JPS6299424A - Method for controlling deflection of electron beam in electron beam melting - Google Patents

Method for controlling deflection of electron beam in electron beam melting

Info

Publication number
JPS6299424A
JPS6299424A JP24003685A JP24003685A JPS6299424A JP S6299424 A JPS6299424 A JP S6299424A JP 24003685 A JP24003685 A JP 24003685A JP 24003685 A JP24003685 A JP 24003685A JP S6299424 A JPS6299424 A JP S6299424A
Authority
JP
Japan
Prior art keywords
deflection
electron beam
coil
magnetic flux
electromagnetic stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24003685A
Other languages
Japanese (ja)
Inventor
Seiichi Yoshida
吉田 成一
Shinzo Iida
飯田 晋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24003685A priority Critical patent/JPS6299424A/en
Publication of JPS6299424A publication Critical patent/JPS6299424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To precisely control deflection quantity and direction of an electron beam, by adjusting deflection current conducted to deflection coil by informations of deflected vector quantity and exciting current due to leakage magnetic flux accompanied with setting an electromagnetic stirring apparatus. CONSTITUTION:The electron beam 3a emitted from a filament 8 is irradiated to a molten titanium 6 in a hearth 2 while controlling irradiation direction by X and Y deflection coils 9, 10. In this time, the electromagnetic stirring apparatus 7 is provided to a side wall part 2a of the hearth 2 and exciting current is conducted to an EMS coil 11 of the apparatus 7 to electromagnetically stir the titanium 6. At this time, since leakage magnetic flux (broken line) is caused, a current detector 12 is connected with the coil 11 to detect exciting current and the detected information is inputted to a correcting arithmetic device 13. Hereupon, arithmetic for amending deflected quantity and direction is carried out, the result is reflected to X, Y deflection coil amplifiers 14, 15 as output signal to adjust X, Y deflection currents. In this way, deflection quantity caused by leakage magnetic flux and direction can be amended.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばチタンやタルタル等の電子ビーム溶解
を行なうに当たって、電磁撹拌装置の設置に伴なう電子
ビームの偏向を高精度に制御することに成功した、電子
ビームの偏向制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides highly accurate control of the deflection of an electron beam associated with the installation of an electromagnetic stirring device when performing electron beam melting of titanium, tartar, etc., for example. This invention relates to a particularly successful method for controlling the deflection of electron beams.

[従来の技術] 近年における真空技術の進展及び電子ビーム銃の改良等
に伴なって電子ビーム溶解法(以下EBMと略す場合も
ある)が注目を集めている。
[Prior Art] With the progress of vacuum technology and improvements in electron beam guns in recent years, electron beam melting (hereinafter sometimes abbreviated as EBM) has been attracting attention.

電子ビーム溶解法は、第2図に示す様にフィーダ1等を
通してハース2内に投入される材料例えばチタン6等に
、電子ビームガン3から発射される電子ビーム3aを照
射し、上記ハース2内で予め上記チタン6等を溶解して
から水冷鋳型4等へ導き、必要により該鋳型4内へも電
子ビームを照射しつつ鋳塊5等を製造しようとするもの
である。電子ビーム3aは、上記電子ビームガン3内に
設けられた偏向コイル(図示せず)によってその照射方
向が自在調節され水平面内において2次元的に偏向され
ることにより照射面を走査しつつ均一に加熱する。尚上
記チタン6の電子ビーム溶解技術における上記ハース2
は、溶融チタン(上記固体原料のチタンと区別する意味
で溶融チタンという。以下同じ。)6等を均一に分散さ
せたり或は不純物を除去する等の目的をも有しているも
のである。
In the electron beam melting method, an electron beam 3a emitted from an electron beam gun 3 is irradiated onto a material such as titanium 6, which is fed into a hearth 2 through a feeder 1, etc., as shown in FIG. The purpose is to melt the titanium 6, etc. in advance, and then guide it into a water-cooled mold 4, etc., and to manufacture an ingot 5, etc., by irradiating the inside of the mold 4 with an electron beam, if necessary. The irradiation direction of the electron beam 3a is freely adjusted by a deflection coil (not shown) provided in the electron beam gun 3, and the electron beam 3a is deflected two-dimensionally in a horizontal plane, thereby uniformly heating the irradiation surface while scanning it. do. In addition, the above-mentioned hearth 2 in the electron beam melting technology of the above-mentioned titanium 6
This also has the purpose of uniformly dispersing molten titanium (hereinafter referred to as molten titanium to distinguish it from the solid raw material titanium) 6, etc., or removing impurities.

[発明が解決しようとする問題点] ところが上記溶融チタン6の粘性はかなり高いものであ
るから、電子ビームを照射するだけで上記分散を十分果
たせるとは限らないというのが実情であり、この為上記
溶融チタン6等の均一分散や不純物の除去を必ずしも満
足なものとすることができておらないという欠点があっ
た。もっとも上記ハース2内に長時間滞留させてやれば
、上記均一化を十分なものとすることができるが、この
場合には製造工程の円滑な流れに支障を来たす。
[Problems to be Solved by the Invention] However, since the viscosity of the molten titanium 6 is quite high, the actual situation is that it is not always possible to achieve the above dispersion sufficiently just by irradiating it with an electron beam. There is a drawback that uniform dispersion of the molten titanium 6 and the like and removal of impurities cannot always be achieved satisfactorily. However, if the particles are allowed to remain in the hearth 2 for a long time, the above-mentioned uniformity can be achieved sufficiently, but in this case, the smooth flow of the manufacturing process is hindered.

そこで均一分散化技術について検討を重ね、上記ハース
2の近傍に、例えばハース2の側壁部2aに第3図に示
す如き電磁撹拌装置7を設ければ上記溶融チタン6等の
分散均一化を達成できるという目途を得た。そこでこの
手法を工業的に実施可能なものとすべく、電磁撹拌装置
7を実機に設置して電子ビーム溶解法を実施していたと
ころ、電子ビーム3aがハース2へ突入する前に何等か
の影響を受けてその軌道が変化させられ、電子ビーム制
御が不安定になってしまうという新たな問題点を発見す
るに至った。これは、上記電磁撹拌装置7の設置に伴な
う洩れ磁束によって上記電子ビーム3aが影響を受けた
からであると考えられる。本来EBMというのは、電子
ビームの精密な制御を前提とするものであるから電子ビ
ーム3aが上記洩れ磁束による影響を受りると、EBM
の本来的機能を発揮することができないはかりか、やや
もするとハース壁等の照射禁止領域を照射してしまい、
ハース2を破損するといった危険をも招く。
Therefore, we have repeatedly studied techniques for uniform dispersion, and if we install an electromagnetic stirring device 7 as shown in FIG. I got the idea that I could do it. Therefore, in order to make this method industrially viable, an electromagnetic stirring device 7 was installed in an actual machine and an electron beam melting method was being carried out. They discovered a new problem: the electron beam's orbit is changed by the influence, making electron beam control unstable. This is considered to be because the electron beam 3a was affected by leakage magnetic flux accompanying the installation of the electromagnetic stirring device 7. Originally, EBM is based on precise control of the electron beam, so if the electron beam 3a is affected by the leakage magnetic flux, the EBM
The scale may not be able to perform its original function, or it may irradiate areas where irradiation is prohibited, such as the walls of the hearth.
This also poses a risk of damaging Hearth 2.

本発明はこうした事情を憂慮してなされたものであって
、電磁撹拌装置を用いた場合であっても、該電磁撹拌装
置の設置に伴なう洩れ磁束に影響されることなく、電子
ビームの偏位量及び方向(以下偏位ベクトル量という場
合もある)を精密に制御することのできる方法を提供し
ようとするものである。
The present invention has been made in consideration of these circumstances, and even when an electromagnetic stirring device is used, the electron beam is not affected by the leakage magnetic flux accompanying the installation of the electromagnetic stirring device. The present invention aims to provide a method that can precisely control the amount and direction of deviation (hereinafter also referred to as the amount of deviation vector).

[問題点を解決する為の手段] 本発明に係る電子ビームの偏向制御方法とは、偏向コイ
ルに偏向電流を流して電子ビームを偏向させながら所定
容器内で金属を溶融する方法において、上記容器の近傍
に電磁撹拌装置を設けて熔融金属に電磁撹拌を加えると
共に、」二記撹拌装置の設置に伴なう洩れ磁束による上
記電子ビームの偏位ベクトル量と上記′rFL磁撹拌装
置に流される励磁電流との関係を予め求めておき、該励
磁電流の情報によって上記偏向コイルに流される偏向電
流を調整するところにその要旨が存在するものである。
[Means for Solving the Problems] An electron beam deflection control method according to the present invention is a method for melting metal in a predetermined container while deflecting an electron beam by flowing a deflection current through a deflection coil. An electromagnetic stirring device is installed near the molten metal to apply electromagnetic stirring to the molten metal, and the deflection vector amount of the electron beam due to the leakage magnetic flux accompanying the installation of the stirring device and the amount of deflection vector of the electron beam flowing into the above 'rFL magnetic stirring device are calculated. The gist is that the relationship with the excitation current is determined in advance, and the deflection current applied to the deflection coil is adjusted based on information about the excitation current.

[作用] 本発明者等は、前述の如く分散均一化や不純物の除去を
図るべく電磁撹拌という手段を導入したが、該電磁撹拌
装置の導入に伴なう洩れ磁束によって電子ビームが流さ
れるという新たな課題を発見するに至り、これを解除す
べく鋭意研究を重ねた。
[Function] As mentioned above, the present inventors have introduced a means called electromagnetic stirring in order to achieve uniform dispersion and removal of impurities, but it has been found that the electron beam is caused to flow due to leakage magnetic flux caused by the introduction of the electromagnetic stirring device. We discovered a new problem and conducted extensive research to resolve it.

まず本発明者等は、下記(1)及び(2)の如く偏向ベ
クトル量や洩れ磁束等について因果関係を整理した。
First, the inventors organized the causal relationships regarding the amount of deflection vector, leakage magnetic flux, etc. as shown in (1) and (2) below.

(1)電子ビーム偏向コイルで電子ビームの照射を制御
しつつEBMを行なうに当たっては、前述の如く上記電
子ビームが偏位するのであるが、該偏位ベクトル量は上
記洩れ磁束と一定の関係がある。
(1) When performing EBM while controlling electron beam irradiation with an electron beam deflection coil, the electron beam is deflected as described above, and the amount of the deflection vector has a certain relationship with the leakage magnetic flux. be.

(2)そして該洩れ磁束は、上記電磁撹拌装置を流れる
励磁電流と一定の関係にあるから、結局上記偏位ベクト
ル量は上記励磁電流と一定の関係があることになる。
(2) Since the leakage magnetic flux has a constant relationship with the excitation current flowing through the electromagnetic stirring device, the deviation vector amount has a constant relationship with the excitation current.

そして上述の如き考察から本発明者等は、電子ビームの
偏位ベクトル量と上記励磁電流との関係を定量化し、該
定量化関係に基づき励磁電流情報を上記偏向コイルに反
映させてやれば、上記偏位ベクトル量の正確な調整がで
きるのではないかとの知見を得るに至り具体的手段を確
立して本発明を完成するに至った。
Based on the above considerations, the present inventors quantified the relationship between the deflection vector of the electron beam and the excitation current, and reflected the excitation current information on the deflection coil based on the quantified relationship. We have found that it is possible to accurately adjust the deviation vector amount, established a specific means, and completed the present invention.

以下実施例を挙げて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

[実施例] 第1図は本発明の一実施例を示す回路説明図である。フ
ィラメント8から発射された電子ビーム3aは、X偏向
コイル9及びY偏向コイル10によって照射方向を制御
されながら、ハース2内の溶融チタン(すでに溶融され
ているものとして説明する)6を照射するが、ハース2
の側壁部2aには電磁撹拌装置7が設けられ、励磁電流
が該装置7のEMSコイル11に流されて溶融チタン6
の電磁撹拌がなされている。しかしハース2の上方部に
は図示する様に洩れ磁束(図中破線で示す)が生じるか
ら、上記電子ビーム3aは例えば第4図の矢印で示す様
に外側へ偏位され、その■及び方向が目標にそぐわなく
なる。
[Embodiment] FIG. 1 is a circuit explanatory diagram showing an embodiment of the present invention. The electron beam 3a emitted from the filament 8 irradiates the molten titanium (described as already molten titanium) 6 in the hearth 2 while the irradiation direction is controlled by the X deflection coil 9 and the Y deflection coil 10. , Hearth 2
An electromagnetic stirring device 7 is provided on the side wall portion 2a of the molten titanium 6.
Electromagnetic stirring is performed. However, since a leakage magnetic flux (indicated by the broken line in the figure) is generated in the upper part of the hearth 2, the electron beam 3a is deflected outward as shown by the arrow in FIG. becomes inconsistent with the goal.

ところで前述の如く偏位■及び方向は励磁電流によって
規定されるが、例えば電流変成器(CT)等の電流検出
器12を前記EMSコイル11に接続して上記励磁電流
を検出すると共に、該検出情報を補正演算器13へ人力
してここで上記偏位量及び方向を修正する様な演算を行
ない、その結果を出力信号としてX、Y偏向コイル増幅
器14.15へ反映させ、これによってX、Y偏向電流
を調整してやれば、上記洩れ磁束によって生じた上記偏
位量及び方向の修正が可能となる。
By the way, as mentioned above, the deflection (1) and the direction are determined by the excitation current. For example, a current detector 12 such as a current transformer (CT) is connected to the EMS coil 11 to detect the excitation current, and The information is manually input to the correction calculator 13, where calculations are performed to correct the above deviation amount and direction, and the results are reflected as output signals to the X and Y deflection coil amplifiers 14 and 15. By adjusting the Y deflection current, it becomes possible to correct the amount and direction of the deviation caused by the leakage magnetic flux.

上記演算器13には、予め求められた(偏位量及び方向
対励磁電流)の関係に基づいたソフトウェアが組み込ま
れており、実際の励磁電流が入力されると、」二記(偏
位量及び方向対励磁電流の関係によって偏位量及び方向
を検知し、これをX、 Y偏向コイル調整情報に変換し
て出力する。
The computing unit 13 has built-in software based on the relationship (deviation amount and direction vs. excitation current) determined in advance, and when the actual excitation current is input, The deflection amount and direction are detected based on the relationship between direction and excitation current, and this is converted into X and Y deflection coil adjustment information and output.

尚上記実施例では電子ビーム3aの偏向を制御するに当
たって直接X、Y偏同雷同電流整したが、第5図に示す
様に、補正コイル16を別途設けてこれに補正演算器1
3の出力を与える様に構成しても良い。また電磁撹拌器
7のEMSコイル11をハース2の下部に設けても良い
ことは勿論である。
In the above embodiment, when controlling the deflection of the electron beam 3a, the X and Y polarized and parallel currents were directly adjusted, but as shown in FIG.
It may be configured to give 3 outputs. It goes without saying that the EMS coil 11 of the electromagnetic stirrer 7 may be provided at the bottom of the hearth 2.

[発明の効果] 本発明は上述の如く構成されているので以下の如き効果
が発揮される。
[Effects of the Invention] Since the present invention is configured as described above, the following effects are exhibited.

(1)電磁撹拌装置を設けた場合であっても該電磁撹拌
装置の設置に伴なう洩れ磁束に影響されることなく、電
子ビームの偏位ベクトル量を精密に制御することができ
る。
(1) Even when an electromagnetic stirring device is provided, the deflection vector amount of the electron beam can be precisely controlled without being affected by leakage magnetic flux accompanying the installation of the electromagnetic stirring device.

(2)電子ビームの偏位ベクトル■を精密に制御できる
ので、電子ビーム照射禁止傾城を照射するという危険を
伴なうことなく、安全かつ有利に電子ビーム溶解を行な
うことができる。
(2) Since the deflection vector (2) of the electron beam can be precisely controlled, electron beam melting can be performed safely and advantageously without the risk of irradiating slopes where electron beam irradiation is prohibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路説明図、第2図は
電子ビーム溶解法を説明する為の模式図、第3図はハー
スの側壁部に電磁撹拌装置を設けた状態を示す模式図、
第4図は洩れ磁束による電子ビームの影響を示す説明図
、第5図は本発明の他の実施例を示す為の説明図である
。 2・・・ハース     3・・・電子ビームガン3a
・・・電子ビーム   7・・・電磁撹拌装置9・・・
x偏向コイル  10・・・Y偏向コイル11・・・E
MSコイル
Fig. 1 is an explanatory circuit diagram showing one embodiment of the present invention, Fig. 2 is a schematic diagram for explaining the electron beam melting method, and Fig. 3 shows a state in which an electromagnetic stirring device is provided on the side wall of the hearth. Pattern diagram,
FIG. 4 is an explanatory diagram showing the influence of leakage magnetic flux on an electron beam, and FIG. 5 is an explanatory diagram showing another embodiment of the present invention. 2... Hearth 3... Electron beam gun 3a
...electron beam 7...electromagnetic stirring device 9...
x deflection coil 10...Y deflection coil 11...E
MS coil

Claims (1)

【特許請求の範囲】[Claims] 偏向コイルに偏向電流を流して電子ビームを偏向させな
がら所定容器内で金属を溶融する方法において、上記容
器の近傍に電磁撹拌装置を設けて溶融金属に電磁撹拌を
加えると共に、上記撹拌装置の設置に伴なう洩れ磁束に
よる上記電子ビームの偏位ベクトル量と上記電磁撹拌装
置に流される励磁電流との関係を予め求めておき、該励
磁電流の情報によって上記偏向コイルに流される偏向電
流を調整することを特徴とする電子ビーム溶解における
電子ビームの偏向制御方法。
In a method of melting metal in a predetermined container while deflecting an electron beam by flowing a deflection current through a deflection coil, an electromagnetic stirring device is provided near the container to apply electromagnetic stirring to the molten metal, and the stirring device is installed. The relationship between the deflection vector amount of the electron beam due to the leakage magnetic flux accompanying the leakage flux and the excitation current flowing through the electromagnetic stirring device is determined in advance, and the deflection current flowing through the deflection coil is adjusted based on information on the excitation current. A method for controlling the deflection of an electron beam in electron beam melting.
JP24003685A 1985-10-25 1985-10-25 Method for controlling deflection of electron beam in electron beam melting Pending JPS6299424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24003685A JPS6299424A (en) 1985-10-25 1985-10-25 Method for controlling deflection of electron beam in electron beam melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24003685A JPS6299424A (en) 1985-10-25 1985-10-25 Method for controlling deflection of electron beam in electron beam melting

Publications (1)

Publication Number Publication Date
JPS6299424A true JPS6299424A (en) 1987-05-08

Family

ID=17053512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24003685A Pending JPS6299424A (en) 1985-10-25 1985-10-25 Method for controlling deflection of electron beam in electron beam melting

Country Status (1)

Country Link
JP (1) JPS6299424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216870A (en) * 2006-02-17 2007-08-30 Daikyo Nishikawa Kk Back door for automobile
JP2020015973A (en) * 2018-07-27 2020-01-30 日本製鉄株式会社 Manufacturing method and manufacturing apparatus of titanium ingot or titanium alloy ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216870A (en) * 2006-02-17 2007-08-30 Daikyo Nishikawa Kk Back door for automobile
JP2020015973A (en) * 2018-07-27 2020-01-30 日本製鉄株式会社 Manufacturing method and manufacturing apparatus of titanium ingot or titanium alloy ingot

Similar Documents

Publication Publication Date Title
CA3057719A1 (en) Improvements relating to additive layer manufacture using charged particle beams
JPH01294339A (en) Magnetic field generator for charged particle beam
US3651303A (en) Method and apparatus for treating objects in a corpuscular ray device
US3875366A (en) Method and apparatus for regulating the beam current in industrial charge carrier beam apparatus
JPS6299424A (en) Method for controlling deflection of electron beam in electron beam melting
JPS6248345B2 (en)
US5346554A (en) Apparatus for forming a thin film
KR101901643B1 (en) Ion beam irradiation apparatus with controlling ion beam current uniformity and thereof techniques
JP2001229871A (en) Equipment for ion implantation
JPH04289160A (en) Method of heating base body using low-tension arc discharging and variable magnetic flux
RU2753069C1 (en) Method for electron beam surfacing with vertical filler wire supply
JPH05279744A (en) Irradiation method for electron beam
JPH09199072A (en) Ion beam projecting method and apparatus
JPH0567449A (en) Ion implantation apparatus
JPS62154544A (en) Ion processor
SU1504041A1 (en) Method of stabilizing of fusion depth in beam welding with x-ray tracing
JP2005223893A (en) Frequency adjusting method for piezoelectric vibrator
US3592955A (en) Electron beam furnace
JPS62242329A (en) Chaged beam lithography equipment
JPH09274879A (en) Working position correcting method for converged ion beam device
JPS6253939B2 (en)
JPH08264142A (en) Electron beam apparatus
JPH05304080A (en) Drawing method by charged particle beam
CN116727809A (en) Heat input adjusting method for magnetic control plasma arc additive manufacturing
JP2733628B2 (en) Ion generator