the length FEWG reduce abrupt manner between the length L A and L B, such as reducing discrete steps via one or more. The reduction in cross-sectional area is used to concentrate the electric field, thereby increasing the microwave energy density, while still providing a larger amount of area in which plasma can be formed compared to conventional systems. When using microwave energy of 2.45 GHz frequency, FEWG the portion having a length L B (shown in FIG. 2 and FIG. 3) may have a dimension of 0.75 inches by 3.4 inches of rectangular cross-section. This cross-sectional area is much larger than the conventional system whose plasma generation area is usually less than one square inch. The dimensions of the different parts of FEWG 205 are set according to the microwave frequency in order to properly play the role of the waveguide. For example, for an elliptical waveguide, the cross-sectional size can be 5.02 inches by 2.83 inches for 2.1 GHz-2.7 GHz.

在習知氣體處理系統中,其中可形成電漿之有限區域(諸如上文所描述的小於一平方吋)限制了其中可發生氣體反應之體積。此外,在習知系統中,微波能量經由窗口(通常為石英)進入反應腔室。在此等系統中,介電材料(例如,微粒碳)在處理期間被塗佈在窗口上,從而導致功率遞送隨時間減少。若此等分離組分吸收微波能量,則這可能很成問題,因為該等分離組分阻止微波能量耦合至反應腔室中以產生電漿。因此,副產物(諸如由氣體反應產生之碳粒子)的快速堆積會發生,且限制處理設備之運行時間。在本發明之實施例中,系統200及下文描述之其他實施例經設計成不使用反應區中之窗口;亦即,使用平行的傳播/氣體流動系統,其中能量自反應之上游進入。因而,更多能量及功率可自微波能量源耦合至電漿中。窗口之缺失及波導205內與習知系統中之有限反應腔室體積相比更大之體積極大地減少了造成有限運行時間之粒子堆積從問題,由此改良微波處理系統之生產效率。In conventional gas processing systems, the limited area in which plasma can be formed (such as less than one square inch as described above) limits the volume in which gas reaction can occur. In addition, in conventional systems, microwave energy enters the reaction chamber through a window (usually quartz). In these systems, a dielectric material (e.g., particulate carbon) is coated on the window during processing, resulting in a decrease in power delivery over time. If these separated components absorb microwave energy, this can be very problematic because the separated components prevent microwave energy from coupling into the reaction chamber to generate plasma. Therefore, rapid accumulation of by-products (such as carbon particles produced by the gas reaction) can occur and limit the operating time of the processing equipment. In an embodiment of the present invention, the system 200 and other embodiments described below are designed to not use windows in the reaction zone; that is, use a parallel propagation/gas flow system in which energy enters upstream of the reaction. Thus, more energy and power can be coupled into the plasma from the microwave energy source. The lack of the window and the larger volume of the waveguide 205 compared with the limited reaction chamber volume in the conventional system greatly reduces the particle accumulation problem caused by the limited running time, thereby improving the production efficiency of the microwave processing system.

圖2中之微波能量209在具有FEWG 205之長度的長度L1 (圖2及圖3中所示)之電漿區內於供應氣體及/或製程材料中產生微波電漿206。具有長度L1 之電漿區位於FEWG之部分LB 內,與在長度LA 中相比,在部分LB 中橫截面積更小且微波能量密度更高。在一些實施例中,不同於製程材料的供應氣體用來產生微波電漿206。供應氣體可例如為氫氣、氦氣、諸如氬氣之惰性氣體、或一種以上類型之氣體之混合物。在其他實施例中,供應氣體與製程材料相同,其中製程材料係自其產生分離組分之材料。The microwave energy 209 in FIG. 2 generates microwave plasma 206 in the supply gas and/or the process material in the plasma region of the length L 1 (shown in FIG. 2 and FIG. 3) having the length of the FEWG 205. Plasma zone has a length L 1 located on the inner portion FEWG L B, as compared to the length L A, the cross sectional area of the microwave energy smaller and higher density of the portion B L. In some embodiments, a supply gas different from the process material is used to generate the microwave plasma 206. The supply gas may be, for example, hydrogen, helium, an inert gas such as argon, or a mixture of more than one type of gas. In other embodiments, the supply gas is the same as the process material, where the process material is the material from which the separated components are generated.

在一些實施例中,供應氣體及/或製程材料入口202位於FEWG之部分LB 上游,或位於FEWG之部分L0 內,或位於FEWG之部分LA 內,或位於FEWG之部分LA 上游。在一些實施例中,FEWG 之部分L1 自沿FEWG位於供應氣體及/或製程材料208a進入FEWG之位置下游的位置延伸至FEWG之末端或延伸至在供應氣體及/或製程材料之進口與FEWG 205之末端之間的位置。在一些實施例中,FEWG之部分L1 自供應氣體及/或製程材料208a進入FEWG之處延伸至FEWG之末端或延伸至在供應氣體及/或製程材料之進口與FEWG之末端之間的位置。In some embodiments, the supply of gas and / or process material inlet 202 is located in L upstream part B FEWG of, or within part FEWG of L 0, or in the inner portion FEWG of L A, or is located in L A upstream portion FEWG of. In some embodiments, the portion L 1 of the FEWG extends from a position along the FEWG downstream of the position where the supply gas and/or process material 208a enters the FEWG to the end of the FEWG or to the inlet of the supply gas and/or process material and the FEWG The position between the ends of 205. In some embodiments, the portion L 1 of the FEWG extends from the point where the supply gas and/or process material 208a enters the FEWG to the end of the FEWG or extends to a position between the inlet of the supply gas and/or process material and the end of the FEWG .

所產生之電漿206提供用於在FEWG 205之反應區201內於製程材料208b中發生反應之能量,該反應區201具有反應長度L2 。在一些實施例中,反應區L2 自製程材料208a進入FEWG 205之處延伸至FEWG 205之末端或延伸至在製程材料之進口與FEWG 205之末端之間的位置。在給定適當條件的情況下,電漿206中之能量將足以自製程材料分子形成分離組分。一或多個出口203經組配以在FEWG之反應區部分201下游收集離開FEWG 205之分離產物,在該反應區部分201中於製程材料208b中發生反應。在圖2中所示之實例中,微波能量209之傳播方向與大部分供應氣體及/或製程材料流208b平行,且微波能量209在FEWG的產生分離組分之反應區201上游進入FEWG 205。The generated plasma 206 provides energy for the reaction in the process material 208b in the reaction zone 201 of the FEWG 205, the reaction zone 201 having a reaction length L 2 . In some embodiments, the reaction zone L 2 where the process material 208a enters the FEWG 205 extends to the end of the FEWG 205 or extends to a position between the inlet of the process material and the end of the FEWG 205. Given appropriate conditions, the energy in the plasma 206 will be sufficient to process the material molecules to form separate components. One or more outlets 203 are configured to collect the separated products leaving the FEWG 205 downstream of the reaction zone portion 201 of the FEWG where the reaction occurs in the process material 208b. In the example shown in FIG. 2, the propagation direction of the microwave energy 209 is parallel to most of the supply gas and/or process material flow 208 b, and the microwave energy 209 enters the FEWG 205 upstream of the reaction zone 201 where the separated components of the FEWG are generated.

在一些實施例中,微波能量可穿透的壓力障壁210可位於微波能量源204內、位於微波能量源之出口附近、或位於在微波能量源204與FEWG中所產生之電漿206之間的其他位置處。此壓力障壁210可充當安全措施以防止電漿可能回流至微波能量源204中。電漿在壓力障壁自身處不會形成;而實際上,壓力障壁僅為機械障壁。可製成壓力障壁之材料之一些實例為石英、乙烯四氟乙烯(ETFE)、其他塑膠、或陶瓷。在一些實施例中,可存在兩個壓力障壁210及211,其中一個或兩個壓力障壁210及211位於微波能量源204內、位於微波能量源之出口附近、或位於在微波能量源204與FEWG中所產生之電漿206之間的其他位置處。在一些實施例中,壓力障壁211係較壓力障壁210更靠近FEWG中之電漿206,且在壓力障壁210與211之間存在壓力噴氣口212以防壓力障壁211失效。In some embodiments, the pressure barrier 210 through which microwave energy can penetrate may be located in the microwave energy source 204, near the outlet of the microwave energy source, or located between the microwave energy source 204 and the plasma 206 generated in the FEWG. At other locations. The pressure barrier 210 can serve as a safety measure to prevent the plasma from possibly flowing back into the microwave energy source 204. Plasma does not form at the pressure barrier itself; in fact, the pressure barrier is only a mechanical barrier. Some examples of materials that can be made into pressure barriers are quartz, ethylene tetrafluoroethylene (ETFE), other plastics, or ceramics. In some embodiments, there may be two pressure barriers 210 and 211, of which one or two pressure barriers 210 and 211 are located in the microwave energy source 204, located near the outlet of the microwave energy source, or located between the microwave energy source 204 and the FEWG At other locations between the plasma 206 generated in the In some embodiments, the pressure barrier 211 is closer to the plasma 206 in the FEWG than the pressure barrier 210, and there is a pressure jet 212 between the pressure barrier 210 and 211 to prevent the pressure barrier 211 from failing.

在一些實施例中,系統中包括電漿障擋物(未示出)以防止電漿傳播至微波能量源204或供應氣體及/或製程材料入口202。在一些實施例中,電漿障擋物為具有孔之陶瓷或金屬過濾器,用以允許微波能量通過電漿障擋物,但阻止大部分電漿物質通過。在一些實施例中,大部分電漿物質將不能通過電漿障擋物,因為孔將具有高縱橫比,且電漿物質將在其撞擊孔之側壁時重組。在一些實施例中,電漿障擋物位於部分L0 與L1 之間,或位於在部分L1 上游且在入口202 (在入口202處於部分L0 內之實施例中)及微波能量源204下游的部分L0 中。In some embodiments, a plasma barrier (not shown) is included in the system to prevent the plasma from propagating to the microwave energy source 204 or supply gas and/or process material inlet 202. In some embodiments, the plasma barrier is a ceramic or metal filter with holes to allow microwave energy to pass through the plasma barrier, but prevent most of the plasma material from passing through. In some embodiments, most of the plasma material will not pass through the plasma barrier because the hole will have a high aspect ratio, and the plasma material will recombine when it hits the sidewall of the hole. In some embodiments, the plasma barrier is located between part L 0 and L 1 , or located upstream of part L 1 and at the inlet 202 (in embodiments where the inlet 202 is within the part L 0 ) and the microwave energy source 204 is in the downstream part L 0 .

圖3展示微波化學處理系統300之另一實施例,其中供應氣體及製程材料係於不同位置處注入。根據一些實施例,微波化學處理系統300大體上包括FEWG 305;一或多個供應氣體入口302,其經組配以接收流動至FEWG 305中之供應氣體308a;一或多個製程材料入口310,其經組配以接收製程材料311a;及微波能量源304,其耦合至FEWG 305;以及為簡單起見未示出之其他元件。製程材料入口310之位置在供應氣體入口302之位置下游,其中下游係定義於微波能量傳播之方向上。FIG. 3 shows another embodiment of the microwave chemical processing system 300, in which the supply gas and the processing materials are injected at different locations. According to some embodiments, the microwave chemical processing system 300 generally includes a FEWG 305; one or more supply gas inlets 302 configured to receive the supply gas 308a flowing into the FEWG 305; one or more process material inlets 310, It is configured to receive the process material 311a; and the microwave energy source 304, which is coupled to the FEWG 305; and other components not shown for simplicity. The position of the process material inlet 310 is downstream of the position of the supply gas inlet 302, wherein the downstream is defined in the direction of microwave energy propagation.

在一些實施例中,微波電路307控制使來自微波能量源304之微波能量309脈衝化之脈衝頻率。在一些實施例中,來自微波能量源304之微波能量係連續波。In some embodiments, the microwave circuit 307 controls the pulse frequency at which the microwave energy 309 from the microwave energy source 304 is pulsed. In some embodiments, the microwave energy from the microwave energy source 304 is a continuous wave.

類似於圖2中所示之實施例,圖3中之FEWG 305具有部分LA 、L0 、LB 、L1 、及L2 ,其中部分LB 具有小於LA 之橫截面積的橫截面積,部分L0 在部分LA 與LB 之間具有遞減的橫截面積,L1 係產生電漿的部分,且L2 係為反應區的部分。The illustrated embodiment similar to FIG. 2, in the FIG. 3 FEWG 305 has a portion L A, L 0, L B , L 1, and L 2, where L B having a cross section smaller than the cross-sectional area of the L A area, having a portion between the portion L 0 and L B L a decreasing cross-sectional area, L 1 based plasma generating portion, and the line L 2 as part of the reaction zone.

微波能量309在FEWG 305之長度L之電漿區L1 內於供應氣體308b中產生微波電漿306。在一些實施例中,部分L1 自沿FEWG 305位於供應氣體308a進入FEWG 305之位置下游的位置延伸至FEWG 305之末端或延伸至在供應氣體之進口與 FEWG 305之末端之間的位置。在一些實施例中,部分L1 自供應氣體308a進入FEWG 305之處延伸至FEWG 305之末端或延伸至在供應氣體之進口與 FEWG 305之末端之間的位置。一或多個額外製程材料入口310經組配以接收在位於供應氣體入口302下游的第二組位置處流動至FEWG中之製程材料。所產生之電漿306提供用於在FEWG 305之反應區301內發生反應之能量,該反應區301具有反應長度L2 。在一些實施例中,部分L2 自製程材料311a進入FEWG 305之處延伸至FEWG 305之末端或延伸至在製程材料之進口與FEWG 305之末端之間的位置。在給定適當條件的情況下,電漿中之能量將足以自製程材料分子形成分離組分。一或多個出口303經組配以在發生反應的部分301下游收集離開FEWG 305之分離產物。在圖3中所示之示例性系統300中,微波能量309之傳播方向與大部分供應氣體流308b及製程材料流311b平行,且微波能量309在FEWG的產生分離組分之反應部分301上游進入FEWG 305。309 L of microwave energy within a microwave plasma 306 is generated in the gas supply 308b in the length L FEWG 305 of the plasma region. In some embodiments, the portion L 1 extends from a position along the FEWG 305 downstream of the position where the supply gas 308 a enters the FEWG 305 to the end of the FEWG 305 or to a position between the inlet of the supply gas and the end of the FEWG 305. In some embodiments, the portion L 1 extends from where the supply gas 308 a enters the FEWG 305 to the end of the FEWG 305 or to a position between the inlet of the supply gas and the end of the FEWG 305. One or more additional process material inlets 310 are configured to receive process material flowing into the FEWG at a second set of locations downstream of the supply gas inlet 302. The generated plasma 306 provides energy for reaction in the reaction zone 301 of the FEWG 305, the reaction zone 301 having a reaction length L 2 . In some embodiments, part of the L 2 process material 311a enters the FEWG 305 and extends to the end of the FEWG 305 or extends to a position between the inlet of the process material and the end of the FEWG 305. Given appropriate conditions, the energy in the plasma will be sufficient to process the material molecules to form separate components. One or more outlets 303 are configured to collect the separated products leaving the FEWG 305 downstream of the portion 301 where the reaction occurs. In the exemplary system 300 shown in FIG. 3, the propagation direction of the microwave energy 309 is parallel to most of the supply gas flow 308b and the process material flow 311b, and the microwave energy 309 enters upstream of the reaction part 301 of the FEWG that produces separated components. FEWG 305.

在一些實施例中,微波能量可穿透的一或多個壓力障壁可位於微波能量源304內、位於微波能量源之出口附近、或位於在微波能量源304與FEWG中所產生之電漿306之間的其他位置處(類似於上文所描述且在圖2中所描繪的情況)。在一些實施例中,存在兩個壓力障壁及位於壓力障壁之間的壓力噴氣口以防更靠近FEWG中之電漿306的障壁失效。In some embodiments, one or more pressure barriers through which microwave energy can penetrate may be located in the microwave energy source 304, near the outlet of the microwave energy source, or located in the plasma 306 generated in the microwave energy source 304 and the FEWG. At other locations in between (similar to the situation described above and depicted in Figure 2). In some embodiments, there are two pressure barriers and a pressure jet located between the pressure barriers to prevent failure of the barrier closer to the plasma 306 in the FEWG.

在一些實施例中,反應區L2 之壁經組配以使得供應氣體入口及製程材料入口經由FEWG之壁將供應氣體及製程材料提供至反應區。例如,該等壁可具有充當二次供應氣體入口之一系列孔,供應氣體及/或製程材料可經由該等二次供應氣體入口插入至FEWG中,或該等壁可為供應材料及/或製程材料可滲透的,或該等壁可為多孔的。經由該等壁將供應氣體及輸入材料提供至反應區可藉由形成靠近壁的將所沈積材料蝕刻掉之反應性電漿來減輕分離組分在反應區壁上之沈積。In some embodiments, the wall of the reaction zone L 2 is configured such that the supply gas inlet and the process material inlet provide the supply gas and the process material to the reaction zone through the wall of the FEWG. For example, the walls may have a series of holes serving as secondary supply gas inlets, the supply gas and/or process materials may be inserted into the FEWG through the secondary supply gas inlets, or the walls may be supply materials and/or The process material is permeable, or the walls can be porous. Supplying supply gas and input material to the reaction zone through the walls can reduce the deposition of separated components on the reaction zone wall by forming a reactive plasma close to the wall that etches away the deposited material.

在一些實施例中,存在複數個供應氣體入口及製程入口,該等複數個供應氣體入口及製程入口經由FEWG之壁將供應氣體及輸入材料提供至反應區L2 。在一些實施例中,存在複數個供應氣體入口及製程入口,該等複數個供應氣體入口及製程入口經組配以經由FEWG壁將受控之質量分數的供應氣體及輸入材料提供至反應區L2 。使供應氣體及製程材料以受控之質量分數引入至FEWG中可更有效地將在反應區中沈積於FEWG之壁上的任何材料蝕刻掉。如上文所描述,FEWG (例如,圖2中之205及圖3中之305)具有總長度L;總長度之部分LA 及部分LB ,其中LB 之橫截面積小於LA 之橫截面積;部分L1 ,電漿沿該部分L1 產生;及總長度之部分L2 ,製程材料沿該部分L2 轉化成分離組分。在一些實施例中,波導之總長度L係1 cm至1000 cm。在一些實施例中,波導之長度L0 係1 cm至100 cm。在一些實施例中,波導之長度L1 係1 cm至100 cm。在一些實施例中,波導之長度L2 係1 cm至1000 cm。在一些實施例中,波導之總長度L係30 cm至60 cm。在一些實施例中,波導之長度L0 係10 cm至40 cm。在一些實施例中,波導之長度L1 係10 cm至30 cm。在一些實施例中,波導之長度L2 係5 cm至20 cm。在一些實施例中,FEWG長度之部分LA 針對2.45 GHz之微波頻率係例如0-10吋,但該長度可根據所使用之微波頻率而變化。在一些實施例中,FEWG長度之部分LB 係例如10-20吋,此將取決於諸如氣流速度及微波功率之因素。例如,更高的氣流速度將擴大反應區長度。在一些實施例中,長度L1 為波導長度L之大於10%、或大於20%、或大於30%或大於40%或大於50%、或大於60%、或大於70%、或大於80%、或10%至90%、或20%至80%、或30%至70%。在一些實施例中,長度L2 為波導長度L之大於5%、或大於10%、或大於15%或大於20%、或大於25%或大於30%、或大於35%、或大於40%、或大於45%、或大於50%、或大於55%、或大於60%、或1%至90%、或1%至70%、或1%至50%、或10%至50%、或10%至40%、或20%至40%。In some embodiments, there are a plurality of supply gas inlets and process inlets, and the plurality of supply gas inlets and process inlets provide the supply gas and input materials to the reaction zone L 2 through the wall of the FEWG. In some embodiments, there are a plurality of supply gas inlets and process inlets, and the plurality of supply gas inlets and process inlets are configured to provide a controlled mass fraction of supply gas and input materials to the reaction zone L through the FEWG wall. 2 . Introducing the supply gas and process materials into the FEWG at a controlled mass fraction can more effectively etch away any materials deposited on the walls of the FEWG in the reaction zone. As described above, FEWG (e.g., in the FIG. 3 and FIG 2205 of 305) has a total length L; portion of the total length L A and L B portion, wherein the cross-sectional area is less than L B L A of area; section L 1, plasma is generated along the portion of L 1; and a portion of the total length L 2, L 2 is converted into the portion of separated components along the process material. In some embodiments, the total length L of the waveguide is 1 cm to 1000 cm. In some embodiments, the length L 0 of the waveguide is 1 cm to 100 cm. In some embodiments, the length L 1 of the waveguide is 1 cm to 100 cm. In some embodiments, the length L 2 of the waveguide is 1 cm to 1000 cm. In some embodiments, the total length L of the waveguide is 30 cm to 60 cm. In some embodiments, the length L 0 of the waveguide is 10 cm to 40 cm. In some embodiments, the length L 1 of the waveguide is 10 cm to 30 cm. In some embodiments, the length L 2 of the waveguide is 5 cm to 20 cm. In some embodiments, the length L A portion FEWG for a microwave frequency of 2.45 GHz based e.g. 0-10 inches, but this length may vary depending upon the use of microwave frequencies. In some embodiments, portions FEWG length L B based e.g. 10-20 inches, this will depend upon such factors as the gas flow velocity and the microwave power. For example, a higher gas flow velocity will increase the length of the reaction zone. In some embodiments, the length L 1 is greater than 10%, or greater than 20%, or greater than 30%, or greater than 40%, or greater than 50%, or greater than 60%, or greater than 70%, or greater than 80% of the waveguide length L , Or 10% to 90%, or 20% to 80%, or 30% to 70%. In some embodiments, the length L 2 is greater than 5%, or greater than 10%, or greater than 15% or greater than 20%, or greater than 25% or greater than 30%, or greater than 35%, or greater than 40% of the waveguide length L , Or greater than 45%, or greater than 50%, or greater than 55%, or greater than 60%, or 1% to 90%, or 1% to 70%, or 1% to 50%, or 10% to 50%, or 10% to 40%, or 20% to 40%.

在一些實施例中,FEWG(例如,圖2中之205及圖3中之305)經組配以維持壓力為0.1 atm至10 atm、或0.5 atm至10 atm、或0.9 atm至10 atm、或大於0.1 atm、或大於0.5 atm、或大於0.9 atm。在許多習知系統中,微波化學處理係在真空下操作。然而,在電漿係在FEWG內產生之本發明之實施例中,在正壓環境中操作有助於防止所產生之電漿反饋至微波能量源(例如,圖2中之204及圖3中之304)中。In some embodiments, the FEWG (eg, 205 in FIG. 2 and 305 in FIG. 3) is configured to maintain a pressure of 0.1 atm to 10 atm, or 0.5 atm to 10 atm, or 0.9 atm to 10 atm, or Greater than 0.1 atm, or greater than 0.5 atm, or greater than 0.9 atm. In many conventional systems, microwave chemical processing is operated under vacuum. However, in the embodiment of the present invention where the plasma is generated in the FEWG, operating in a positive pressure environment helps prevent the generated plasma from being fed back to the microwave energy source (for example, 204 in FIG. 2 and in FIG. 3 Of 304).

FEWG(例如,圖2中之205及圖3中之305)可具有在長度LB 內的尺寸為0.75吋乘3.4吋之矩形橫截面,以對應於2.45 GHz之微波能量頻率。LB 之其他尺寸針對其他微波頻率係可能的,且取決於波導模態,此等橫截面尺寸可為3-6吋。FEWG(例如,圖2中之205及圖3中之305)可具有在長度LA 內的尺寸為例如1.7吋乘3.4吋之矩形橫截面,以對應於2.45 GHz之微波能量頻率。LA 之其他尺寸針對其他微波頻率係可能的。FEWG可由任何先天導電材料或具有足夠的導電塗層以傳播大於90%之傳入功率之材料製成。FEWG材料之一些實例為金屬材料、具有導電塗層之金屬材料、陶瓷材料、具有導電塗層之陶瓷材料、不銹鋼、塗有導電層(例如,Al、Ni、Au或Ni/Au合金)之不銹鋼、具有鋁襯裡之不銹鋼、或塗有導電層之陶瓷材料。應注意,FEWG充當在其中產生電漿且發生製程材料反應之腔室,而非如同習知系統中一樣具有單獨的波導及石英反應腔室。使FEWG充當反應器腔室提供可在其中發生氣體反應之大得多的體積(例如,至多1000 L)。這實現了待處理之製程材料之高流率,而不受如在習知系統中發生的碳微粒堆積的限制。例如,經由入口(例如,圖2中之202及圖3中之310)進入波導(例如,圖2中之205及圖3中之305)之製程材料流率可為1 slm (標準公升/分鐘)至1000 slm、或2 slm至1000 slm、或5 slm至1000 slm、或大於1 slm、或大於2 slm、或大於5 slm。經由入口(例如,圖2中之202及圖3中之302)進入波導(例如,圖2中之205及圖3中之305)之供應氣體流率可為例如1 slm至1000 slm、或2 slm至1000 slm、或5 slm至1000 slm、或大於1 slm、或大於2 slm、或大於5 slm。取決於產生足夠的電漿密度之氣體電漿性質(例如,二次電子發射係數),流量可為1 slm至1000 slm且壓力為至多14 atm。Size FEWG (e.g., 205 of FIG. 2 and FIG. 3 of 305) may have a length L B is within 0.75 inches by 3.4 inches of rectangular cross-section, corresponding to the frequency of 2.45 GHz of microwave energy. Other possible dimensions L B of the system for other microwave frequencies, and depends on the state of waveguide mode, such as the cross-sectional dimension may be 3-6 inches. Size FEWG (e.g., 205 of FIG. 2 and FIG. 3 of 305) may have a length L A in, for example, 1.7 inches by 3.4 inches of rectangular cross-section, corresponding to the frequency of 2.45 GHz of microwave energy. Other dimensions of L A system for other microwave frequencies possible. FEWG can be made of any innate conductive material or material with sufficient conductive coating to spread more than 90% of the incoming power. Some examples of FEWG materials are metallic materials, metallic materials with conductive coatings, ceramic materials, ceramic materials with conductive coatings, stainless steel, stainless steel coated with conductive layers (for example, Al, Ni, Au or Ni/Au alloy) , Stainless steel with aluminum lining, or ceramic material coated with conductive layer. It should be noted that the FEWG acts as a chamber in which plasma is generated and the process material reaction occurs, rather than having a separate waveguide and quartz reaction chamber as in the conventional system. Having the FEWG act as a reactor chamber provides a much larger volume (e.g., up to 1000 L) in which gas reactions can occur. This achieves a high flow rate of the process material to be processed without being restricted by the accumulation of carbon particles as occurs in conventional systems. For example, the flow rate of the process material entering the waveguide (for example, 205 in FIG. 2 and 305 in FIG. 3) through the inlet (for example, 202 in FIG. 2 and 310 in FIG. 3) can be 1 slm (standard liters per minute) ) To 1000 slm, or 2 slm to 1000 slm, or 5 slm to 1000 slm, or greater than 1 slm, or greater than 2 slm, or greater than 5 slm. The flow rate of the supply gas entering the waveguide (for example, 205 in FIG. 2 and 305 in FIG. 3) through the inlet (for example, 202 in FIG. 2 and 302 in FIG. 3) can be, for example, 1 slm to 1000 slm, or 2 slm to 1000 slm, or 5 slm to 1000 slm, or greater than 1 slm, or greater than 2 slm, or greater than 5 slm. Depending on the gas plasma properties (for example, secondary electron emission coefficient) that produce sufficient plasma density, the flow rate can be 1 slm to 1000 slm and the pressure can be up to 14 atm.

在一些實施例中,製程材料係經由製程材料入口提供至FEWG中之液體。可用作製程材料之液體之一些實例為水、烷烴、烯烴、炔烴、芳族烴、飽和及不飽和烴(例如,烷烴、烯烴、炔烴、或芳族烴之飽和及不飽和烴)、乙醇、甲醇、異丙基醇(亦即,異丙醇)、或其混合物(例如,乙醇/甲醇之50/50混合物)。在一些實施例中,以上列出之液體製程材料將產生碳及氫氣分離組分。在一些實施例中,液體之流率可為進入反應器之供應氣體流之百分比,諸如0.001%至1000%、或0.001%至100%、或0.001%至10%、或0.001%至1%、或0.001%至0.1%、或0.01%至1000%、或0.01%至100%、或0.01%至10%、或0.01%至1%、或0.01%至0.1%。In some embodiments, the process material is provided to the liquid in the FEWG via the process material inlet. Some examples of liquids that can be used as process materials are water, alkanes, alkenes, alkynes, aromatic hydrocarbons, saturated and unsaturated hydrocarbons (for example, saturated and unsaturated hydrocarbons of alkanes, alkenes, alkynes, or aromatic hydrocarbons) , Ethanol, methanol, isopropyl alcohol (ie, isopropanol), or a mixture thereof (for example, a 50/50 mixture of ethanol/methanol). In some embodiments, the liquid process materials listed above will produce carbon and hydrogen separation components. In some embodiments, the flow rate of the liquid may be a percentage of the supply gas flow entering the reactor, such as 0.001% to 1000%, or 0.001% to 100%, or 0.001% to 10%, or 0.001% to 1%, Or 0.001% to 0.1%, or 0.01% to 1000%, or 0.01% to 100%, or 0.01% to 10%, or 0.01% to 1%, or 0.01% to 0.1%.

在一些實施例中,製程材料係經由製程材料入口提供至FEWG中之膠體分散液(亦即,懸浮於液體或氣體中的固體粒子之混合物)。舉例而言,膠體分散液可包括碳質粒子。可用作製程材料之膠體分散液之一些實例為與液體或氣體混合之來自第16族、第14族、第10族、第9族、第5族、第2族、第1族之固體粒子、其合金及其混合物。在一些實施例中,以上列出之固體粒子可與液體混合,該等液體諸如水、烷烴、烯烴、炔烴、芳族烴、飽和及不飽和烴(例如,烷烴、烯烴、炔烴、或芳族烴之飽和及不飽和烴)、乙醇、甲醇、異丙基醇、或其混合物(例如,乙醇/甲醇之50/50混合物)。氣體之實例為第1族及第15-18族,以及無機化合物(例如,第14族之氫化物)。可自以上列出之膠體分散液製程材料產生之分離組分之一些實例為塗在有機材料中之固體無機材料(例如,塗有石墨烯之矽),及具有有機/無機材料夾層之複合材料(例如,具有囊封住矽之碳層之矽核心,該碳層塗有額外無機層)。在一些實施例中,膠體分散液之流率可為進入反應器之供應氣體流之百分比,諸如0.001%至1000%、或0.001%至100%、或0.001%至10%、或0.001%至1%、或0.001%至0.1%、或0.01%至1000%、或0.01%至100%、或0.01%至10%、或0.01%至1%、或0.01%至0.1%。In some embodiments, the process material is provided to the colloidal dispersion (ie, a mixture of solid particles suspended in a liquid or gas) in the FEWG through the process material inlet. For example, the colloidal dispersion may include carbon particles. Some examples of colloidal dispersions that can be used as process materials are solid particles from Group 16, Group 14, Group 10, Group 9, Group 5, Group 2, and Group 1 mixed with liquid or gas , Its alloys and their mixtures. In some embodiments, the solid particles listed above can be mixed with liquids such as water, alkanes, alkenes, alkynes, aromatic hydrocarbons, saturated and unsaturated hydrocarbons (e.g., alkanes, alkenes, alkynes, or Saturated and unsaturated hydrocarbons of aromatic hydrocarbons), ethanol, methanol, isopropyl alcohol, or mixtures thereof (for example, a 50/50 mixture of ethanol/methanol). Examples of gases are Group 1 and Groups 15-18, and inorganic compounds (for example, Group 14 hydrides). Some examples of separation components that can be produced from the colloidal dispersion process materials listed above are solid inorganic materials coated in organic materials (for example, silicon coated with graphene), and composite materials with interlayers of organic/inorganic materials (For example, a silicon core with a carbon layer encapsulating the silicon, which is coated with an additional inorganic layer). In some embodiments, the flow rate of the colloidal dispersion may be a percentage of the supply gas flow entering the reactor, such as 0.001% to 1000%, or 0.001% to 100%, or 0.001% to 10%, or 0.001% to 1. %, or 0.001% to 0.1%, or 0.01% to 1000%, or 0.01% to 100%, or 0.01% to 10%, or 0.01% to 1%, or 0.01% to 0.1%.

在一些實施例中,製程材料為氣體。在一些實施例中,製程材料為烴氣體,諸如C2 H2 、C2 H4 、C2 H6 。在一些實施例中,製程材料為甲烷,且分離組分為氫及奈米微粒碳。在一些實施例中,製程材料為帶水之二氧化碳,且分離組分為氧、碳及水。在一些實施例中,製程材料為H2 S,且分離組分為氫氣及硫。在一些實施例中,製程材料不含二氧化碳。在一些實施例中,製程材料為基於複雜氣體之材料,例如SiH4 、三甲鋁(trimethylaluminum,TMA)、三甲鎵(trimethylgallium,TMG)、縮水甘油甲基丙烯酸酯(glycidyl methacrylate,GMA)、SF6 、或半導體工業中用於金屬及介電質之沈積與蝕刻之其他材料。In some embodiments, the process material is a gas. In some embodiments, the process material is a hydrocarbon gas, such as C 2 H 2 , C 2 H 4 , C 2 H 6 . In some embodiments, the process material is methane, and the separated components are hydrogen and nanoparticulate carbon. In some embodiments, the process material is carbon dioxide with water, and the separated components are oxygen, carbon, and water. In some embodiments, the process material is H 2 S, and the separated components are hydrogen and sulfur. In some embodiments, the process material does not contain carbon dioxide. In some embodiments, the process materials are materials based on complex gases, such as SiH 4 , trimethylaluminum (TMA), trimethylgallium (TMG), glycidyl methacrylate (GMA), SF 6 , Or other materials used in the deposition and etching of metals and dielectrics in the semiconductor industry.

在一些實施例中,分離組分中之一者為奈米微粒碳,諸如但不限於碳黑、碳奈米洋蔥(CNO)、頸狀CNO、碳奈米球、石墨、熱解石墨、石墨烯、石墨烯奈米粒子、石墨烯小片、富勒烯、混合富勒烯、單壁奈米管及多壁奈米管。此等奈米微粒碳中之一或多者可在特定製程運行期間產生。在一些實施例中,分離組分包含黏聚物中之奈米微粒碳——該奈米微粒碳亦可描述為聚集體粒子。在一些狀況下,黏聚物或聚集體粒子包含許多奈米微粒碳粒子。在一些實施例中,黏聚物或聚集體粒子包含奈米微粒碳粒子且具有大於50微米、或大於100微米、或大於200微米、或大於300微米、或大於500微米、或大於1000微米、或1微米至1000微米、或10微米至1000微米、或100微米至1000微米、或100微米至500微米之平均直徑。 在微波化學處理系統中調諧微波能量In some embodiments, one of the separated components is nanoparticulate carbon, such as but not limited to carbon black, carbon nano-onion (CNO), neck-shaped CNO, carbon nanosphere, graphite, pyrolytic graphite, graphite Olefins, graphene nanoparticles, graphene flakes, fullerenes, mixed fullerenes, single-walled nanotubes and multi-walled nanotubes. One or more of these nanoparticulate carbons can be produced during the operation of a specific process. In some embodiments, the separation component comprises nanoparticulate carbon in the viscose polymer-the nanoparticulate carbon can also be described as aggregate particles. In some cases, the viscose or aggregate particles contain many nanoparticulate carbon particles. In some embodiments, the viscose or aggregate particles comprise nanoparticulate carbon particles and have a size greater than 50 microns, or greater than 100 microns, or greater than 200 microns, or greater than 300 microns, or greater than 500 microns, or greater than 1000 microns, Or 1 micron to 1000 micrometers, or 10 micrometers to 1000 micrometers, or 100 micrometers to 1000 micrometers, or 100 micrometers to 500 micrometers. Tuning microwave energy in a microwave chemical processing system

不同的製程材料需要不同量之能量來反應成不同的分離組分。在本揭示內容中,可藉由改變電漿之平均能量來選擇可利用的反應路徑。在一些實施例中,使耦合至電漿之微波能量脈衝化,且藉由控制微波能量脈衝持續時間及頻率、工作循環、形狀、及時間平均輸出功率位準來選擇電漿之平均能量且因此選擇反應路徑。在微波化學處理系統中調諧微波能量之額外細節揭示於標題為「Microwave Chemical Processing」且在2016年11月15日申請之美國專利申請案第15/351,858號中,該美國專利申請案係本申請案之受讓人所擁有且特此以引用方式整體併入本文中。Different process materials require different amounts of energy to react into different separated components. In the present disclosure, the available reaction path can be selected by changing the average energy of the plasma. In some embodiments, the microwave energy coupled to the plasma is pulsed, and the average energy of the plasma is selected by controlling the duration and frequency of the microwave energy pulse, the duty cycle, the shape, and the time average output power level, and therefore Choose the reaction path. Additional details of tuning microwave energy in a microwave chemical processing system are disclosed in US Patent Application No. 15/351,858 entitled "Microwave Chemical Processing" and filed on November 15, 2016, which is the present application It is owned by the assignee of the case and is hereby incorporated by reference in its entirety.

在一些實施例中,藉由改變脈衝週期、藉由選擇脈衝頻率來控制電漿中之平均能量,以達成所需電漿能量。另外,在一些實施例中,藉由控制工作循環來控制電漿之平均能量。此可藉由考慮時間平均輸入功率及脈衝週期兩者皆保持恆定且工作循環有所變化的情形來理解。更短的工作循環將增加在微波能量開啟時耦合至腔室中之功率之量值。此係有利的,因為相對低的功率量(亦即,時間平均功率)可用於自反應路徑產生反應產物,該等反應路徑係在相同功率下以連續波所不可能促成的。In some embodiments, the average energy in the plasma is controlled by changing the pulse period and selecting the pulse frequency to achieve the desired plasma energy. In addition, in some embodiments, the average energy of the plasma is controlled by controlling the duty cycle. This can be understood by considering the situation where both the time average input power and the pulse period remain constant and the duty cycle varies. A shorter duty cycle will increase the amount of power coupled into the chamber when the microwave energy is turned on. This is advantageous because a relatively low amount of power (ie, time average power) can be used to generate reaction products from reaction paths that cannot be facilitated by continuous waves at the same power.

在一些實施例中,可藉由控制向電漿中之時間平均功率輸入來選擇反應路徑。例如,若工作循環及脈衝頻率保持恆定,且向微波發生器中之功率輸入有所增加,則電漿之能量將增加。舉另一實例,若工作循環及脈衝頻率保持恆定,且功率更有效地耦合至反應腔室中,則電漿之能量將增加。In some embodiments, the reaction path can be selected by controlling the time average power input to the plasma. For example, if the duty cycle and pulse frequency remain constant, and the power input to the microwave generator is increased, the energy of the plasma will increase. As another example, if the duty cycle and pulse frequency remain constant, and the power is more efficiently coupled into the reaction chamber, the energy of the plasma will increase.

在一些實施例中,可藉由控制微波能量脈衝之形狀來選擇反應路徑。在一些實施例中,微波脈衝為矩形波,其中功率在微波開啟時的脈衝週期之持續時間期間為恆定的。在一些實施例中,脈衝功率在微波功率開啟時的脈衝週期之持續時間期間不是恆定的。在一些實施例中,微波脈衝為三角波、或梯形波、或不同的波型態。在高能物質以更高的分數存在時的時間段期間(亦即,在脈衝開始時,在電漿達到平衡之前),電漿可被稱為擴散性的。在一些實施例中,微波能量在電漿為擴散性的時間段內增加,從而增加電漿中高能物質之時間平均分數。In some embodiments, the reaction path can be selected by controlling the shape of the microwave energy pulse. In some embodiments, the microwave pulse is a rectangular wave, where the power is constant during the duration of the pulse period when the microwave is turned on. In some embodiments, the pulse power is not constant during the duration of the pulse period when the microwave power is turned on. In some embodiments, the microwave pulses are triangular waves, or trapezoidal waves, or different wave patterns. During the time period when energetic species are present in higher fractions (that is, at the beginning of the pulse, before the plasma reaches equilibrium), the plasma may be referred to as diffusive. In some embodiments, the microwave energy is increased during the time period when the plasma is diffusive, thereby increasing the time average fraction of high-energy substances in the plasma.

如上文所描述,調諧脈衝頻率、工作循環及脈衝形狀可使得能夠在電漿內產生更高分數之更高能量物質以獲得給定之時間平均輸入功率。更高能量物質可實現在其他情況下在能量方面並不有利的額外反應路徑。As described above, tuning the pulse frequency, duty cycle, and pulse shape can enable the generation of higher fractions of higher energy materials in the plasma to obtain a given time average input power. Higher energy substances can realize additional reaction paths that are not advantageous in terms of energy in other situations.

上文之技術可進一步藉由使用待分離成氫及奈米微粒碳之甲烷(CH4 )作為示例性製程材料來理解。通常,需要4-6 eV來解離甲烷(CH4 );然而,電漿能量通常在初始點火能量尖峰之後停留在大致1.5 eV。藉由使微波脈衝化,將平均電漿能量(亦即,時間平均電漿能量)維持在更高位準,其中脈衝之頻率及持續時間控制平均電漿能量。具體而言,可控制諸如頻率及工作循環之脈衝參數來提供4-6 eV之平均電漿能量以選擇甲烷之特定解離反應。使微波能量脈衝化之另一優點在於,能量更多地分佈遍及正在其中輸入微波之腔室。在習知系統中,在平衡狀態下,電漿在腔室中形成朝向微波輸入之位置之緻密的電離物質層,該緻密的電離物質層吸收傳入之微波能量且因此防止進一步的微波能量穿透至腔室中更深處。本揭示內容之高頻率脈衝維持電漿處於不平衡狀態達更大的時間分數,且緻密的電離物質層存在達更小的時間分數,從而允許微波能量穿透至腔室更深處且電漿在腔室內之更大體積中產生。 The above technology can be further understood by using methane (CH 4 ) to be separated into hydrogen and nanoparticulate carbon as an exemplary process material. Generally, 4-6 eV is required to dissociate methane (CH 4 ); however, plasma energy usually stays at approximately 1.5 eV after the initial ignition energy spike. By pulsing microwaves, the average plasma energy (ie, time average plasma energy) is maintained at a higher level, where the frequency and duration of the pulse control the average plasma energy. Specifically, pulse parameters such as frequency and duty cycle can be controlled to provide an average plasma energy of 4-6 eV to select a specific dissociation reaction of methane. Another advantage of pulsing microwave energy is that the energy is more distributed throughout the chamber into which the microwaves are being input. In the conventional system, in an equilibrium state, the plasma forms a dense layer of ionized material in the chamber toward the position of microwave input. The dense layer of ionized material absorbs the incoming microwave energy and thus prevents further microwave energy from passing through. Penetrate deeper into the chamber. The high-frequency pulses of the present disclosure maintain the plasma in an unbalanced state for a larger time fraction, and the dense ionized material layer exists for a smaller time fraction, thereby allowing microwave energy to penetrate deeper into the chamber and the plasma is in Produced in a larger volume in the chamber.

更一般而言,在本揭示內容之各種實施例中,電漿在脈衝週期之整個持續時間內之平均能量可為0.9 eV至20 eV、或0.9 eV至10 eV、或1.5 eV至20 eV、或1.5 eV至10 eV、或大於0.9 eV、或大於1.5 eV。電漿能量被調諧至之特定值將取決於所利用的製程材料之類型。More generally, in various embodiments of the present disclosure, the average energy of the plasma during the entire duration of the pulse period may be 0.9 eV to 20 eV, or 0.9 eV to 10 eV, or 1.5 eV to 20 eV, Or 1.5 eV to 10 eV, or greater than 0.9 eV, or greater than 1.5 eV. The specific value to which the plasma energy is tuned will depend on the type of process material used.

在上文所描述的微波處理系統中,微波能量源由微波發射器電路(例如,圖2中之207及圖3中之307)控制,該微波發射器電路可將自該源發射之微波能量控制為連續波或脈衝式的。在一些實施例中,微波發射器電路經由使用磁控管產生例如915 MHz、2.45 GHz、或5.8 GHz之微波能量。為控制微波能量之輸出功率,微波發射器電路可在各種頻率及工作循環下使磁控管脈衝化。每一微波發射器電路係針對特定範圍之脈衝頻率、工作循環、形狀及輸出功率位準來設計,其中此等參數之特定值之選擇係用於調諧製程材料中之化學反應路徑。In the microwave processing system described above, the microwave energy source is controlled by a microwave transmitter circuit (for example, 207 in FIG. 2 and 307 in FIG. 3), which can convert the microwave energy emitted from the source The control is continuous wave or pulse type. In some embodiments, the microwave transmitter circuit uses a magnetron to generate microwave energy at, for example, 915 MHz, 2.45 GHz, or 5.8 GHz. In order to control the output power of microwave energy, the microwave transmitter circuit can pulse the magnetron under various frequencies and working cycles. Each microwave transmitter circuit is designed for a specific range of pulse frequency, duty cycle, shape, and output power level. The selection of specific values of these parameters is used to tune the chemical reaction path in the process material.

在一些實施例中,微波控制電路實現500 Hz至1000 kHz、或1 kHz至1000 kHz、或10 kHz至1000 kHz、或40 kHz至80 kHz、或60 kHz至70 kHz、或大於10 kHz、或大於50 kHz、或大於100 kHz之脈衝頻率。在一些實施例中,微波源發射具有1 kW至100 kW、或1 kW至500 kW、或1 kW至1 MW、或10 kW至5 MW、或大於10 kW、或大於100 kW、或大於500 kW、或大於1 MW、或大於2 MW之時間平均功率之連續波或脈衝式微波能量。脈衝週期具有其中微波功率開啟之第一持續時間,及其中微波能量關閉或與第一持續時間期間相比處於更低功率之第二持續時間。在一些實施例中,第二持續時間比第一持續時間長。針對給定系統之最佳工作循環取決於許多因素,包括微波功率、脈衝頻率及脈衝形狀。在一些實施例中,工作循環(亦即,其中微波能量開啟的脈衝週期之分數,表示為百分比)為1%至99%、或1%至95%、或10%至95%、或20%至80%、或50%至95%、或1%至50%、或1%至40%、或1%至30%、或1%至20%、或1%至10%、或小於99%、或小於95%、或小於80%、或小於60%、或小於50%、或小於40%、或小於30%、或小於20%、或小於10%。 具有多個場增強波導之微波化學處理反應器In some embodiments, the microwave control circuit implements 500 Hz to 1000 kHz, or 1 kHz to 1000 kHz, or 10 kHz to 1000 kHz, or 40 kHz to 80 kHz, or 60 kHz to 70 kHz, or greater than 10 kHz, or Pulse frequency greater than 50 kHz, or greater than 100 kHz. In some embodiments, the microwave source emission has a range of 1 kW to 100 kW, or 1 kW to 500 kW, or 1 kW to 1 MW, or 10 kW to 5 MW, or greater than 10 kW, or greater than 100 kW, or greater than 500 Continuous wave or pulsed microwave energy of kW, or greater than 1 MW, or time average power greater than 2 MW. The pulse period has a first duration in which the microwave power is on, and a second duration in which the microwave energy is off or at a lower power than the first duration. In some embodiments, the second duration is longer than the first duration. The optimal duty cycle for a given system depends on many factors, including microwave power, pulse frequency, and pulse shape. In some embodiments, the duty cycle (ie, the fraction of the pulse period in which the microwave energy is turned on, expressed as a percentage) is 1% to 99%, or 1% to 95%, or 10% to 95%, or 20% To 80%, or 50% to 95%, or 1% to 50%, or 1% to 40%, or 1% to 30%, or 1% to 20%, or 1% to 10%, or less than 99% , Or less than 95%, or less than 80%, or less than 60%, or less than 50%, or less than 40%, or less than 30%, or less than 20%, or less than 10%. Microwave chemical treatment reactor with multiple field-enhanced waveguides

圖4A至圖4D展示表示本揭示內容之微波化學處理系統之實施例的方塊圖,其中多個FEWG耦合至一或多個微波能量發生器(亦即,微波能量源)。此等實施例中之FEWG可共享上文所描述之系統之一些或全部特徵。此等實施例中之供應氣體及製程材料輸入亦可共享上文所描述之一些或全部特徵。在一些實施例中,每一FEWG具有一反應區。在一些實施例中,在該等FEWG中之每一者中於電漿區中自供應氣體產生電漿,且該等FEWG中之每一者之反應長度充當反應區以將製程材料分離成單獨組分。在一些實施例中,反應區連接在一起且微波化學處理系統具有用於分離組分之一個出口。在一些實施例中,反應區連接在一起且微波化學處理系統具有用於分離組分之多於一個出口。在一些實施例中,每一反應區具有其自己的用於分離組分之出口。4A to 4D show block diagrams showing an embodiment of the microwave chemical processing system of the present disclosure, in which multiple FEWGs are coupled to one or more microwave energy generators (ie, microwave energy sources). The FEWG in these embodiments can share some or all of the features of the system described above. The supply gas and process material input in these embodiments can also share some or all of the features described above. In some embodiments, each FEWG has a reaction zone. In some embodiments, plasma is generated from the supply gas in the plasma zone in each of the FEWGs, and the reaction length of each of the FEWGs serves as a reaction zone to separate the process materials into individual Components. In some embodiments, the reaction zones are connected together and the microwave chemical processing system has an outlet for separating components. In some embodiments, the reaction zones are connected together and the microwave chemical processing system has more than one outlet for separating components. In some embodiments, each reaction zone has its own outlet for separating components.

圖4A展示一實施例,其中存在耦合至多個FEWG 402之一個微波能量發生器401,且FEWG之反應區全部連接在一起以使得存在用於收集分離組分的單一出口403。Figure 4A shows an embodiment in which there is one microwave energy generator 401 coupled to multiple FEWGs 402, and the reaction zones of the FEWGs are all connected together so that there is a single outlet 403 for collecting separated components.

圖4B展示一實施例,其中存在耦合至多個FEWG 402之一個微波能量發生器401,且一些FEWG之反應區連接在一起以使得存在用於收集分離組分的多於一個出口403。Figure 4B shows an embodiment where there is one microwave energy generator 401 coupled to multiple FEWGs 402, and the reaction zones of some FEWGs are connected together so that there is more than one outlet 403 for collecting separated components.

圖4C展示一實施例,其中存在耦合至多個FEWG 402之多於一個微波能量發生器401,且FEWG之反應區全部連接在一起以使得存在用於收集分離組分的單一出口403。Figure 4C shows an embodiment where there is more than one microwave energy generator 401 coupled to multiple FEWG 402, and the reaction zones of the FEWG are all connected together so that there is a single outlet 403 for collecting the separated components.

圖4D展示一實施例,其中存在耦合至多個FEWG 402之多於一個微波能量發生器401,且一些FEWG之反應區連接在一起以使得存在用於收集分離組分的多於一個出口403。Figure 4D shows an embodiment where there is more than one microwave energy generator 401 coupled to multiple FEWGs 402, and the reaction zones of some FEWGs are connected together so that there is more than one outlet 403 for collecting separated components.

圖4A至圖4D出於說明性目的描繪了6個FEWG,但在其他實施例中,存在少於或多於6個FEWG。例如,在一些實施例中,存在耦合至每一微波能量發生器之1至10個FEWG。在一些實施例中,可使用功率組合器組合來自多於一個微波發生器之微波能量,且接著可將組合之微波能量耦合至多於一個FEWG中。自此種功率組合器發射之微波能量可能非常大,且可耦合至許多FEWG(例如,多於10個)中。在一些實施例中,使用多工將微波能量自單一微波能量源耦合至多個FEWG中。在一個實例中,多工係分時多工,其意謂在一個時刻將能量自微波能量源耦合至一組FEWG中,且在一隨後時刻使用開關將能量導向至不同的一組FEWG中。開關可用於使能量隨時間自單一微波能量源在許多組FEWG(例如,多於2組、或多於5組、或多於10組)之間循環,其中每組FEWG可含有多個FEWG(例如,多於2個、或多於5個、或1至10個)。圖4B及4D描繪兩個出口,但可存在多於兩個出口,且每一FEWG可具有其自己的用於收集分離組分的出口。在一些實施例中,存在用於收集分離組分的1至10個出口。圖4B及4D描繪連接至每一出口中之3個FEWG,但可存在連接至每一出口中的少於或多於3個FEWG,且每一FEWG可具有其自己的用於收集分離組分的出口。圖4C及4D描繪兩個微波能量發生器,但在一些實施例中,存在多於2個微波能量發生器。在一些實施例中,存在一起連接至每一出口中以用於收集分離組分的1至10個FEWG。Figures 4A-4D depict 6 FEWGs for illustrative purposes, but in other embodiments, there are fewer or more than 6 FEWGs. For example, in some embodiments, there are 1 to 10 FEWGs coupled to each microwave energy generator. In some embodiments, a power combiner can be used to combine microwave energy from more than one microwave generator, and then the combined microwave energy can be coupled into more than one FEWG. The microwave energy emitted from such a power combiner can be very large and can be coupled into many FEWGs (for example, more than 10). In some embodiments, multiplexing is used to couple microwave energy from a single microwave energy source into multiple FEWGs. In one example, the multiplexing system is time-sharing multiplexing, which means coupling energy from a microwave energy source to a group of FEWGs at one time, and using a switch to direct the energy to a different group of FEWGs at a later time. The switch can be used to cycle energy from a single microwave energy source between many groups of FEWG (for example, more than 2 groups, or more than 5 groups, or more than 10 groups) over time, where each group of FEWG may contain multiple FEWG ( For example, more than 2, or more than 5, or 1 to 10). Figures 4B and 4D depict two outlets, but there may be more than two outlets, and each FEWG may have its own outlet for collecting separated components. In some embodiments, there are 1 to 10 outlets for collecting separated components. Figures 4B and 4D depict 3 FEWGs connected to each outlet, but there may be fewer or more than 3 FEWGs connected to each outlet, and each FEWG may have its own for collecting separated components The exit. Figures 4C and 4D depict two microwave energy generators, but in some embodiments, there are more than two microwave energy generators. In some embodiments, there are 1 to 10 FEWG connected together into each outlet for collection of separated components.

圖5A至圖5B展示本揭示內容之微波化學處理系統之實施例,其中多個FEWG使用不同的幾何結構耦合至一個微波能量發生器(亦即,微波能量源)。此等實施例中之FEWG可共享上文所描述之系統之一些或全部特徵。此等實施例中之供應氣體及製程材料輸入亦可共享上文所描述之一些或全部特徵。在一些實施例中,每一FEWG具有一反應區。在一些實施例中,在FEWG中之每一者中於電漿區中自供應氣體產生電漿,且該等FEWG中之每一者之反應長度充當反應區以將製程材料分離成單獨組分。在一些實施例中,反應區連接在一起且微波化學處理系統具有用於分離組分之一個出口。在一些實施例中,反應區連接在一起且微波化學處理系統具有用於分離組分之多於一個出口。在一些實施例中,每一反應區具有其自己的用於分離組分之出口。5A to 5B show an embodiment of the microwave chemical processing system of the present disclosure, in which multiple FEWGs are coupled to a microwave energy generator (ie, a microwave energy source) using different geometric structures. The FEWG in these embodiments can share some or all of the features of the system described above. The supply gas and process material input in these embodiments can also share some or all of the features described above. In some embodiments, each FEWG has a reaction zone. In some embodiments, plasma is generated from the supply gas in the plasma zone in each of the FEWGs, and the reaction length of each of the FEWGs serves as a reaction zone to separate the process materials into individual components . In some embodiments, the reaction zones are connected together and the microwave chemical processing system has an outlet for separating components. In some embodiments, the reaction zones are connected together and the microwave chemical processing system has more than one outlet for separating components. In some embodiments, each reaction zone has its own outlet for separating components.

圖5A展示具有歧管幾何結構之實施例,其中存在耦合至多個FEWG的一個微波能量發生器。微波能量501耦合至歧管波導502,且然後耦合至多個FEWG中。微波能量進入每一FEWG之大橫截面積區段,然後進入FEWG 503之場增強區,且然後耦合至FEWG 504之更小橫截面積反應區中。在圖5A所描繪之實施例中,所有FEWG全部連接在一起以使得存在用於收集分離組分的單一出口505。Figure 5A shows an embodiment with a manifold geometry in which there is a microwave energy generator coupled to multiple FEWGs. The microwave energy 501 is coupled to the manifold waveguide 502 and then into multiple FEWGs. The microwave energy enters the large cross-sectional area section of each FEWG, then enters the field enhancement zone of FEWG 503, and is then coupled to the smaller cross-sectional area reaction zone of FEWG 504. In the embodiment depicted in Figure 5A, all FEWGs are all connected together so that there is a single outlet 505 for collecting the separated components.

圖5B展示具有網狀幾何結構之實施例,其中存在耦合至多個FEWG的一個微波能量發生器。微波能量501耦合至網狀波導502,且然後耦合至多個FEWG中。特定網狀波導尺寸取決於所使用之微波頻率。微波能量進入每一FEWG之大橫截面積區段,然後進入FEWG 503之場增強區,且然後耦合至FEWG 504之更小橫截面積反應區中。在圖5B所描繪之實施例中,所有FEWG全部連接在一起以使得存在用於收集分離組分的單一出口505。Figure 5B shows an embodiment with a mesh geometry in which there is a microwave energy generator coupled to multiple FEWGs. The microwave energy 501 is coupled to the mesh waveguide 502 and then into multiple FEWGs. The specific mesh waveguide size depends on the microwave frequency used. The microwave energy enters the large cross-sectional area section of each FEWG, then enters the field enhancement zone of FEWG 503, and is then coupled to the smaller cross-sectional area reaction zone of FEWG 504. In the embodiment depicted in Figure 5B, all FEWGs are all connected together so that there is a single outlet 505 for collecting the separated components.

圖5A至圖5B描繪耦合至呈歧管或網狀幾何結構之5個FEWG的一個微波能量發生器,但在其他實施例中,存在耦合至呈歧管或網狀幾何結構之少於或多於5個FEWG的一個微波能量發生器。在一些實施例中,可使用功率組合器組合來自多於一個微波發生器之微波能量,且接著可將組合之微波能量耦合至呈歧管或網狀幾何結構之多於一個FEWG中。自此種功率組合器發射之微波能量可能非常大,且可耦合至呈歧管或網狀幾何結構之許多FEWG(例如,大於10個)中。在一些實施例中,存在以歧管或網狀幾何結構耦合至每一微波能量發生器的1至10個FEWG。圖5A至圖5B描繪一個出口,但自以歧管或網狀幾何結構耦合至微波能量發生器之FEWG可存在多於一個出口。在一些實施例中,存在用於自以歧管或網狀幾何結構耦合至微波能量發生器之FEWG收集分離組分的1至10個出口。圖5A至圖5B描繪耦合至多個FEWG的一個微波能量發生器,但在一些實施例中,存在耦合至呈歧管或網狀幾何結構之1至10個FEWG的1至10個微波能量發生器。在一些實施例中,存在一起連接至每一出口中以用於自以歧管或網狀幾何結構耦合至微波能量發生器之FEWG收集分離組分的1至10個FEWG。Figures 5A to 5B depict a microwave energy generator coupled to 5 FEWGs in a manifold or mesh geometry, but in other embodiments, there are fewer or more couplings to a manifold or mesh geometry. One microwave energy generator in 5 FEWGs. In some embodiments, a power combiner can be used to combine microwave energy from more than one microwave generator, and then the combined microwave energy can be coupled into more than one FEWG in a manifold or mesh geometry. The microwave energy emitted from such a power combiner can be very large and can be coupled to many FEWGs (for example, more than 10) in a manifold or mesh geometry. In some embodiments, there are 1 to 10 FEWGs coupled to each microwave energy generator in a manifold or mesh geometry. Figures 5A to 5B depict one outlet, but there may be more than one outlet from the FEWG coupled to the microwave energy generator with a manifold or mesh geometry. In some embodiments, there are 1 to 10 outlets for collecting separated components from a FEWG coupled to a microwave energy generator in a manifold or mesh geometry. Figures 5A to 5B depict one microwave energy generator coupled to multiple FEWGs, but in some embodiments, there are 1 to 10 microwave energy generators coupled to 1 to 10 FEWGs in a manifold or mesh geometry . In some embodiments, there are 1 to 10 FEWGs connected together into each outlet for collecting separated components from the FEWG coupled to the microwave energy generator in a manifold or mesh geometry.

在一些實施例中,在歧管或網狀幾何結構波導502與FEWG 503之場增強區之間存在孔隙。此等孔隙之尺寸經定製以將來自歧管或網狀幾何結構波導502之微波能量有效地耦合至FEWG 503之場增強區。在一些實施例中,此等孔隙之尺寸係不同大小以平衡來自歧管或網狀幾何結構波導502之微波能量在FEWG 503的所有經耦合之場增強區之間的傳輸。In some embodiments, there is a void between the manifold or mesh geometry waveguide 502 and the field enhancement region of the FEWG 503. The size of these apertures is tailored to efficiently couple the microwave energy from the manifold or mesh geometry waveguide 502 to the field enhancement zone of the FEWG 503. In some embodiments, the sizes of these apertures are different sizes to balance the transmission of microwave energy from the manifold or mesh geometry waveguide 502 between all the coupled field enhancement regions of the FEWG 503.

在一些實施例中,歧管或網狀幾何結構波導502之尺寸經定製以使得其形成共振腔且在歧管或網狀幾何結構波導502內存在微波能量駐波。在一些實施例中,微波能量駐波經調諧以有效地將微波能量耦合至FEWG 503的經耦合之場增強區中之每一者中。In some embodiments, the dimensions of the manifold or mesh geometry waveguide 502 are tailored so that it forms a resonant cavity and there is a standing wave of microwave energy within the manifold or mesh geometry waveguide 502. In some embodiments, the standing wave of microwave energy is tuned to effectively couple microwave energy into each of the coupled field enhancement regions of FEWG 503.

在一些實施例中,存在自歧管或網狀幾何結構波導502至FEWG 503之場增強區之受控洩漏以有效地分配耦合至FEWG 504之反應區中之每一者中的微波能量之量。用於控制自歧管或網狀幾何結構波導502至FEWG 503之場增強區之洩漏且有效地分配耦合至FEWG 504之反應區中之每一者中的微波能量之量的一些設計實例為:改變波導之橫截面及/或長度;使用歧管或網狀幾何結構波導502與FEWG 503之場增強區之間的孔隙;改變歧管或網狀幾何結構波導502與FEWG 503之場增強區之間的定向角;使用位於歧管或網狀幾何結構波導內或位於FEWG內之長絲、點源、電極、及/或磁體(如下文將更詳細討論);及此等設計特徵中之兩者或兩者以上之組合。 具有場增強波導之微波化學處理反應器中之額外特徵In some embodiments, there is a controlled leakage from the manifold or mesh geometry waveguide 502 to the field enhancement zone of the FEWG 503 to effectively distribute the amount of microwave energy coupled to each of the reaction zones of the FEWG 504 . Some design examples for controlling the leakage from the manifold or mesh geometry waveguide 502 to the field enhancement zone of FEWG 503 and effectively distributing the amount of microwave energy coupled to each of the reaction zones of FEWG 504 are: Change the cross section and/or length of the waveguide; use the aperture between the manifold or mesh geometry waveguide 502 and the field enhancement region of the FEWG 503; change the manifold or mesh geometry waveguide 502 and the field enhancement region of the FEWG 503 The orientation angle between the two; the use of filaments, point sources, electrodes, and/or magnets (discussed in more detail below) in the manifold or mesh geometry waveguide or in the FEWG; and two of these design features Or a combination of two or more. Additional features in microwave chemical processing reactors with field-enhanced waveguides

除具有FEWG之微波處理系統之以上特徵之外,現將論述可在上文所描述之系統中使用之進一步的特徵。In addition to the above features of the microwave processing system with FEWG, further features that can be used in the system described above will now be discussed.

圖6示出具有FEWG之微波製程系統,其中電漿係在一或多種前驅氣體中產生,其中前驅氣體係在製程材料流動至FEWG之反應區中的位置上游插入。前驅氣體藉由添加具有各種電離電位之物質來改良裂解效率。亦即,不同的氣體具有不同的電離能量,該電離能量係自原子或分子移除電子所需的能量之量。另外,各種氣體具有不同的成對產生(每離子可產生多少個電子)及二次電子發射性質(當帶電粒子撞擊表面時的電子發射)。因此,在本揭示內容中,可利用前驅氣體之使用來影響電漿之能量。Fig. 6 shows a microwave process system with FEWG, in which plasma is generated in one or more precursor gases, and the precursor gas system is inserted upstream of the position where the process material flows into the reaction zone of the FEWG. The precursor gas improves the cracking efficiency by adding substances with various ionization potentials. That is, different gases have different ionization energies, and the ionization energy is the amount of energy required to remove electrons from atoms or molecules. In addition, various gases have different paired generation (how many electrons can be generated per ion) and secondary electron emission properties (emission of electrons when charged particles hit the surface). Therefore, in the present disclosure, the use of precursor gas can be used to influence the energy of the plasma.

在圖6中,類似於先前實施例,微波氣體處理系統600包括微波能量發生器(亦即,微波能量源)604、FEWG 605、及微波發射器電路607。為了清晰起見,圖6之圖與先前圖式相比係簡化圖。供應氣體入口602接收前驅氣體620,該前驅氣體620補充供應氣體(未示出)以在波導中產生電漿。在各種實施例中,前驅氣體620可包括氫氣、氬氣、氦氣、或各種惰性氣體中之一或多者。類似於先前實施例,製程材料入口610經組配以接收待反應之製程材料。In FIG. 6, similar to the previous embodiment, the microwave gas processing system 600 includes a microwave energy generator (ie, a microwave energy source) 604, a FEWG 605, and a microwave transmitter circuit 607. For the sake of clarity, the diagram in FIG. 6 is a simplified diagram compared with the previous diagrams. The supply gas inlet 602 receives a precursor gas 620 that supplements a supply gas (not shown) to generate plasma in the waveguide. In various embodiments, the precursor gas 620 may include one or more of hydrogen, argon, helium, or various inert gases. Similar to the previous embodiment, the process material inlet 610 is configured to receive the process material to be reacted.

在一些實施例中,製程材料之分離組分中之一或多者再循環回到進入FEWG 605之供應氣體及/或製程材料中。對於並非系統之所需輸出產物之前驅氣體(例如,在甲烷處理中的氬前驅氣體),在後處理步驟中自分離組分630及632移除前驅氣體,該等分離組分630及632係自出口603輸出的。如圖6中所示,FEWG 605中之氣體反應產生分離組分630及632。例如,對於作為製程材料之甲烷,第一分離組分630可為碳且第二分離組分632可為H2 氣體(其係自原子氫H+ 重組,然後在出口603處被收集)。替代地,第一分離組分630可為CH2 且第二分離組分632可為氫氣H2 。分離組分632經由導管640再循環回到FEWG 605中,回到供應氣體入口602。再循環之分離組分632因此用作前驅氣體620。雖然使所產生之分離組分返回到反應系統中係違反直覺的,但組分之再循環向電漿添加能量,且在一些實施例中,亦可有助於製程材料之熱裂解,因為再循環之組分已在氣體處理期間加熱。在一些實施例中,例如,針對其中產生總共150-200 slm之H2 的製程,分離組分632可為再循環回到FEWG 605中的2-10 slm之H2 。如多個因素(諸如製程材料之流率及/或希望添加至製程以起始目標化學路徑之能量之量)所決定,可使分離組分632之其他量或部分再循環。In some embodiments, one or more of the separated components of the process material is recycled back into the supply gas and/or process material entering the FEWG 605. For the precursor gas that is not the required output product of the system (for example, the argon precursor gas in the methane treatment), the precursor gas is removed from the separated components 630 and 632 in the post-processing step. The separated components 630 and 632 are Output from exit 603. As shown in Figure 6, the gas reaction in FEWG 605 produces separated components 630 and 632. For example, for methane as a process material, the first separated component 630 can be carbon and the second separated component 632 can be H 2 gas (which is recombined from atomic hydrogen H+ and then collected at the outlet 603). Alternatively, the first separation component 630 can be CH 2 and the second separation component 632 can be hydrogen H 2 . The separated component 632 is recycled back into the FEWG 605 via the conduit 640 and back to the supply gas inlet 602. The recycled separated component 632 is therefore used as the precursor gas 620. Although it is counterintuitive to return the generated separated components to the reaction system, the recycling of the components adds energy to the plasma and, in some embodiments, can also contribute to the thermal cracking of the process materials, because the recirculation of the components adds energy to the plasma. The circulating components have been heated during the gas treatment. In some embodiments, for example, for processes where a total of 150-200 slm of H 2 is produced, the separated component 632 may be 2-10 slm of H 2 recycled back to the FEWG 605. As determined by a number of factors, such as the flow rate of the process material and/or the amount of energy desired to be added to the process to initiate the target chemical path, other amounts or parts of the separated components 632 can be recycled.

在一些實施例中,一些或全部供應氣體含有製程材料之一或多種再循環之分離組分。例如,供應氣體可為氫氣,且製程材料可為甲烷,使甲烷反應以形成氫氣及碳,且由甲烷產生之氫氣之至少一部分可再循環且用作供應氣體。使所產生之氫氣再循環有益地改良總體氣體處理之效率,因為由氫氣形成之電漿在裂解製程材料分子中之烴鍵方面係高效的。另外,在一些實施例中,再循環之H2 已處於高溫,且因此需要更少的能量輸入來達成熱裂解能量。在一些實施例中,供應氣體為藉由外部源提供之H2 ,再循環之H2 被添加至該外部源。在此等實施例中,所產生之電漿為氫電漿。In some embodiments, some or all of the supply gas contains one or more separated components of the process material that are recycled. For example, the supply gas may be hydrogen, and the process material may be methane, the methane is reacted to form hydrogen and carbon, and at least a part of the hydrogen generated from the methane can be recycled and used as the supply gas. Recycling the generated hydrogen is beneficial to improve the overall gas processing efficiency, because the plasma formed from hydrogen is highly effective in cracking the hydrocarbon bonds in the molecules of the process material. In addition, in some embodiments, the recycled H 2 is already at a high temperature, and therefore requires less energy input to achieve thermal cracking energy. In some embodiments, the supply gas is H 2 provided by an external source, and recycled H 2 is added to the external source. In these embodiments, the generated plasma is hydrogen plasma.

圖7示出具有FEWG及長絲之微波製程系統。在圖7之實施例中,類似於先前實施例,微波處理系統700包括微波能量發生器(亦即,微波能量源)704、FEWG 705、及微波發射器電路707。微波能量709由微波能量源704供應,以在沿著FEWG 705之長度L之方向上傳播。在此實施例中,供應氣體入口702置放於部分L0 之進口附近,而非如先前實施例中所示出那樣置放於部分L1 (亦即,電漿區)之進口處。一或多根金屬長絲720置放於FEWG 705內以輔助電漿之點火及/或電漿內更高能量物質之激發。在此實施例中,金屬長絲720位於第一氣體入口702下游,位於FEWG之電漿區部分L1 (與更靠近微波能量發生器之FEWG相比具有更小的橫截面積)之進口附近。在其他實施例中,長絲720可位於FEWG 705之總長度L之部分L1 內之其他位置處,其中L1 為波導中形成電漿之區域,如關於先前實施例所描述。在一些實施例中,長絲720位於FEWG之部分L1 內且位於製程材料入口710上游,因此其將位於部分L2 (亦即,圖3所示之長度L2 )外部,在該部分L2 中反應正在發生且其可用經反應之物質塗佈該長絲。長絲720之存在可藉由提供點火位點、藉由集中微波能量709之電場來降低電漿點火電壓。另外,長絲720可受到加熱且經由熱離子發射來發射電子,從而進一步有助於降低電漿點火電壓。雖然在此實施例中將長絲720示出為單一線材,但長絲720可採取其他組態,諸如線圈或多個長絲。在一些實施例中,長絲720為鎢。在一些實施例中,長絲可被主動供能(供電)或可為被動的。在一些實施例中,長絲720為鄰近於加熱器線圈之鋨長絲(例如,組配為板、或線圈、或其他形狀)。在一些實施例中,長絲720為處於感應線圈之場內的鐵質材料。在一些實施例中,長絲720被主動加熱,其中主動組件(例如,加熱源組件)位於波導705外部且被加熱之長絲材料處於波導705內部。Figure 7 shows a microwave process system with FEWG and filaments. In the embodiment of FIG. 7, similar to the previous embodiment, the microwave processing system 700 includes a microwave energy generator (ie, a microwave energy source) 704, a FEWG 705, and a microwave transmitter circuit 707. The microwave energy 709 is supplied by the microwave energy source 704 to propagate in the direction along the length L of the FEWG 705. In this embodiment, the supply gas inlet 702 is placed near the inlet of the part L 0 instead of being placed at the inlet of the part L 1 (ie, the plasma region) as shown in the previous embodiment. One or more metal filaments 720 are placed in the FEWG 705 to assist the ignition of the plasma and/or the excitation of higher energy substances in the plasma. In this embodiment, the metal filament 720 is located downstream of the first gas inlet 702, near the inlet of the plasma region portion L 1 of the FEWG (which has a smaller cross-sectional area compared to the FEWG that is closer to the microwave energy generator) . In other embodiments, the filament 720 may be located at other positions within the portion L 1 of the total length L of the FEWG 705, where L 1 is the region in the waveguide where the plasma is formed, as described in relation to the previous embodiment. In some embodiments, the filament 720 is located in the portion L 1 of the FEWG and upstream of the process material inlet 710, so it will be located outside the portion L 2 (ie, the length L 2 shown in FIG. 3), where The reaction in 2 is taking place and it can coat the filament with the reacted substance. The existence of the filament 720 can reduce the plasma ignition voltage by providing an ignition site and by concentrating the electric field of the microwave energy 709. In addition, the filament 720 may be heated and emit electrons through thermionic emission, thereby further helping to reduce the plasma ignition voltage. Although the filament 720 is shown as a single wire in this embodiment, the filament 720 may take other configurations, such as a coil or multiple filaments. In some embodiments, the filament 720 is tungsten. In some embodiments, the filaments may be actively energized (powered) or may be passive. In some embodiments, the filament 720 is an osmium filament adjacent to the heater coil (for example, assembled as a plate, or coil, or other shape). In some embodiments, the filament 720 is a ferrous material in the field of the induction coil. In some embodiments, the filament 720 is actively heated, wherein the active component (eg, the heating source component) is located outside the waveguide 705 and the filament material being heated is inside the waveguide 705.

圖8示出具有FEWG及電子源之微波製程系統之實施例。如同先前實施例中一樣,微波處理系統800包括供應氣體入口802、FEWG 805、及供應微波能量809之微波能量發生器(亦即,微波能量源)804。微波處理系統800亦包括一或多個電子源820以輔助電漿之點火及/或電漿內更高能量物質之激發。電子源820經組配以將電子注入至FEWG 805中,進而減小將電漿點火所需要的初始能量之量。可因此藉由控制存在的電子之量來控制電漿之點火位準。在一些實施例中,將電子注入至FEWG 805之總長度L之部分L1 中,其中L1 為FEWG中形成電漿之區域,如上文所描述。例如,在此實施例中,電子源820經組配以在第一氣體入口802下游將電子供應至FEWG 805中。在一些實施例中,電子源820為場發射源。在一些實施例中,電子源820含有鄰近於加熱器線圈之鋨元件。在一些實施例中,電子源820含有處於感應線圈之場內的鐵質材料。在一些實施例中,電子源820含有如上文所描述的長絲,且使用高壓電場將所產生之電子注入至部分L1 中。在一些實施例中,電子源820替代地為離子源。Fig. 8 shows an embodiment of a microwave process system with FEWG and electron source. As in the previous embodiment, the microwave processing system 800 includes a supply gas inlet 802, a FEWG 805, and a microwave energy generator (ie, a microwave energy source) 804 for supplying microwave energy 809. The microwave processing system 800 also includes one or more electron sources 820 to assist in the ignition of the plasma and/or the excitation of higher energy substances in the plasma. The electron source 820 is configured to inject electrons into the FEWG 805, thereby reducing the amount of initial energy required to ignite the plasma. Therefore, the ignition level of the plasma can be controlled by controlling the amount of electrons present. In some embodiments, electrons are injected into the portion L 1 of the total length L of the FEWG 805, where L 1 is the region in the FEWG where the plasma is formed, as described above. For example, in this embodiment, the electron source 820 is configured to supply electrons into the FEWG 805 downstream of the first gas inlet 802. In some embodiments, the electron source 820 is a field emission source. In some embodiments, the electron source 820 contains an osmium element adjacent to the heater coil. In some embodiments, the electron source 820 contains ferrous materials in the field of the induction coil. In some embodiments, the electron source 820 contains filaments as described above, and a high-voltage electric field is used to inject the generated electrons into the portion L 1 . In some embodiments, the electron source 820 is instead an ion source.

在FEWG內使用長絲720及/或電子源820之優點在於,其使得電漿能夠足夠快速地形成以跟上快速的微波脈衝頻率(例如,處於大於500 Hz、或大於1 kHz之頻率),即使在高的氣體流量(例如,大於5 slm)及大的氣體體積(例如,至多1000 L)的情況下亦如此。在高壓力(例如,大於0.9 atm、或大於1 atm、或大於2 atm)下,此係尤其重要的,因為高能物質在高壓力大氣壓中將快速熄滅,且若電漿無法足夠快速的點火,則在高壓力下,脈衝化電漿中將存在低分數之高能物質(亦即,隨時間整合的)。The advantage of using filament 720 and/or electron source 820 in FEWG is that it enables plasma to be formed quickly enough to keep up with the rapid microwave pulse frequency (for example, at a frequency greater than 500 Hz or greater than 1 kHz), This is true even in the case of high gas flow rates (for example, greater than 5 slm) and large gas volumes (for example, up to 1000 L). Under high pressure (for example, greater than 0.9 atm, or greater than 1 atm, or greater than 2 atm), this system is especially important because high-energy substances will quickly extinguish in high-pressure atmospheric pressure, and if the plasma cannot be ignited quickly enough, Under high pressure, there will be a low fraction of high-energy substances (that is, integrated over time) in the pulsed plasma.

圖8亦示出具有FEWG之本發明之微波製程系統中的電極830之實施例。電極830可獨立於圖6之前驅氣體620、圖7之長絲720或圖8之電子源820使用或與前述各項組合使用。在一些實施例中,系統800含有一或多組電極830以將能量添加至電漿。電極經組配以在FEWG 805之總長度L之部分L1 內產生電場,其中L1 為FEWG中形成電漿之區域,如上文所描述。電極830在圖8中體現為具有相反電荷之一對共面電極,該對共面電極處於FEWG 805的其中產生電漿806之部分外部且處於該部分之相反側上。電極可被供能至特定電壓以將電漿內之帶電物質加速至所需程度,因此控制電漿能量。此實施例之電極可與連續波微波能量一起使用,但與脈衝式微波輸入組合為尤其有效的。在具有電極及連續微波能量之習知系統中,電極之間的電漿將在平衡狀態下局部化(例如,在電極附近),且屏蔽電場與電極,從而限制電極將能量添加至電漿之能力。然而,當使微波脈衝化時,電漿將在不平衡狀態下存在達更大的時間分數,且將屏蔽電極之電場達更小的時間分數。FIG. 8 also shows an embodiment of the electrode 830 in the microwave processing system of the present invention with FEWG. The electrode 830 can be used independently of the precursor gas 620 in FIG. 6, the filament 720 in FIG. 7, or the electron source 820 in FIG. 8, or used in combination with the foregoing. In some embodiments, the system 800 contains one or more sets of electrodes 830 to add energy to the plasma. The electrodes are configured to generate an electric field in the portion L 1 of the total length L of the FEWG 805 , where L 1 is the region in the FEWG where plasma is formed, as described above. The electrode 830 is embodied in FIG. 8 as a pair of coplanar electrodes with opposite charges, the pair of coplanar electrodes being outside and on the opposite side of the part of the FEWG 805 where the plasma 806 is generated. The electrodes can be energized to a specific voltage to accelerate the charged materials in the plasma to a desired level, thereby controlling the plasma energy. The electrode of this embodiment can be used with continuous wave microwave energy, but it is particularly effective in combination with pulsed microwave input. In the conventional system with electrodes and continuous microwave energy, the plasma between the electrodes will be localized in equilibrium (for example, near the electrodes), and the electric field and the electrodes are shielded, thereby restricting the electrodes from adding energy to the plasma. ability. However, when the microwave is pulsed, the plasma will exist in an unbalanced state for a larger fraction of time, and the electric field of the shield electrode will be reduced for a smaller fraction of time.

在一些實施例中,本揭示內容之微波處理系統將包括磁體(未示出)以將電漿限制在反應區中且降低用於產生電漿之點火電壓。在一些實施例中,磁體為永磁體或為電磁體。磁體可經定位以便電漿密度分佈可得以控制。在一些實施例中,磁體將增加部分L1 中之電漿密度,從而將改良藉由電漿來分離製程材料之效率。In some embodiments, the microwave processing system of the present disclosure will include magnets (not shown) to confine the plasma in the reaction zone and reduce the ignition voltage used to generate the plasma. In some embodiments, the magnet is a permanent magnet or an electromagnet. The magnet can be positioned so that the plasma density distribution can be controlled. In some embodiments, the magnet will increase the plasma density in the portion L 1 , thereby improving the efficiency of separating process materials by the plasma.

在一些實施例中,使用長絲、點源、電極、及/或磁體來定製FEWG內之局部阻抗。在一些實施例中,使用長絲、點源、電極、及/或磁體來增加FEWG之反應區內之電漿密度。In some embodiments, filaments, point sources, electrodes, and/or magnets are used to customize the local impedance within the FEWG. In some embodiments, filaments, point sources, electrodes, and/or magnets are used to increase the plasma density in the reaction zone of the FEWG.

如先前所描述,耦合至含有具有以下各項的組合之反應區之FEWG的微波能量發生器可實現具有低能量輸入需求之成本有效的高生產力化學氣體處理系統:脈衝式微波能量、高的氣體流量(例如,大於5 slm)、大的電漿體積(例如,至多1000 L)、高壓力(例如,大於0.1 atm或大於0.9 atm、或大於2 atm)、用於在每一脈衝開始時輔助電漿點火之長絲或電子源、及/或用於進一步將能量添加至電漿之電極。As previously described, a microwave energy generator coupled to a FEWG containing a reaction zone with a combination of the following can realize a cost-effective, high-productivity chemical gas processing system with low energy input requirements: pulsed microwave energy, high gas Flow rate (for example, greater than 5 slm), large plasma volume (for example, up to 1000 L), high pressure (for example, greater than 0.1 atm or greater than 0.9 atm, or greater than 2 atm), used to assist at the beginning of each pulse A filament or electron source for plasma ignition, and/or an electrode for further adding energy to the plasma.

具有以上特徵之氣體處理系統係以此方式組配以使得電漿得以產生且製程材料在FEWG自身內分離成組分,諸如圖2、圖3、圖4A至圖4D、圖5A至圖5B、圖6、圖7及圖8中所描繪之實例。在此等系統中,微波能量在產生分離組分之反應上游進入系統,且因此分離組分積累在反應器之微波進入窗口上且在微波能量可產生電漿之前吸收該微波能量的問題得以減輕。在本文所描述之實施例中,FEWG的其中產生分離組分之部分充當反應腔室,且穿過反應腔室之供應氣體流及/或製程材料流平行於微波能量在FEWG中之傳播方向。微波能量在FEWG的充當反應腔室之部分上游進入FEWG,在該反應腔室中產生分離組分。The gas processing system with the above characteristics is configured in this way so that plasma is generated and the process materials are separated into components within the FEWG itself, such as Figure 2, Figure 3, Figure 4A to Figure 4D, Figure 5A to Figure 5B, Examples are depicted in Figure 6, Figure 7, and Figure 8. In these systems, the microwave energy enters the system upstream of the reaction that produces the separated components, and therefore the separated components accumulate on the microwave entry window of the reactor and the problem of absorbing the microwave energy before the microwave energy can generate plasma is alleviated . In the embodiment described herein, the part of the FEWG where the separated components are generated serves as a reaction chamber, and the flow of supply gas and/or the flow of process materials passing through the reaction chamber is parallel to the propagation direction of microwave energy in the FEWG. The microwave energy enters the FEWG upstream of the portion of the FEWG that serves as the reaction chamber, and separate components are generated in the reaction chamber.

在一些實施例中,在具有利用連續波(CW)微波能量之FEWG之微波氣體處理系統中可使用氣體再循環、長絲、及電子源。在利用CW微波能量之實施例中,氣體再循環、長絲、及電子源將仍然有利於改良系統之氣體處理效率,降低電漿之點火電壓,且控制電漿之密度分佈。In some embodiments, gas recirculation, filaments, and electron sources can be used in a microwave gas processing system with FEWG that utilizes continuous wave (CW) microwave energy. In an embodiment using CW microwave energy, gas recirculation, filaments, and electron sources will still help improve the gas processing efficiency of the system, reduce the ignition voltage of the plasma, and control the density distribution of the plasma.

在一些實施例中,分離組分可在產生分離組分之反應下游黏附於FEWG之壁,儘管FEWG中有大體積之反應區。雖然此不會阻止電漿產生,但其仍然表示系統中之生產損失及污染源。因此,在一些實施例中,供應氣體之氣流及製程材料可經設計以在沈積區域附近產生電漿,以移除沈積於波導壁(或,反應腔室壁)上之分離產物。在一些實施例中,供應氣體及/或製程材料之額外入口可經組配以將氣體導向至沈積區域,從而移除沈積在波導壁(或,反應腔室壁)上之分離產物。 微波氣體處理方法In some embodiments, the separated component may adhere to the wall of the FEWG downstream of the reaction that produces the separated component, despite the large volume of the reaction zone in the FEWG. Although this does not prevent the generation of plasma, it still represents a production loss and pollution source in the system. Therefore, in some embodiments, the gas flow and process materials of the supply gas can be designed to generate plasma near the deposition area to remove the separated products deposited on the waveguide wall (or, the reaction chamber wall). In some embodiments, additional inlets for supplying gas and/or process materials can be configured to direct the gas to the deposition area, thereby removing the separated products deposited on the waveguide wall (or reaction chamber wall). Microwave gas processing method

圖9為表示用於氣體之微波處理之方法的示例性流程圖900,該等方法在利用FEWG之高效率氣體反應中使用化學控制。在步驟910中,經由具有一長度之FEWG供應微波能量,其中該微波能量在沿該FEWG之方向上傳播。微波能量可為脈衝式的或連續波。在一些實施例中,將具有小於100 kW、或1 kW至100 kW、或1 kW至500 kW、或1 kW至1 MW、或10 kW至5 MW、或大於10 kW、或大於100 kW、或大於500 kW、或大於1 MW、或大於2 MW之時間平均功率的微波能量供應至FEWG中。在一些實施例中,FEWG內之壓力為至少0.1個大氣壓,諸如0.9 atm至10 atm。在步驟920中,在沿FEWG之長度的第一位置處將供應氣體提供至該FEWG中,其中大部分供應氣體在微波能量傳播之方向上流動。在步驟930中,在FEWG之長度之至少一部分中於供應氣體中產生電漿。在步驟940處,在位於第一位置下游的第二位置處將製程材料添加至FEWG中。在一些實施例中,大部分製程材料在微波傳播之方向上以大於5 slm之流率流動。Fig. 9 is an exemplary flow chart 900 showing methods for microwave processing of gases that use chemical control in high-efficiency gas reactions using FEWG. In step 910, microwave energy is supplied through a FEWG having a length, wherein the microwave energy propagates in a direction along the FEWG. Microwave energy can be pulsed or continuous wave. In some embodiments, it will have less than 100 kW, or 1 kW to 100 kW, or 1 kW to 500 kW, or 1 kW to 1 MW, or 10 kW to 5 MW, or greater than 10 kW, or greater than 100 kW, Or microwave energy with a time average power greater than 500 kW, or greater than 1 MW, or greater than 2 MW is supplied to the FEWG. In some embodiments, the pressure within the FEWG is at least 0.1 atmospheres, such as 0.9 atm to 10 atm. In step 920, a supply gas is provided into the FEWG at a first position along the length of the FEWG, where most of the supply gas flows in the direction of microwave energy propagation. In step 930, plasma is generated in the supply gas in at least a portion of the length of the FEWG. At step 940, the process material is added to the FEWG at a second location downstream of the first location. In some embodiments, most of the process materials flow at a flow rate greater than 5 slm in the direction of microwave propagation.

可選地,在步驟950中,控制電漿之平均能量以將製程材料轉化成分離組分。平均能量可例如為0.8 eV至20 eV。在一些實施例中,脈衝頻率受控制,其中脈衝頻率大於500 Hz。例如,微波能量之脈衝頻率可為500 Hz至1000 kHz。在一些實施例中,除脈衝頻率之外或代替脈衝頻率,控制脈衝式微波能量之工作循環,其中工作循環小於50%。Optionally, in step 950, the average energy of the plasma is controlled to convert the process materials into separated components. The average energy may be 0.8 eV to 20 eV, for example. In some embodiments, the pulse frequency is controlled, where the pulse frequency is greater than 500 Hz. For example, the pulse frequency of microwave energy can be 500 Hz to 1000 kHz. In some embodiments, in addition to or instead of pulse frequency, the duty cycle of pulsed microwave energy is controlled, wherein the duty cycle is less than 50%.

請注意,圖9中之步驟可以不同於所示順序的順序執行。例如,製程氣體940可在與製程920相同的點添加;亦即,在於步驟930中產生電漿之步驟之前。在另一實例中,步驟950中之電漿能量控制可結合步驟930中之電漿產生來執行。Please note that the steps in Figure 9 can be performed in a different order than shown. For example, the process gas 940 can be added at the same point as the process 920; that is, before the step of generating plasma in step 930. In another example, the plasma energy control in step 950 can be performed in combination with the plasma generation in step 930.

在一些實施例中,製程材料為甲烷,且分離組分包含氫及奈米微粒碳。例如,奈米微粒碳可包括一或多種形式之石墨烯、石墨、碳奈米洋蔥、富勒烯或奈米管。In some embodiments, the process material is methane, and the separated components include hydrogen and nanoparticulate carbon. For example, nanoparticulate carbon may include one or more forms of graphene, graphite, carbon nanoonion, fullerene, or nanotube.

在一些實施例中,在第一位置處將前驅氣體添加至供應氣體,該前驅氣體包含氫氣或惰性氣體。在一些實施例中,分離組分包含H2 ,且分離組分H2 之至少一部分再循環回到第一位置。在此等實施例中,供應氣體包含H2 ,且電漿包含氫電漿。In some embodiments, a precursor gas is added to the supply gas at the first location, the precursor gas including hydrogen or an inert gas. In some embodiments, the separated component comprises H 2 , and at least a portion of the separated component H 2 is recycled back to the first location. In these embodiments, the supply gas includes H 2 , and the plasma includes hydrogen plasma.

在各種實施例中,方法包括在FEWG中提供金屬長絲,該金屬長絲用來降低用於產生電漿之點火電壓。在各種實施例中,方法包括向系統提供一對電極,其中該等電極經組配以將能量添加至FEWG中之所產生之電漿。 實例In various embodiments, the method includes providing a metal filament in the FEWG that is used to reduce the ignition voltage used to generate the plasma. In various embodiments, the method includes providing a pair of electrodes to the system, where the electrodes are configured to add energy to the generated plasma in the FEWG. Instance

在圖10A之簡化等角圖及10B之照片中所示之測試系統上演示了在波導內產生電漿及反應區之概念。圖10A及10B之系統包括進入波導1002的微波能量1001,且電漿係在耦合至波導1002的波導1004之反應腔室部分中產生。所演示系統中之波導之場增強部分包含橫截面積之突然改變1003,而非如先前實施例中所描述之錐形改變。此實例中之波導之反應區部分具有如圖10B之內部平面圖中所示的圓形橫截面。如圖10B中所示,波導1004之反應區亦含有長絲1006,用以進一步增強反應區中之場。此實例中之長絲由鉭、鈦或鎢製成,且用來集中微波能量之電場,從而增加反應區中之電漿密度且輔助進行反應以將製程材料分離成分離組分。The concept of generating plasma and reaction zone in the waveguide is demonstrated on the test system shown in the simplified isometric view of Fig. 10A and the photograph of Fig. 10B. The system of FIGS. 10A and 10B includes microwave energy 1001 entering the waveguide 1002, and plasma is generated in the reaction chamber portion of the waveguide 1004 coupled to the waveguide 1002. The field enhancement portion of the waveguide in the demonstrated system includes a sudden change in cross-sectional area 1003 instead of the tapered change as described in the previous embodiment. The reaction zone portion of the waveguide in this example has a circular cross section as shown in the inner plan view of FIG. 10B. As shown in Figure 10B, the reaction zone of the waveguide 1004 also contains filaments 1006 to further enhance the field in the reaction zone. The filament in this example is made of tantalum, titanium or tungsten, and is used to concentrate the electric field of microwave energy, thereby increasing the plasma density in the reaction zone and assisting the reaction to separate the process materials into separate components.

在此實例中,進入波導1002的微波功率為1 kW至1.5 kW。此實例中之供應氣體為以0.1 slm至1 slm之流率引入至波導1002中的具有各種百分比之氬氣的氫氣,且製程氣體為以0.1 slm至2 slm之流率引入至波導1002中的甲烷。此實例中之分離組分為碳同素異形體之微粒,及氫氣,且在出口1005處被收集。In this example, the microwave power entering the waveguide 1002 is 1 kW to 1.5 kW. The supply gas in this example is hydrogen with various percentages of argon introduced into the waveguide 1002 at a flow rate of 0.1 slm to 1 slm, and the process gas is introduced into the waveguide 1002 at a flow rate of 0.1 slm to 2 slm Methane. The separated components in this example are particles of carbon allotropes and hydrogen, and are collected at the outlet 1005.

雖然已關於本發明之特定實施例詳細描述了本說明書,但應瞭解,熟習此項技術者在獲得對前述內容之理解後,可容易想到此等實施例之替代方案、變化及等效物。在不脫離本發明之範疇的情況下,一般技藝人士可實踐本發明之此等及其他修改及變化。此外,一般技藝人士將瞭解,前述描述僅為舉例說明,且不意欲限制本發明。Although this specification has been described in detail with respect to specific embodiments of the present invention, it should be understood that those skilled in the art can easily think of alternatives, changes, and equivalents to these embodiments after gaining an understanding of the foregoing. Without departing from the scope of the present invention, those of ordinary skill can practice these and other modifications and changes of the present invention. In addition, those skilled in the art will understand that the foregoing description is merely illustrative, and is not intended to limit the present invention.

100、300‧‧‧微波化學處理系統101‧‧‧反應腔室102、202、302、310、602、610、702、710、802‧‧‧入口103、203、303、403、505、603、1005‧‧‧出口104、204、304‧‧‧微波能量源105、1002、1004‧‧‧波導106‧‧‧微波電漿107、607、707‧‧‧微波發射器電路108‧‧‧製程材料109、209、309、501、709、809、1001‧‧‧微波能量200‧‧‧微波化學處理反應器201、301‧‧‧反應區/反應區部分205、305、402、503、504、605、705、805‧‧‧FEWG206‧‧‧微波電漿/電漿207、307‧‧‧微波電路208a‧‧‧供應氣體及/或製程材料208b‧‧‧供應氣體及/或製程材料流210、211‧‧‧壓力障壁212‧‧‧壓力噴氣口306‧‧‧微波電漿308a‧‧‧供應氣體308b‧‧‧供應氣體流311a‧‧‧製程材料311b‧‧‧製程材料流401‧‧‧微波能量發生器502‧‧‧歧管或網狀幾何結構波導600‧‧‧微波氣體處理系統604、704、804‧‧‧微波能量發生器(亦即,微波能量源)620‧‧‧前驅氣體630、632‧‧‧分離組分640‧‧‧導管700、800‧‧‧微波處理系統720、1006‧‧‧長絲806‧‧‧電漿820‧‧‧電子源830‧‧‧電極900‧‧‧示例性流程圖910、920、930、940、950‧‧‧步驟1003‧‧‧橫截面積之突然改變L、LA、LB、L0、L1、L2‧‧‧長度100, 300‧‧‧Microwave chemical processing system 101‧‧‧Reaction chamber 102,202,302,310,602,610,702,710,802‧‧‧Entrance 103,203,303,403,505,603, 1005‧‧‧Exit 104, 204, 304‧‧‧Microwave energy source 105, 1002, 1004‧‧‧ Waveguide 106‧‧‧Microwave plasma 107,607,707‧‧‧Microwave transmitter circuit 108‧‧‧Processing materials 109, 209, 309, 501, 709, 809, 1001‧‧‧Microwave energy 200‧‧‧Microwave chemical treatment reactor 201,301‧‧‧Reaction zone/Reaction zone part 205,305,402,503,504,605 , 705, 805‧‧‧FEWG206‧‧‧Microwave plasma/plasma 207, 307‧‧‧Microwave circuit 208a‧‧‧Supply gas and/or process material 208b‧‧‧Supply gas and/or process material stream 210, 211‧‧‧Pressure barrier 212‧‧‧Pressure jet port 306‧‧‧Microwave plasma 308a‧‧‧Supply gas 308b‧‧‧Supply gas stream 311a‧‧Processing material 311b‧‧‧Processing material stream 401‧‧‧ Microwave energy generator 502‧‧‧Manifold or mesh geometry waveguide 600‧‧‧Microwave gas processing system 604,704,804‧‧‧Microwave energy generator (ie, microwave energy source) 620‧‧‧Precursor gas 630、632‧‧‧Separation component 640‧‧‧Cathode 700,800‧‧‧Microwave processing system 720,1006‧‧‧Filament 806‧‧‧Plasma 820‧‧‧Electron source 830‧‧‧Electrode 900‧ ‧‧Exemplary flowchart 910, 920, 930, 940, 950‧‧‧Step 1003‧‧‧Sudden change of cross-sectional area L, L A , L B , L 0 , L 1 , L 2 ‧‧‧Length

圖1A為習知微波化學處理系統之垂直橫截面。Figure 1A is a vertical cross-section of a conventional microwave chemical processing system.

圖1B至圖1C展示本揭示內容之波導之示例性幾何結構及尺寸。Figures 1B to 1C show exemplary geometric structures and dimensions of the waveguide of the present disclosure.

圖2為根據本揭示內容之一些實施例的微波氣體處理系統之簡化垂直橫截面。Figure 2 is a simplified vertical cross-section of a microwave gas processing system according to some embodiments of the present disclosure.

圖3為根據本揭示內容之進一步實施例的微波氣體處理系統之簡化垂直橫截面。Figure 3 is a simplified vertical cross-section of a microwave gas processing system according to a further embodiment of the present disclosure.

圖4A至圖4D為根據本揭示內容之實施例的具有多個場增強波導及多個微波能量源之微波化學處理系統的方塊圖。4A to 4D are block diagrams of a microwave chemical processing system with multiple field enhancement waveguides and multiple microwave energy sources according to an embodiment of the present disclosure.

圖5A至圖5B為根據本揭示內容之實施例的其中多個場增強波導耦合至一個微波能量發生器之微波化學處理系統的簡圖。5A to 5B are schematic diagrams of a microwave chemical processing system in which a plurality of field-enhancing waveguides are coupled to a microwave energy generator according to an embodiment of the present disclosure.

圖6為根據本揭示內容之實施例的具有前驅氣體輸入之微波氣體處理系統的簡化垂直橫截面。Figure 6 is a simplified vertical cross-section of a microwave gas processing system with precursor gas input according to an embodiment of the present disclosure.

圖7為根據本揭示內容之實施例的具有長絲之微波氣體處理系統的簡化垂直橫截面。Figure 7 is a simplified vertical cross-section of a microwave gas treatment system with filaments according to an embodiment of the present disclosure.

圖8為根據本揭示內容之實施例的微波氣體處理系統之簡化垂直橫截面,其中描繪了電子源及電極。Figure 8 is a simplified vertical cross-section of a microwave gas processing system according to an embodiment of the present disclosure, in which electron sources and electrodes are depicted.

圖9為根據本揭示內容之實施例的用於氣體之微波處理之方法的示例性流程圖。FIG. 9 is an exemplary flowchart of a method for microwave processing of gas according to an embodiment of the present disclosure.

圖10A至圖10B展示用於演示在波導內產生電漿及反應區之概念的測試系統。10A to 10B show the test system used to demonstrate the concept of generating plasma and reaction zone in the waveguide.

200‧‧‧微波化學處理反應器 200‧‧‧Microwave chemical treatment reactor

201‧‧‧反應區/反應區部分 201‧‧‧Reaction zone/Reaction zone part

202‧‧‧供應氣體及/或製程材料入口 202‧‧‧Supply gas and/or process material inlet

203‧‧‧出口 203‧‧‧Exit

204‧‧‧微波能量源 204‧‧‧Microwave energy source

205‧‧‧FEWG 205‧‧‧FEWG

206‧‧‧微波電漿/電漿 206‧‧‧Microwave plasma/plasma

207‧‧‧微波電路 207‧‧‧Microwave circuit

208a‧‧‧供應氣體及/或製程材料 208a‧‧‧Supply gas and/or process materials

208b‧‧‧供應氣體及/或製程材料流 208b‧‧‧Supply gas and/or process material flow

209‧‧‧微波能量 209‧‧‧Microwave energy

210、211‧‧‧壓力障壁 210、211‧‧‧Pressure barrier

212‧‧‧壓力噴氣口 212‧‧‧Pressure jet port

L、LA、LB、L0、L1、L2‧‧‧長度 L, L A , L B , L 0 , L 1 , L 2 ‧‧‧Length

Claims (16)

一種反應器系統,其包含:一微波能量源,其經組配以產生一微波能量;一場增強波導(FEWG),其用以作為一反應腔室並且耦合至該微波能量源,該FEWG包含:一第一橫截面積及一第二橫截面積,該第二橫截面積比該第一橫截面積更遠離該微波能量源;一場增強區,其設置在該第一橫截面積與該第二橫截面積之間並且具有沿該FEWG之長度遞減的一橫截面積,該FEWG進一步包含:一供應氣體入口,其經組配以接收一供應氣體;一反應區,其沿著該FEWG之長度設置在該供應氣體入口的下游並且經組配以響應該供應氣體被該微波能量源激發來產生一電漿;及一製程入口,其位在自該供應氣體入口的下游並且經組配以將一原材料注入該反應區內;一對電極,其位在該FEWG之靠近該反應區的相對立側之外部,該對電極經組配以產生一電場,該電漿與該原材料通過該電場而結合;及一出口,其經組配以輸出由該電漿與該原材料之結合所產生的一碳結構物。 A reactor system includes: a microwave energy source configured to generate microwave energy; a field enhanced waveguide (FEWG) used as a reaction chamber and coupled to the microwave energy source, the FEWG includes: A first cross-sectional area and a second cross-sectional area, the second cross-sectional area is farther from the microwave energy source than the first cross-sectional area; a field enhancement zone, which is set between the first cross-sectional area and the first Between two cross-sectional areas and having a cross-sectional area decreasing along the length of the FEWG, the FEWG further includes: a supply gas inlet configured to receive a supply gas; and a reaction zone along the length of the FEWG The length is set downstream of the supply gas inlet and is configured to generate a plasma in response to the supply gas being excited by the microwave energy source; and a process inlet, which is located downstream from the supply gas inlet and is configured with A raw material is injected into the reaction zone; a pair of electrodes are located outside the opposite sides of the FEWG close to the reaction zone, the pair of electrodes are assembled to generate an electric field, and the plasma and the raw material pass through the electric field And a combination; and an outlet, which is configured to output a carbon structure produced by the combination of the plasma and the raw material. 如請求項1之反應器系統,其中該製程入口位在靠近該電漿處。 Such as the reactor system of claim 1, wherein the process entrance is located close to the plasma. 如請求項1之反應器系統,其中該反應區具有至少約0.1大氣壓的一壓力。 The reactor system of claim 1, wherein the reaction zone has a pressure of at least about 0.1 atmosphere. 如請求項1之反應器系統,其中該供應氣體包含氫、氦或一惰性氣體。 The reactor system of claim 1, wherein the supply gas includes hydrogen, helium or an inert gas. 如請求項1之反應器系統,其中該FEWG的形狀由一個或多個壁所界定。 The reactor system of claim 1, wherein the shape of the FEWG is defined by one or more walls. 如請求項1之反應器系統,其中該製程入口經組配以使該原材料以大於約5標準公升/分鐘(slm)的流率流入該反應區。 The reactor system of claim 1, wherein the process inlet is configured so that the raw material flows into the reaction zone at a flow rate greater than about 5 standard liters per minute (slm). 如請求項1之反應器系統,其中該原材料更包含一氣體、一液體或一膠體分散液。 Such as the reactor system of claim 1, wherein the raw material further comprises a gas, a liquid or a colloidal dispersion. 如請求項1之反應器系統,其中該對電極經組配以在該FEWG內產生一電場。 Such as the reactor system of claim 1, wherein the pair of electrodes are configured to generate an electric field in the FEWG. 如請求項1之反應器系統,其中該對電極至少部分地環繞該FEWG。 The reactor system of claim 1, wherein the pair of electrodes at least partially surround the FEWG. 如請求項1之反應器系統,其中該供應氣體至少被部分地消耗以產生該電漿。 The reactor system of claim 1, wherein the supply gas is at least partially consumed to generate the plasma. 如請求項1之反應器系統,其中該微波能量源經組配以調整該微波能量的一脈衝頻率、一脈衝工作循環、一脈衝形狀或一輸出功率位準中的一或多者。 The reactor system of claim 1, wherein the microwave energy source is configured to adjust one or more of a pulse frequency, a pulse duty cycle, a pulse shape, or an output power level of the microwave energy. 如請求項1之反應器系統,其中該原材料更包含碳質粒子、膠體分散液或複數固體粒子中的任一或多者。 Such as the reactor system of claim 1, wherein the raw material further comprises any one or more of carbon particles, colloidal dispersion liquid or a plurality of solid particles. 如請求項12之反應器系統,其中該等複數固體粒子經組配以與液體形式的水、烷烴、烯烴、快烴、芳族烴、飽和烴或不飽和烴中的任一或多者混合。 Such as the reactor system of claim 12, wherein the plurality of solid particles are mixed with any one or more of water, alkanes, alkenes, fast hydrocarbons, aromatic hydrocarbons, saturated hydrocarbons or unsaturated hydrocarbons in liquid form . 如請求項1之反應器系統,其中該原材料更包含塗在有機材料中之固體無機材料、塗有石墨烯之矽、具有有機或無機材料夾層之複合材料或具有囊封住矽核心之碳層之矽核心中之任一或多者。 Such as the reactor system of claim 1, wherein the raw material further includes a solid inorganic material coated in an organic material, a graphene coated silicon, a composite material with an organic or inorganic material interlayer, or a carbon layer encapsulating the silicon core Any one or more of the silicon cores. 如請求項1之反應器系統,其中該原材料更包含硫、SiH4、三甲鋁、三甲鎵或縮水甘油甲基丙烯酸酯中之任一或多者。 Such as the reactor system of claim 1, wherein the raw material further contains any one or more of sulfur, SiH 4 , trimethylaluminum, trimethylgallium, or glycidyl methacrylate. 如請求項1之反應器系統,其中該電漿經組配以使該原材料在該反應區中轉化成分離組分。 The reactor system of claim 1, wherein the plasma is configured to convert the raw material into separated components in the reaction zone.
TW107102224A 2017-02-09 2018-01-22 Microwave chemical processing reactor TWI732093B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/428,474 US9767992B1 (en) 2017-02-09 2017-02-09 Microwave chemical processing reactor
US15/428,474 2017-02-09
US15/676,649 US10937632B2 (en) 2017-02-09 2017-08-14 Microwave chemical processing reactor
US15/676,649 2017-08-14

Publications (2)

Publication Number Publication Date
TW201841681A TW201841681A (en) 2018-12-01
TWI732093B true TWI732093B (en) 2021-07-01

Family

ID=59828766

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110120986A TWI801894B (en) 2017-02-09 2018-01-22 Microwave chemical processing reactor
TW107102224A TWI732093B (en) 2017-02-09 2018-01-22 Microwave chemical processing reactor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110120986A TWI801894B (en) 2017-02-09 2018-01-22 Microwave chemical processing reactor

Country Status (3)

Country Link
US (2) US9767992B1 (en)
TW (2) TWI801894B (en)
WO (1) WO2018148043A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US11923176B2 (en) 2017-02-09 2024-03-05 Lyten, Inc. Temperature-controlled chemical processing reactor
US9997334B1 (en) 2017-02-09 2018-06-12 Lyten, Inc. Seedless particles with carbon allotropes
US9767992B1 (en) 2017-02-09 2017-09-19 Lyten, Inc. Microwave chemical processing reactor
WO2018169889A1 (en) 2017-03-16 2018-09-20 Lyten, Inc. Carbon and elastomer integration
US10920035B2 (en) 2017-03-16 2021-02-16 Lyten, Inc. Tuning deformation hysteresis in tires using graphene
US11358869B2 (en) 2017-08-08 2022-06-14 H Quest Vanguard, Inc. Methods and systems for microwave assisted production of graphitic materials
WO2019126196A1 (en) 2017-12-22 2019-06-27 Lyten, Inc. Structured composite materials
CN112105922A (en) * 2018-01-04 2020-12-18 利腾股份有限公司 Resonant gas sensor
WO2019143559A1 (en) 2018-01-16 2019-07-25 Lyten, Inc. Microwave transparent pressure barrier
US10472497B2 (en) * 2018-02-28 2019-11-12 Lyten, Inc. Composite materials systems containing carbon and resin
BR112020022105B1 (en) * 2018-04-30 2022-09-13 Lyten, Inc. LITHIUM ION BATTERY AND BATTERY MATERIALS
US11633710B2 (en) 2018-08-23 2023-04-25 Transform Materials Llc Systems and methods for processing gases
US11634323B2 (en) 2018-08-23 2023-04-25 Transform Materials Llc Systems and methods for processing gases
BR112021012136B1 (en) 2018-12-21 2023-10-31 Performance Nanocarbon,Inc. METHOD FOR PRODUCING A GRAPHENE OR GRAPHENE-LIKE MATERIAL
JP7357847B2 (en) * 2019-11-07 2023-10-10 ビー エイチ ティー サービシーズ ピー ティー イー リミテッド Equipment that uses plasma to treat gaseous pollutants
US11623197B2 (en) * 2020-01-23 2023-04-11 Lyten, Inc. Complex modality reactor for materials production and synthesis
US11680012B2 (en) 2020-08-04 2023-06-20 Lyten, Inc. Methods for manufacturing or strengthening carbon-containing glass materials
WO2022046297A1 (en) * 2020-08-31 2022-03-03 Lyten, Inc. Microwave reactor system enclosing a self-igniting plasma
WO2022055609A2 (en) * 2020-08-31 2022-03-17 Lyten, Inc. Reactor system coupled to an energy emitter control circuit
WO2022046296A1 (en) * 2020-08-31 2022-03-03 Lyten, Inc. Temperature-controlled chemical processing reactor
WO2022056008A1 (en) 2020-09-09 2022-03-17 Lyten, Inc. Artificial solid electrolyte interface cap layer for an anode in a li s battery system
CA3186082A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
CN112074071B (en) * 2020-10-05 2024-06-18 四川大学 High-power plasma generating device of multipath microwave source
JP2023548325A (en) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド System and method for the synthesis of spheroidized metal powders
EP4315458A1 (en) 2021-03-31 2024-02-07 Lyten, Inc. Selectively activated metal-air battery
CA3214233A1 (en) 2021-03-31 2022-10-06 Sunil Bhalchandra BADWE Systems and methods for additive manufacturing of metal nitride ceramics
WO2023003893A1 (en) 2021-07-22 2023-01-26 Lyten, Inc. Biofunctionalized three-dimensional (3d) graphene-based field-effect transistor (fet) sensor
US11826718B2 (en) 2021-08-18 2023-11-28 Lyten, Inc. Negative emission, large scale carbon capture during clean hydrogen fuel synthesis
US11613817B2 (en) 2021-08-18 2023-03-28 Lyten, Inc. Negative emission, large scale carbon capture for clean fossil fuel power generation
WO2023023187A1 (en) * 2021-08-18 2023-02-23 Lyten, Inc. Negative emission, large scale carbon capture for clean fossil fuel power generation
CA3230586A1 (en) * 2021-09-03 2023-03-09 Bionaut Labs Ltd. Hydrogel-matrix encapsulated oligonucleotides and methods for formulating and using encapsulated oligonucleotides
CN114506813A (en) * 2022-03-01 2022-05-17 中能氢储(北京)能源工程研究院有限责任公司 Graphene hydrogen storage device and control method thereof
WO2023168263A1 (en) 2022-03-04 2023-09-07 Lyten, Inc. Cement compositions with 3d graphene carbons
US11433369B1 (en) 2022-05-09 2022-09-06 Lyten, Inc. Fluidized bed reactors for post-processing powdered carbon
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
GB2620597A (en) * 2022-07-12 2024-01-17 Levidian Nanosystems Ltd Apparatus and method for producing graphene and hydrogen
CN115261776B (en) * 2022-07-22 2024-04-09 西安空间无线电技术研究所 Method for inhibiting secondary electron emission of microwave component material based on plasma fluorination
WO2024118412A1 (en) 2022-12-01 2024-06-06 Lyten, Inc. Hybrid gel polymer electrolytes and catholytes for lithium-sulfur batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051248A1 (en) * 2011-10-07 2013-04-11 東京エレクトロン株式会社 Plasma processing apparatus
TW201626429A (en) * 2014-12-25 2016-07-16 Tokyo Electron Ltd Plasma processing device and plasma processing method

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706445A (en) 1971-09-30 1972-12-19 Granco Equipment Fume incinerator
US6914556B1 (en) 1977-05-31 2005-07-05 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for magnetron coherence
FR2572847B1 (en) 1984-11-06 1986-12-26 Commissariat Energie Atomique METHOD AND DEVICE FOR IGNITION OF A MICROWAVE ION SOURCE
US5324553A (en) 1993-04-30 1994-06-28 Energy Conversion Devices, Inc. Method for the improved microwave deposition of thin films
US5556475A (en) 1993-06-04 1996-09-17 Applied Science And Technology, Inc. Microwave plasma reactor
US5515011A (en) 1993-08-02 1996-05-07 Litton Systems Inc. Pulsed magnetron circuit with phase locked loop
US5572866A (en) 1994-04-29 1996-11-12 Environmental Thermal Oxidizers, Inc. Pollution abatement incinerator system
GB9414561D0 (en) 1994-07-19 1994-09-07 Ea Tech Ltd Method of and apparatus for microwave-plasma production
US5693173A (en) 1994-12-21 1997-12-02 Chorus Corporation Thermal gas cracking source technology
US5793013A (en) * 1995-06-07 1998-08-11 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
DE69703649T2 (en) 1996-02-06 2001-08-02 E.I. Du Pont De Nemours And Co., Wilmington TREATMENT OF DEAGGLOMERIZED PARTICLES WITH PLASMA-ACTIVATED SPECIES
FR2751830B1 (en) 1996-07-23 1998-10-23 Prolabo Sa DEVICE FOR CARRYING OUT MICROWAVE CHEMICAL REACTIONS ON A LARGE QUANTITY OF PRODUCTS
FR2762748B1 (en) * 1997-04-25 1999-06-11 Air Liquide SURFACE WAVE PLASMA GAS EXCITATION DEVICE
WO1999012184A2 (en) 1997-09-05 1999-03-11 Alcad Pro, Inc. Microwave power applicator for generating reactive chemical species from gaseous reagent species
US6224736B1 (en) 1998-01-27 2001-05-01 Canon Kabushiki Kaisha Apparatus and method for forming thin film of zinc oxide
US6340912B1 (en) 1998-07-02 2002-01-22 Raytheon Company Solid state magnetron switcher
US6383301B1 (en) 1998-08-04 2002-05-07 E. I. Du Pont De Nemours And Company Treatment of deagglomerated particles with plasma-activated species
JP4107736B2 (en) 1998-11-16 2008-06-25 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
WO2001009031A1 (en) 1999-07-29 2001-02-08 David Systems Technology, S.L. Plasma transformer for the transformation of fossil fuels into hydrogen-rich gas
JP2001122690A (en) 1999-10-26 2001-05-08 Toyo Kohan Co Ltd Microwave plasma cvd device and method of forming diamond thin film
FR2815888B1 (en) * 2000-10-27 2003-05-30 Air Liquide PLASMA GAS TREATMENT DEVICE
BR0116092B1 (en) 2000-12-13 2009-08-11 compact fuel processor to convert a hydrocarbon fuel feed into a hydrogen rich gas.
JP4595276B2 (en) 2000-12-25 2010-12-08 東洋製罐株式会社 Microwave plasma processing method and apparatus
US6761796B2 (en) * 2001-04-06 2004-07-13 Axcelis Technologies, Inc. Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing
JP4109952B2 (en) 2001-10-04 2008-07-02 キヤノン株式会社 Method for producing nanocarbon material
WO2003066516A2 (en) 2001-11-14 2003-08-14 Blacklight Power, Inc. Hydrogen power, plasma, and reactor for lasing, and power conversion
AU2002352814A1 (en) 2001-11-20 2003-06-10 Andrew R. Barron Coated fullerenes, composites and dielectrics made therefrom
US20040265211A1 (en) 2001-12-14 2004-12-30 Dillon Anne C. Hot wire production of single-wall carbon nanotubes
CA2365785A1 (en) 2001-12-19 2003-06-19 Louis Obidniak Pyrolysis system
JP4020679B2 (en) 2002-04-09 2007-12-12 シャープ株式会社 Plasma process equipment
US7227097B2 (en) 2002-05-08 2007-06-05 Btu International, Inc. Plasma generation and processing with multiple radiation sources
US7497922B2 (en) * 2002-05-08 2009-03-03 Btu International, Inc. Plasma-assisted gas production
AU2003251444A1 (en) 2002-07-23 2004-02-09 Iplas Gmbh Plasma reactor for carrying out gas reactions and method for the plasma-supported reaction of gases
US6805779B2 (en) 2003-03-21 2004-10-19 Zond, Inc. Plasma generation using multi-step ionization
US20060233699A1 (en) 2003-04-15 2006-10-19 Mills Randell L Plasma reactor and process for producing lower-energy hydrogen species
GB0309932D0 (en) * 2003-04-30 2003-06-04 Boc Group Plc Apparatus and method for forming a plasma
JP4255061B2 (en) 2003-05-23 2009-04-15 財団法人浜松科学技術研究振興会 Microwave plasma generation method and microwave plasma generation apparatus
US7261779B2 (en) 2003-06-05 2007-08-28 Lockheed Martin Corporation System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
US20050003247A1 (en) 2003-07-01 2005-01-06 Ai-Quoc Pham Co-production of hydrogen and electricity using pyrolysis and fuel cells
US7981396B2 (en) 2003-12-03 2011-07-19 Honda Motor Co., Ltd. Methods for production of carbon nanostructures
JP2005235464A (en) 2004-02-17 2005-09-02 Toshio Goto Plasma generator
JP4716457B2 (en) 2004-03-19 2011-07-06 独立行政法人科学技術振興機構 Microwave plasma sterilization apparatus and sterilization method using the same
JP4204505B2 (en) 2004-03-31 2009-01-07 日本高周波株式会社 Magnetron oscillator
JP4693470B2 (en) 2004-04-12 2011-06-01 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery
GB2442990A (en) * 2004-10-04 2008-04-23 C Tech Innovation Ltd Microwave plasma apparatus
FR2880236B1 (en) 2004-12-23 2007-03-30 Air Liquide MICROWAVE PLASMA EXCITATORS
JP4718189B2 (en) 2005-01-07 2011-07-06 東京エレクトロン株式会社 Plasma processing method
DE502005002744D1 (en) 2005-02-10 2008-03-20 Electrovac Ag Process and apparatus for the production of hydrogen
US20060185595A1 (en) 2005-02-23 2006-08-24 Coll Bernard F Apparatus and process for carbon nanotube growth
US7833505B2 (en) 2005-04-13 2010-11-16 Continental Carbon Company Methods and systems for synthesis on nanoscale materials
EP1712522A1 (en) 2005-04-14 2006-10-18 Robert Prof. Dr. Schlögl Nanosized carbon material-activated carbon composite
CN100352793C (en) 2006-01-20 2007-12-05 杨鸿生 Groove waveguide microwave chemical reaction equipment for ethene preparation by natural gas and preparation method thereof
US7589470B2 (en) * 2006-01-31 2009-09-15 Dublin City University Method and apparatus for producing plasma
US20070243713A1 (en) * 2006-04-12 2007-10-18 Lam Research Corporation Apparatus and method for generating activated hydrogen for plasma stripping
US7588746B1 (en) 2006-05-10 2009-09-15 University Of Central Florida Research Foundation, Inc. Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons
US8075869B2 (en) 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
FI120450B (en) 2007-03-21 2009-10-30 Beneq Oy Apparatus for producing nanotubes
DE102007028293B4 (en) * 2007-06-20 2009-09-03 Universität Augsburg Plasma reactor, its use and process for producing monocrystalline diamond films
EP2086285A1 (en) 2008-02-01 2009-08-05 Anton Paar GmbH Applicator and Apparatus for heating samples by microwave radiation
DE602008005858D1 (en) 2008-03-20 2011-05-12 Univ Ruhr Bochum Method for controlling ion energy in radio frequency plasmas
US8257867B2 (en) 2008-07-28 2012-09-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
US7923491B2 (en) 2008-08-08 2011-04-12 Exxonmobil Chemical Patents Inc. Graphite nanocomposites
US8216541B2 (en) 2008-09-03 2012-07-10 Nanotek Instruments, Inc. Process for producing dispersible and conductive nano graphene platelets from non-oxidized graphitic materials
DE102008053027A1 (en) 2008-10-24 2010-04-29 Kme Germany Ag & Co. Kg Method for producing a coating comprising carbon nanotubes, fullerenes and / or graphene
GB0902784D0 (en) 2009-02-19 2009-04-08 Gasplas As Plasma reactor
US9051185B2 (en) 2009-03-26 2015-06-09 Northeastern University Carbon nanostructures from pyrolysis of organic materials
JP2011034795A (en) 2009-07-31 2011-02-17 Hitachi Ltd Microwave irradiation system
US9545609B2 (en) 2009-08-13 2017-01-17 Tekgar, Llv Pyrolysis oil made with a microwave-transparent reaction chamber for production of fuel from an organic-carbon-containing feedstock
WO2011029144A1 (en) 2009-09-10 2011-03-17 The University Of Western Australia A process for producing hydrogen from hydrocarbons
US9441076B2 (en) 2009-11-12 2016-09-13 The Trustees Of Princeton University Multifunctional graphene-silicone elastomer nanocomposite, method of making the same, and uses thereof
EP2602356A1 (en) * 2010-08-06 2013-06-12 Mitsubishi Heavy Industries, Ltd. Vacuum processing apparatus and plasma processing method
US8691441B2 (en) 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
TWI465158B (en) 2011-01-12 2014-12-11 Ind Tech Res Inst A microwave-excited plasma device
EP2674396B1 (en) 2011-02-10 2016-07-20 National Institute of Advanced Industrial Science And Technology Method for producing graphene
JP5921241B2 (en) * 2011-03-10 2016-05-24 国立大学法人名古屋大学 Plasma generating apparatus, plasma processing apparatus, and plasma processing method
GB2490355B (en) 2011-04-28 2015-10-14 Gasplas As Method for processing a gas and a device for performing the method
CN103262663B (en) 2011-04-28 2016-12-14 住友理工株式会社 Microwave plasma generation and the magnetron sputtering film formation device of this device of employing
US8653911B2 (en) * 2011-07-22 2014-02-18 Triple Cores Korea Atmospheric plasma equipment and waveguide for the same
US8808507B2 (en) 2011-08-02 2014-08-19 Scandinavian Biofuel Company As Microwave assisted flash pyrolysis system and method using the same
US9455094B2 (en) 2011-11-18 2016-09-27 William Marsh Rice University Graphene-carbon nanotube hybrid materials and use as electrodes
US8734683B2 (en) 2011-11-29 2014-05-27 Xerox Corporation Graphene nano-sheets and methods for making the same
US20130150516A1 (en) 2011-12-12 2013-06-13 Vorbeck Materials Corp. Rubber Compositions Comprising Graphene and Reinforcing Agents and Articles Made Therefrom
US9862892B2 (en) 2012-02-21 2018-01-09 Battelle Memorial Institute Heavy fossil hydrocarbon conversion and upgrading using radio-frequency or microwave energy
US9059466B2 (en) 2012-03-22 2015-06-16 Chun-Chieh Chang Direct synthesis of lithium ion battery electrode materials using graphene treated raw materials as the reactant
US8968588B2 (en) 2012-03-30 2015-03-03 Tokyo Electron Limited Low electron temperature microwave surface-wave plasma (SWP) processing method and apparatus
US20130296479A1 (en) 2012-05-03 2013-11-07 Ppg Industries Ohio, Inc. Rubber formulations including graphenic carbon particles
KR101413237B1 (en) 2012-05-21 2014-06-27 한국과학기술연구원 Elastomer with high dielectric properties and fabrication method therof
TWI638770B (en) 2012-09-18 2018-10-21 美商艾克頌美孚上游研究公司 Reactor system for the production of carbon allotropes
EP2719270A1 (en) 2012-10-11 2014-04-16 BYK-Chemie GmbH Coating compound and use
DE102012111900A1 (en) 2012-12-06 2014-06-26 Krones Ag Apparatus and method for cracking gases
GB2514312B (en) 2012-12-13 2016-08-31 Future Blends Ltd Filter and process for producing liquid products from biomass pyrolysis products
JP5725574B2 (en) 2013-03-05 2015-05-27 東京エレクトロン株式会社 Microwave waveguide device, plasma processing apparatus, and plasma processing method
US9427821B2 (en) 2013-03-15 2016-08-30 Agilent Technologies, Inc. Integrated magnetron plasma torch, and related methods
US9564630B2 (en) 2013-08-08 2017-02-07 Nantek Instuments, Inc. Anode active material-coated graphene sheets for lithium batteries and process for producing same
KR101540067B1 (en) 2013-09-12 2015-07-30 한국과학기술연구원 Elastomer-conductive filler composites for flexible electronic materials and a method for preparation thereof
KR101800486B1 (en) 2013-12-06 2017-11-22 주식회사 엘지화학 Composite having improved conductivity and plastics comprising same
US9711256B2 (en) 2013-12-24 2017-07-18 Cheorwon Plasma Research Institute Graphene-nano particle composite having nanoparticles crystallized therein at a high density
GB201405614D0 (en) 2014-03-28 2014-05-14 Perpetuus Res & Dev Ltd Particles
CA2947776C (en) 2014-06-06 2022-06-28 Group Nanoxplore Inc. Large scale production of thinned graphite, graphene, and graphite-graphene composites
GB201410639D0 (en) 2014-06-13 2014-07-30 Fgv Cambridge Nanosystems Ltd Apparatus and method for plasma synthesis of graphitic products including graphene
GB201410703D0 (en) 2014-06-16 2014-07-30 Element Six Technologies Ltd A microwave plasma reactor for manufacturing synthetic diamond material
PL3164207T3 (en) 2014-07-03 2019-05-31 Coolbrook Oy Process and rotary machine type reactor
US20180327611A1 (en) 2014-07-30 2018-11-15 Vorbeck Materials Corp. Conductive compositions
JP2018512355A (en) 2015-02-27 2018-05-17 イメリス グラファイト アンド カーボン スイッツァランド リミティド Nanoparticle surface-modified carbonaceous material and method for producing such material
CN105870419B (en) 2016-05-25 2018-04-13 广东石油化工学院 A kind of preparation method and applications of graphene/fullerene composite nano materials
CN106398802A (en) 2016-09-07 2017-02-15 济南大学 Rapid laser preparing method for composite with graphene loaded with spherical inorganic fullerene molybdenum disulfide
JP2019531189A (en) 2016-10-06 2019-10-31 ライテン・インコーポレイテッドLyten, Inc. Microwave reactor system by gas-solid separation
US9767992B1 (en) 2017-02-09 2017-09-19 Lyten, Inc. Microwave chemical processing reactor
US9862606B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Carbon allotropes
US9862602B1 (en) 2017-03-27 2018-01-09 Lyten, Inc. Cracking of a process gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051248A1 (en) * 2011-10-07 2013-04-11 東京エレクトロン株式会社 Plasma processing apparatus
TW201626429A (en) * 2014-12-25 2016-07-16 Tokyo Electron Ltd Plasma processing device and plasma processing method

Also Published As

Publication number Publication date
WO2018148043A1 (en) 2018-08-16
TW202135930A (en) 2021-10-01
US9767992B1 (en) 2017-09-19
TWI801894B (en) 2023-05-11
TW201841681A (en) 2018-12-01
US20180226229A1 (en) 2018-08-09
US10937632B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
TWI732093B (en) Microwave chemical processing reactor
TWI730195B (en) Microwave chemical processing
US11923176B2 (en) Temperature-controlled chemical processing reactor
US11107662B2 (en) Reactor system coupled to an energy emitter control circuit
US11358869B2 (en) Methods and systems for microwave assisted production of graphitic materials
JP4825846B2 (en) Carbon nanotube production equipment
US8028654B2 (en) Planar controlled zone microwave plasma system
US20200040444A1 (en) Plasma spray systems and methods
KR20140045112A (en) Apparatus for generating and transferring chemical radicals
WO2022055609A2 (en) Reactor system coupled to an energy emitter control circuit
WO2022046296A1 (en) Temperature-controlled chemical processing reactor
JPH06128756A (en) Device for forming fine-particle film
CZ20002797A3 (en) Device for producing a free cold plasma jet