JPS63103804A - Apparatus for producing ultrafine powder film of oxide - Google Patents

Apparatus for producing ultrafine powder film of oxide

Info

Publication number
JPS63103804A
JPS63103804A JP25122586A JP25122586A JPS63103804A JP S63103804 A JPS63103804 A JP S63103804A JP 25122586 A JP25122586 A JP 25122586A JP 25122586 A JP25122586 A JP 25122586A JP S63103804 A JPS63103804 A JP S63103804A
Authority
JP
Japan
Prior art keywords
substrate
plasma
semiconductor
metal
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25122586A
Other languages
Japanese (ja)
Inventor
Makoto Nagasawa
誠 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25122586A priority Critical patent/JPS63103804A/en
Publication of JPS63103804A publication Critical patent/JPS63103804A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state

Abstract

PURPOSE:To produce ultrafine powder film of an oxide having improved adhesivity to substrate plate using a small-sized high-performance apparatus, by oxidizing vapor of ultrafine metal or semiconductor powder in a plasma oxidizing region and colliding the oxidized vapor particles against a substrate plate at a speed faster than a specific level. CONSTITUTION:A raw material 5 composed of a metal of a semiconductor is put into a heat-insulated ceramic boat 4 in an evaporation chamber 1, the evaporation chamber 1 and a film-forming chamber 2 are evacuated and the film-forming chamber 2 is maintained under a pressure lower than the pressure in the evaporation chamber 1 by one or two orders. A plasma jet produced by using an inert gas, a reducing gas or a mixture of inert gas and reducing gas is radiated from a plasma jet apparatus 3 against the raw material to thermally melt the raw material and generate the vapor of ultrafine powder of the raw material 5. The vapor oxidized with a high-frequency plasma is accelerated to a jet having a prescribed speed by a nozzle 9 and made to collide against a substrate plate 11 placed on a water-cooled rotary table 12. An ultrafine powder film having strong adhesivity can be formed on the substrate plate.

Description

【発明の詳細な説明】 (発明の属する技術分野) この発明は、ガスセンサなどの使用に供される金属ある
いは半導体の酸化物超微粉膜の製造装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to an apparatus for producing ultrafine metal or semiconductor oxide powder films used in gas sensors and the like.

(従来技術とその問題点) 金属酸化物あるいは半導体酸化物の超微粉膜は、近年、
新素材、ガスセンサなどの新機能性材料として注目され
ており、その大半が有機金属から溶液中にて金属あるい
は半導体の酸化物または水酸化物を遊離せしめるアルコ
キシド法などの湿式法で作られている。しかしこのよう
な湿式法でつくられた超微粉は、使用目的に応じ、洗滌
、乾燥のほか、シートに塗布する際にバインダと混ぜあ
わせる混練などの処理を必要とし、多大な時間とエネル
ギとを要していた。このような問題を解決するため、た
とえば、特公昭59−43988号に示されるような、
超微粉の乾式生成、成膜法が提案されている。しかし、
この方法においては、前述のような問題点は解決される
が、他方、(1)金属の加熱蒸発に抵抗加熱を用いてい
ることから融点の高い高融点材料には適さない、(2)
原料金属がおかれる真空容器内にプラズマを発生させる
ための高周波コイルが配されているため、この高周波コ
イルの内側でプラズマ化され金属や半導体の蒸気と結合
して金属や半導体の酸化物や窒化物や炭化物をつくる原
料ガスがコイルの外側でもプラズマ化されて余分な電力
が消費される、(3)蒸発した金属あるいは半導体の超
微粉が高周波コイルに付着する結果、高周波コイルの機
能を低下せしめる、(4)プラズマを発生させるための
高周波コイルが真空容器内に収容されるため真空の容積
が大きくなり、大きい真空機器を必要とする、(5)加
熱溶融により発生した金属あるいは半導体の蒸気中、成
膜には数%しか使用されず残りの蒸気は無駄になる、(
6)超微粉粒子と基板表面との間の付着力が弱い、など
の問題点があった。
(Prior art and its problems) Ultrafine powder films of metal oxides or semiconductor oxides have been developed in recent years.
They are attracting attention as new functional materials such as new materials and gas sensors, and most of them are made using wet methods such as the alkoxide method, which liberates metal or semiconductor oxides or hydroxides from organic metals in solution. . However, depending on the purpose of use, ultrafine powder produced by such a wet method requires processing such as washing, drying, and kneading to mix it with a binder before applying it to a sheet, which takes a lot of time and energy. It was necessary. In order to solve such problems, for example, as shown in Japanese Patent Publication No. 59-43988,
Dry production of ultrafine powder and film formation methods have been proposed. but,
Although this method solves the above-mentioned problems, (1) it is not suitable for high melting point materials because it uses resistance heating to vaporize the metal; (2) it is not suitable for high melting point materials;
A high-frequency coil for generating plasma is placed inside the vacuum container in which the raw metal is placed, so it becomes plasma inside the high-frequency coil and combines with the vapor of the metal or semiconductor to form oxides and nitrides of the metal or semiconductor. The raw material gas that creates substances and carbides is turned into plasma even outside the coil, consuming excess power. (3) Evaporated ultrafine metal or semiconductor powder adheres to the high-frequency coil, reducing its functionality. (4) The high-frequency coil for generating plasma is housed in a vacuum container, which increases the vacuum volume and requires large vacuum equipment. (5) In the vapor of metal or semiconductor generated by heating and melting. , only a few percent of the vapor is used for film formation and the remaining vapor is wasted.
6) There were problems such as weak adhesion between the ultrafine powder particles and the substrate surface.

(発明の目的) この発明は前述した問題点に鑑みてなされたもので、高
融点材料にも適用が容易であり、かつ小形、高性能にし
て基板への超微粉膜の付着力が強い乾式の酸化物超微粉
膜生成装置を提供することを目的とする。
(Object of the Invention) This invention was made in view of the above-mentioned problems, and is a dry method that can be easily applied to high-melting point materials, is small, has high performance, and has strong adhesion of an ultrafine powder film to a substrate. The purpose of the present invention is to provide an apparatus for producing an ultrafine oxide powder film.

(発明の要点) この発明は、真空中で金属または半導体を加熱蒸発させ
て、この金属または半導体の蒸気を酸化し、基板上に酸
化物超微粉膜を形成する装置において、数千度のガス温
度が容易に得られるプラズマジェット装置を真空中での
金属または半導体の加熱溶融に利用するとともに、この
加熱溶融によきな超微粉膜が形成されることに着目し、
容易に付着力の強い酸化物超微粉膜を製造することがで
きる製造装置を得ようとするものである。すなわち、酸
化物とすべき金属または半導体を真空中で加熱溶融する
ことにより超微粉状の金属または半導体の蒸気を発生す
るためのプラズマジェット装置と、このプラズマジェッ
ト装置を安定に運転するために都合のよい圧力に保持さ
れ前記金属または半導体が配される第1の真空容器と、
この金属または半導体の酸化物超微粉膜が形成されるべ
き基板と該基板が載置される載置台とが配され前記第1
の真空容器よりも容器内が低い圧力に保たれる第2の真
空容器と、前記第1の真空容器がら第2の真空容器へそ
の圧力差により前記金属あるいは半導体の蒸気を移送す
るための移送管路を構成するとともに該管路中でこの蒸
気を酸化するために該管路へ酸素を導入するための酸素
導入管路を備え、かつ導入された酸素をプラズマ化する
ための高周波コイルが前記移送管路の外周側に巻かれた
プラズマ酸化部と、および前記基板上にこの移衝 道管路中で酸化した蒸気を所定の速度で賽突させるため
のノズルとを用いて製造装置を構成し、高融点材料を含
む金属または半導体の、基板への付着力が強い酸化物超
微粉膜を容易にかつ効率よく形成できる小形の製造装置
を得ようとするものである。
(Summary of the Invention) This invention is an apparatus for heating and vaporizing a metal or semiconductor in a vacuum, oxidizing the metal or semiconductor vapor, and forming an ultrafine oxide powder film on a substrate. In addition to utilizing a plasma jet device that can easily obtain a temperature for heating and melting metals or semiconductors in a vacuum, we focused on the fact that a fine ultrafine powder film is formed by this heating and melting.
The object of the present invention is to provide a manufacturing apparatus that can easily manufacture an ultrafine oxide powder film with strong adhesion. In other words, a plasma jet device for generating ultrafine metal or semiconductor vapor by heating and melting a metal or semiconductor to be made into an oxide in a vacuum, and a method for stably operating this plasma jet device. a first vacuum vessel held at a convenient pressure and in which the metal or semiconductor is placed;
A substrate on which the metal or semiconductor oxide ultrafine powder film is to be formed and a mounting table on which the substrate is placed are arranged, and the first
a second vacuum container whose interior is maintained at a lower pressure than the vacuum container; and a transfer for transferring the vapor of the metal or semiconductor from the first vacuum container to the second vacuum container by the pressure difference therebetween. The high-frequency coil is provided with an oxygen introduction pipe for introducing oxygen into the pipe in order to configure the pipe and to oxidize the vapor in the pipe, and to convert the introduced oxygen into plasma. A manufacturing apparatus is configured using a plasma oxidation section wound around the outer circumference of the transfer pipe, and a nozzle for causing the vapor oxidized in the transfer pipe to collide onto the substrate at a predetermined speed. However, it is an object of the present invention to provide a small-sized manufacturing apparatus that can easily and efficiently form an ultrafine oxide powder film of a metal or semiconductor containing a high melting point material that has strong adhesion to a substrate.

(発明の実施例) 第1図に本発明によって構成される金属または半導体の
酸化物超微粉膜製造装置の一実施例を示す。この装置は
プラズマジェットを発生してこれにより原料の金属また
は半導体の加熱溶融を行なうプラズマジェット装置t3
と芥金属あるいは半導体の原料5を配した第1の真空容
器である蒸発室1と蓼後述する第2の真空容器である成
膜室2へこの原料5の蒸気を移送するための移送管路を
形成する石英管7と、前記蒸気を酸化するための酸素を
移送管路に導くための酸素導入管路13と、石英管7の
外周側に巻かれ導入された醐素をプラズマ化して効率よ
く金属あるいは半導体蒸気と結合させる高周波フィル8
とからなるプラズマ酸化部20と蓼この酸化された超微
粉を成膜すべき基板11とこの基板の載置台である水冷
の回転テーブル12とが配され蒸発室lよりも低い圧力
に保持される第2の真空容器である成膜室2と1基板1
1上に前記蒸気を所定の速度以上で衝突させるためのノ
ズル9と蓼からなっている。このように構成された装置
における酸化物超微粉膜の生成過程はつぎの通りである
(Embodiment of the Invention) FIG. 1 shows an embodiment of a metal or semiconductor oxide ultrafine powder film manufacturing apparatus constructed according to the present invention. This device is a plasma jet device t3 that generates a plasma jet and thereby heats and melts the raw material metal or semiconductor.
A transfer pipe line for transferring the vapor of the raw material 5 to an evaporation chamber 1 which is a first vacuum container in which a metal or semiconductor raw material 5 is arranged, and a film forming chamber 2 which is a second vacuum container to be described later. a quartz tube 7 to form a gas, an oxygen introduction conduit 13 for introducing oxygen to the transfer conduit for oxidizing the steam, and an oxygen introducing conduit 13 for introducing oxygen into the transfer conduit to oxidize the steam; High frequency filter 8 that is well combined with metal or semiconductor vapor
A plasma oxidation unit 20 consisting of a plasma oxidation unit 20, a substrate 11 on which the oxidized ultrafine powder is to be deposited, and a water-cooled rotary table 12 as a mounting table for this substrate are arranged and maintained at a pressure lower than that of the evaporation chamber l. Film forming chamber 2, which is the second vacuum container, and 1 substrate 1
It consists of a nozzle 9 and a nozzle for causing the steam to collide with the steam at a predetermined speed or higher. The process of producing an ultrafine oxide powder film in the apparatus configured as described above is as follows.

蒸発室l内の原料となる金属または半導体を保持するた
めの断熱性セラミックポート4に原料5を入れ、蒸発室
1および成膜室2を排気し成膜室2を蒸発室lより1〜
2桁程度低い圧力とする。
The raw material 5 is put into the adiabatic ceramic port 4 for holding the raw material metal or semiconductor in the evaporation chamber 1, the evaporation chamber 1 and the film-forming chamber 2 are evacuated, and the film-forming chamber 2 is opened from the evaporation chamber 1 to
The pressure should be about two orders of magnitude lower.

さらにプラズマジェット装置3から、Ar、 Heなど
の不活性ガスやH,のような還元ガス、あるいはこれら
不活性ガスと還元ガスとの混合ガスをプラズマの原料ガ
スとするプラズマジェットを原料5に照射して原料5を
加熱溶融し、原料5の超微粉状の蒸気を発生させる。こ
の場合、プラズマジェットを発生させるための電源は直
流電源として、すなわちプラズマジェット装置を直流ト
ーチとしてプラズマ電流の脈動、従って蒸気発生の脈動
を防止してより均一な成膜を図るようにする。このよう
にして発生した蒸気は蒸発室1と成膜室2との圧力差に
より前記原料ガスとともに石英管7を蒸発室1側から成
膜室2側へ流れる。この石英管7の速中で酸素ガスを酸
素導入管路13から前記蒸気中へ導入して蒸気と混合し
、高周波コイル8に例えば13.56 MHz  のよ
うな高周波電圧を印加すると石英管7中に蒸気を酸化す
るための高周波プラズマが形成される。この高周波プラ
ズマで酸化された蒸気はノズル9により所定の速度の噴
流となり、水冷の回転テーブル12に載置された基板1
1上に衝突堆積して基板上に付着力の強い超微粉膜を形
成する。なお、基板11を載置する載置台を水冷の回転
テーブルとする理由はつぎの通りである。すなわち、ま
ず、水冷として基板を冷却することにより、(1)膜厚
のむらを防止することができる、(2)膜を形成する粒
子の大きさのばらつきを防止することができる、(3)
膜の成長速度を速くすることができる。基板が冷却され
ていないと膜の成長速度がおそくなり酸化された超微粉
が成膜されずに逃げてしまい、成膜効率が低下する。つ
ぎに、回転テーブルとすることにより、ノズルから噴出
された、酸化された蒸気の焔が基板面でゆらいでも、テ
ーブルを回転させながらテーブルを該テーブルの面内で
直線方向に移動させることにより基板上に一様な成膜を
得ることが可能になる。
Furthermore, the raw material 5 is irradiated with a plasma jet from the plasma jet device 3 using an inert gas such as Ar or He, a reducing gas such as H, or a mixed gas of these inert gases and reducing gas as the plasma raw material gas. The raw material 5 is heated and melted to generate ultrafine powder vapor of the raw material 5. In this case, the power source for generating the plasma jet is a DC power source, that is, the plasma jet device is used as a DC torch to prevent pulsations in the plasma current and, therefore, in vapor generation, thereby achieving more uniform film formation. The vapor thus generated flows through the quartz tube 7 from the evaporation chamber 1 side to the film formation chamber 2 side together with the source gas due to the pressure difference between the evaporation chamber 1 and the film formation chamber 2. Oxygen gas is introduced into the steam from the oxygen introducing pipe 13 in the quartz tube 7 and mixed with the steam, and when a high frequency voltage such as 13.56 MHz is applied to the high frequency coil 8, the inside of the quartz tube 7 is heated. A high frequency plasma is formed to oxidize the vapor. The steam oxidized by this high-frequency plasma is turned into a jet stream at a predetermined speed by a nozzle 9, and the substrate 1 placed on a water-cooled rotary table 12 is
1 to form a highly adhesive ultrafine powder film on the substrate. The reason why the mounting table on which the substrate 11 is placed is a water-cooled rotary table is as follows. That is, first, by cooling the substrate with water, (1) it is possible to prevent unevenness in film thickness, (2) it is possible to prevent variations in the size of particles forming the film, and (3) it is possible to prevent variations in the size of particles forming the film.
The growth rate of the film can be increased. If the substrate is not cooled, the growth rate of the film will be slow and the oxidized ultrafine powder will escape without being formed into a film, reducing the film formation efficiency. Next, by using a rotating table, even if the flame of oxidized steam ejected from the nozzle flickers on the substrate surface, the table can be moved linearly within the surface of the table while rotating the table. It becomes possible to obtain a uniform film formation on the top.

、 このようにして得られる超微粉膜の膜厚をより正確
に制御するためには第1図中に示すシャッタ10を用い
るが、膜厚制御のためだけであれば、通常はこのシャッ
タ10はなくてもよい。しかし、このシャッタを用いて
基板面への蒸気の衝突を随時阻止することができれば、
回転テーブルに載置された複数の基板への成膜完了後、
別の回転テーブルに載置された、未成膜の複数基板への
成膜すなわちバッチ処理が容易に可能となるというメリ
ットが生ずる。
In order to more accurately control the thickness of the ultrafine powder film obtained in this way, a shutter 10 shown in FIG. You don't have to. However, if this shutter could be used to prevent vapor from colliding with the substrate surface at any time,
After completing the film formation on multiple substrates placed on the rotary table,
There is an advantage that film formation on a plurality of unformed substrates placed on another rotary table, that is, batch processing can be easily performed.

この装置で製造した酸化物超微粒子膜を走査電子顕微鏡
で観察したところ、−次粒子径が100〜150Aの一
様な膜であった。
When the ultrafine oxide particle film produced with this apparatus was observed with a scanning electron microscope, it was found to be a film with a uniform particle diameter of 100 to 150A.

(発明の効果) 以上に述べたように、本発明によれば、原料の金属ある
いは半導体を加熱蒸発させる熱源としてプラズマジェッ
トを用いたので、融点の高い金属あるいは半導体材料の
酸化物超微粒子膜を容易に形成することができる。また
、本発明の製造装置においては、加熱蒸発した金属ある
いは半導体の蒸気とプラズマ化されて金属あるいは半導
体の蒸気と結合する醐素を含む気体とは、ともにプラズ
マ酸化部の移送管路内の内側のみにあるから、従来のよ
うに、プラズマ室の外側にも金属あるいは半導体の蒸気
と結合される気体が存在し、このためこの気体がプラズ
マ化されて無駄な電力消費を生ずることがなくなる。ま
た原因は不明であるが、ある速度以上の速度で超微粒子
を基板表面に衝突させると超微粒子と基板表面との間に
かなり大きな付着力を生ずる。本発明の製造装置はこの
点に着目し、移送管路と基板との間にノズル部を設ける
ことにより超微粒子を高速で基板表面に衝突させるよう
にしたので、基板への付着力の強い、金属あるいは半導
体の酸化物超微粒子膜を得ることが可能となった。
(Effects of the Invention) As described above, according to the present invention, since a plasma jet is used as a heat source to heat and evaporate raw material metal or semiconductor, ultrafine oxide particle film of metal or semiconductor material with a high melting point is formed. Can be easily formed. In addition, in the manufacturing apparatus of the present invention, both the heated vaporized metal or semiconductor vapor and the phosphorus-containing gas that is turned into plasma and combines with the metal or semiconductor vapor are inside the transfer pipe of the plasma oxidation section. Therefore, as in the conventional case, there is a gas outside the plasma chamber that is combined with the metal or semiconductor vapor, and this gas will not be turned into plasma and waste power consumption. Although the cause is unknown, when ultrafine particles collide with the substrate surface at a speed higher than a certain speed, a considerably large adhesion force is generated between the ultrafine particles and the substrate surface. The manufacturing apparatus of the present invention focuses on this point, and by providing a nozzle section between the transfer pipe and the substrate, the ultrafine particles are made to collide with the substrate surface at high speed, so that they have a strong adhesion force to the substrate. It has become possible to obtain ultrafine particle films of metal or semiconductor oxides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づいて構成される酸化物超微粉膜製
造装置の実施例の断面図である。 1:蒸発室(第1の真空容器)、2:成膜室(第2の真
空容器)、3:プラズマジェット装置、5:原料(金属
または半導体)、7:石英管(移送管路)、8:高周波
コイル、9:ノズル、10:シャッタ、11:基板、1
2:回転テーブル(載置台)、13:酸素導入管路、2
o=プラズマ酸化部。 、′”=−、、。
FIG. 1 is a sectional view of an embodiment of an ultrafine oxide powder film manufacturing apparatus constructed based on the present invention. 1: Evaporation chamber (first vacuum container), 2: Film forming chamber (second vacuum container), 3: Plasma jet device, 5: Raw material (metal or semiconductor), 7: Quartz tube (transfer pipe), 8: High frequency coil, 9: Nozzle, 10: Shutter, 11: Substrate, 1
2: Rotary table (mounting table), 13: Oxygen introduction pipe, 2
o=plasma oxidation part. ,′”=−,,.

Claims (1)

【特許請求の範囲】 1)酸化物とすべき金属または半導体を真空中で加熱溶
融することにより超微粉状の金属または半導体の蒸気を
発生するためのプラズマジェット装置と、このプラズマ
ジェット装置によつて加熱溶融される金属または半導体
が配される第1の真空容器と、この金属または半導体の
酸化物超微粉膜が形成されるべき基板と該基板が載置さ
れる載置台とが配され前記第1の真空容器より容器内が
低い圧力に保たれる第2の真空容器と、前記第1の真空
容器内で前記プラズマジェット装置からのプラズマジェ
ットにより加熱溶融されて発生した金属または半導体の
蒸気を前記第1,第2の真空容器間の圧力差により前記
第2の真空容器へ移送する移送管路を構成するとともに
該管路へ酸素を導入するための酸素導入管路と前記移送
管路の外周側に巻かれて該管路へ導入された酸素をプラ
ズマ化する高周波コイルとを備えたプラズマ酸化部と、
前記基板上に前記プラズマ酸化部において酸化された蒸
気を所定の速度以上で衝突させるためのノズルとを備え
たことを特徴とする酸化物超微粉膜の製造装置。 2)特許請求の範囲第1項記載の装置において、金属ま
たは半導体を加熱溶融するためのプラズマジェット装置
は、Ar,Heなどの不活性ガスまたはH_2などの還
元性ガスあるいは前記不活性ガスと還元性ガスとの混合
ガスをプラズマの原料ガスとし、この原料ガスを直流電
圧を用いてプラズマ化した直流トーチであることを特徴
とする酸化物超微粉膜の製造装置。 3)特許請求の範囲第1項記載の装置において、酸化物
超微粉膜が形成されるべき基板が載置される載置台は該
基板を冷却するための冷却機構を備えていることを特徴
とする酸化物超微粉膜の製造装置。 4)特許請求の範囲第1項記載の装置において、酸化物
超微粉膜が形成されるべき基板が載置される載置台はノ
ズルと垂直に対向する基板を複数かつ周方向に載置せし
めて軸まわりに回転しうる回転テーブルを備えるととも
に該テーブルがテーブルの面内で直線方向に移動可能に
形成されていることを特徴とする酸化物超微粉膜の製造
装置。 5)特許請求の範囲第1項記載の装置において、酸化物
超微粉膜が形成されるべき基板が配された第2の真空容
器は基板のノズル側に該基板への酸化された蒸気の衝突
を阻止するためのシャッタを備えていることを特徴とす
る酸化物超微粉膜の製造装置。
[Claims] 1) A plasma jet device for generating ultrafine metal or semiconductor vapor by heating and melting a metal or semiconductor to be made into an oxide in a vacuum, and the plasma jet device; A first vacuum container in which a metal or semiconductor to be heated and melted is arranged, a substrate on which an ultrafine oxide powder film of the metal or semiconductor is to be formed, and a mounting table on which the substrate is placed are arranged. a second vacuum container whose interior is kept at a lower pressure than the first vacuum container, and a metal or semiconductor produced by heating and melting in the first vacuum container by a plasma jet from the plasma jet device. An oxygen introduction pipe and the transfer pipe that constitute a transfer pipe that transfers steam to the second vacuum container based on the pressure difference between the first and second vacuum containers, and that introduce oxygen into the pipe. a plasma oxidation unit including a high frequency coil that is wound around the outer circumference of the pipe and converts oxygen introduced into the pipe into plasma;
An apparatus for producing an ultrafine oxide powder film, comprising: a nozzle for colliding vapor oxidized in the plasma oxidation section onto the substrate at a predetermined speed or higher. 2) In the apparatus described in claim 1, the plasma jet apparatus for heating and melting the metal or semiconductor is configured to use an inert gas such as Ar or He, a reducing gas such as H_2, or a reducing gas with the inert gas. 1. An apparatus for producing an ultrafine oxide powder film, characterized in that it is a DC torch that uses a mixed gas with a reactive gas as a raw material gas for plasma, and converts this raw material gas into plasma using a DC voltage. 3) The apparatus according to claim 1, wherein the mounting table on which the substrate on which the ultrafine oxide powder film is to be formed is equipped with a cooling mechanism for cooling the substrate. Equipment for producing ultrafine oxide powder film. 4) In the apparatus according to claim 1, the mounting table on which the substrate on which the ultrafine oxide powder film is to be formed is mounted with a plurality of substrates facing perpendicularly to the nozzle in the circumferential direction. 1. An apparatus for producing an ultrafine oxide powder film, comprising a rotary table that can rotate around an axis, and that the table is movable in a linear direction within the plane of the table. 5) In the apparatus according to claim 1, the second vacuum container in which the substrate on which the ultrafine oxide powder film is to be formed is disposed is arranged so that the oxidized vapor impinges on the substrate on the nozzle side of the substrate. An apparatus for producing an ultrafine oxide powder film, characterized in that it is equipped with a shutter for preventing.
JP25122586A 1986-10-22 1986-10-22 Apparatus for producing ultrafine powder film of oxide Pending JPS63103804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25122586A JPS63103804A (en) 1986-10-22 1986-10-22 Apparatus for producing ultrafine powder film of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25122586A JPS63103804A (en) 1986-10-22 1986-10-22 Apparatus for producing ultrafine powder film of oxide

Publications (1)

Publication Number Publication Date
JPS63103804A true JPS63103804A (en) 1988-05-09

Family

ID=17219565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25122586A Pending JPS63103804A (en) 1986-10-22 1986-10-22 Apparatus for producing ultrafine powder film of oxide

Country Status (1)

Country Link
JP (1) JPS63103804A (en)

Similar Documents

Publication Publication Date Title
JPS62102827A (en) Production of metallic or ceramic fine grain
US3663265A (en) Deposition of polymeric coatings utilizing electrical excitation
Wang et al. rf plasma aerosol deposition of superconductive Y1Ba2Cu3O7− δ films at atmospheric pressure
JPS63103804A (en) Apparatus for producing ultrafine powder film of oxide
JPS63100364A (en) Apparatus for forming ultrafine powder film of oxide
TWI356102B (en)
JPH0360732A (en) Method and device for producing fine powder and is utilization
JPS61261201A (en) Method for producing metal oxide fine powder and apparatus therefor
JP3372904B2 (en) Film forming method and film forming apparatus
JP3647653B2 (en) Cluster generator
JP3152548B2 (en) High frequency induction plasma deposition equipment
JP2806548B2 (en) Film formation method by thermal plasma evaporation method
JP2005246339A (en) Method and apparatus for manufacturing nanoparticle
JPH04191364A (en) Method and device for ion plating
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device
JP2001335922A (en) Vapor phase growing crystalline thin film producing system
JPS62235466A (en) Vapor deposition material generator
JP2701477B2 (en) Manufacture of manganese dioxide cathode
JP3508566B2 (en) Powder raw material vaporizer and plasma MOCVD apparatus using the same
JP2505376B2 (en) Film forming method and apparatus
JPS6376802A (en) Preparation of fine particle stuck with heterogeneous film on surface
JPH04107266A (en) Method and device for plasma-flash vapor deposition
TW583324B (en) Method and equipment for growing a thin film in a low temperature
WO1987005637A1 (en) Continuous ion plating device for rapidly moving film
JPH0347960A (en) Plasma vapor deposition device