JPS6253939B2 - - Google Patents

Info

Publication number
JPS6253939B2
JPS6253939B2 JP2666479A JP2666479A JPS6253939B2 JP S6253939 B2 JPS6253939 B2 JP S6253939B2 JP 2666479 A JP2666479 A JP 2666479A JP 2666479 A JP2666479 A JP 2666479A JP S6253939 B2 JPS6253939 B2 JP S6253939B2
Authority
JP
Japan
Prior art keywords
electron beam
signal
dose
pulse width
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2666479A
Other languages
Japanese (ja)
Other versions
JPS55120134A (en
Inventor
Masatoshi Utaka
Sumio Hosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP2666479A priority Critical patent/JPS55120134A/en
Publication of JPS55120134A publication Critical patent/JPS55120134A/en
Publication of JPS6253939B2 publication Critical patent/JPS6253939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は電子線描画装置の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electron beam lithography apparatus.

従来、微細パターンの形成のため、被加工物の
上に電子線で性質が変化する感電子性樹脂薄膜
(これを電子線レジストと呼ぶ)を形成し、これ
に細く絞つた電子線で微細なパターンを描画する
ことが行なわれている。この場合、微細なパター
ンを精度よく描画するため、計算機でビーム位
置、電子線の断続を制御している。この装置を一
般に電子線描画(または露光)装置と呼んでい
る。
Conventionally, in order to form fine patterns, an electron-sensitive resin thin film whose properties can be changed by electron beams is formed on the workpiece (this is called an electron beam resist), and a finely focused electron beam is applied to this thin film. What is being done is drawing a pattern. In this case, in order to draw fine patterns with high precision, a computer controls the beam position and the interruption of the electron beam. This device is generally called an electron beam lithography (or exposure) device.

従来の描画装置においては、電子ビーム走査速
度一定でかつ所望のパターンを得るためのビーム
オン(ON)オフ(OFF)制御のみ行なわれてい
た。通常、1点に入射した電子線は第3図aに示
すような露光量強度分布をもち、周辺部に電子線
露光が及んでしまう。この現象は、電子線レジス
ト内を電子が通過するさい、非弾性衝突によつて
起こるエネルギー損失が寄与するものであり、電
子線レジストの感応領域は1次電子ビームの散乱
および基板からの後方散乱の領域の和およびその
強さによつて決定される。この露光量強度分布は
電子のエネルギ、基板の材質等によつて異なる。
In conventional writing apparatuses, only beam on (ON) and off (OFF) control was performed in order to keep the electron beam scanning speed constant and obtain a desired pattern. Normally, an electron beam incident on one point has an exposure intensity distribution as shown in FIG. 3a, and the electron beam exposure extends to the periphery. This phenomenon is caused by energy loss caused by inelastic collisions when electrons pass through the electron beam resist, and the sensitive region of the electron beam resist is caused by scattering of the primary electron beam and backscatter from the substrate. is determined by the sum of the areas of and its strength. This exposure intensity distribution differs depending on the electron energy, the material of the substrate, etc.

一方、この分布は逆の見方をすると、照射点P
より離れた点(X,Y)に電子が入射する場合、
P点にはF(x,y,X,Y)の露光量が加わる
ことになる。即ち、P点における露光量は該分布
を基準として影響範囲内に電子が入射するか否か
によつて露光量が変化することが分かる。
On the other hand, if we look at this distribution in the opposite way, we can see that the irradiation point P
When an electron enters a point (X, Y) that is further away,
An exposure amount of F (x, y, X, Y) is added to point P. That is, it can be seen that the exposure amount at point P changes depending on whether or not electrons are incident within the influence range based on the distribution.

即ち、任意の点での露光量E(x,y)は(1)式
で表わされる。
That is, the exposure amount E(x,y) at any point is expressed by equation (1).

E(x,y)=∫∫N(X,Y)F(x,y,
X,Y) dX,dY(1X−x1,1Y−y1ε) (1) ただし、N(X,Y)は、規格化された照射量
の関数あるいはデータ、εは経験的に与えられる
任意の点(x,y)を中心とした積分範囲であ
り、通常、4μm前後を採れば十分である。
E(x,y)=∫∫N(X,Y)F(x,y,
X, Y) dX, dY (1X-x1, 1Y-y1ε) (1) where N(X, Y) is a function or data of the normalized dose, and ε is an arbitrary point given empirically. It is an integral range centered on (x, y), and it is usually sufficient to take around 4 μm.

従来の装置ではパターンが存在する場合、N
(X,Y)=1となる。しかし、無い場合、N
(X,Y)=0となる。このため、第3図bに示す
ように、寸法の大きい矩形を一様な照射量で描画
する場合、露光量が最大になる位置はパターンの
重心であり、最小となる位置は四隅である。図中
に示した数字は最大露光量を1とした相対露光量
を示している。
In conventional equipment, if a pattern exists, N
(X, Y)=1. However, if there is no N
(X, Y)=0. Therefore, as shown in FIG. 3b, when drawing a large rectangle with a uniform dose, the position where the exposure dose is maximum is at the center of gravity of the pattern, and the position where it is minimum is at the four corners. The numbers shown in the figure indicate relative exposure amounts with the maximum exposure amount being 1.

露光プロセスにおいて、露光量E(x,y)が
(2)式のごとく、描画領域では電子線レジストの臨
界感電子量ESより大きく、それ以外の領域では
該電子量より小さくなるよう設定され、描画され
る図形寸法が決定される。
In the exposure process, the exposure amount E(x,y) is
As shown in equation (2), the size of the figure to be drawn is determined so that it is larger than the critical sensitive electron quantity E S of the electron beam resist in the drawing area and smaller than the critical electron quantity E S in the other areas.

Ed(x,y)ES(描画位置) (2) Eb(x,y)<ES(描画されない位置) 第3図bの場合、四隅での露光量は重心部に比
べ1/4となり、(2)式より矩形の角は丸みをおびて
しまう。これが近接効果である。また図形の隣接
によつても、電子ビーム径が極めて小さいにもか
かわらず、高精度のパターンが得られないという
欠点があつた。
Ed (x, y) E S (drawing position) (2) Eb (x, y) < E S (non-drawing position) In the case of Figure 3b, the exposure amount at the four corners is 1/4 compared to the center of gravity. , Equation (2) shows that the corners of the rectangle are rounded. This is the proximity effect. Furthermore, due to the adjacency of figures, a highly accurate pattern cannot be obtained even though the electron beam diameter is extremely small.

従つて、微細パターンを得た場合や精度のよい
矩形パターンを得る場合は、上述の近接効果を考
慮した描画方法および描画装置を得る必要があ
る。
Therefore, in order to obtain a fine pattern or a highly accurate rectangular pattern, it is necessary to obtain a drawing method and a drawing apparatus that take the above-mentioned proximity effect into consideration.

本発明の目的は、上記の点に着目してなされた
ものであり、電子線を用いて微細パターンを描画
する場合に発生する近接効果に対処するもので、
微細で精度のよいパターンを描画する装置を得る
ことにある。
The purpose of the present invention has been made with attention to the above points, and is to deal with the proximity effect that occurs when drawing fine patterns using electron beams.
The object of the present invention is to obtain a device that can draw fine and precise patterns.

上記の目的を達成するため、本発明では電子線
描画部分での照射量に重みをもたせる機能を新ら
たに設けた。(1)式のN(X,Y)を(2)式の条件で
所望のパターンが得られるごとく予め逆算し、こ
の関係に基づいて、電子ビームをパルス幅変調
し、所望のパターン位置を露光する信号(ブラン
キング信号)との積をとり電子ビームのON,
OFF変調を行うことにより電子ビーム露光量を
制御する方式を用いるものである。
In order to achieve the above object, the present invention newly provides a function to give weight to the irradiation amount in the electron beam drawing area. N(X, Y) in equation (1) is calculated backwards in advance to obtain the desired pattern under the conditions of equation (2), and based on this relationship, the electron beam is pulse width modulated to expose the desired pattern position. Turn on the electron beam by taking the product with the blanking signal (blanking signal).
This method uses a method of controlling the electron beam exposure amount by performing OFF modulation.

以下、本発明を実施例を参照して詳細に説明す
る。第1図は、本発明の一実施例を示すブロツク
図である。また、第2図に本発明の各部における
波形を示す。
Hereinafter, the present invention will be explained in detail with reference to Examples. FIG. 1 is a block diagram showing one embodiment of the present invention. Further, FIG. 2 shows waveforms at various parts of the present invention.

第1図において、照射量制御は照射量制御信号
発生回路9より出力された照射量信号(第2図a
に示す)と比較回路8の基準電圧としての鋸歯状
波(第2図b)を基準電圧発生部12から比較回
路8に入力して、パルス幅変調を行なつている。
さらに、所望のパターン位置指定を行なうための
電子ビーム断続信号発生部13より得られた信号
(第2図d)をかけ算回路7に入力し、この信号
と上記の変調信号(第2図c)との積をとり、描
画使用可能な照射量制御信号(第2図e)に整形
する。この制御信号を従来から使用されているブ
ランキング回路6に入力し、陰極1から放出され
た電子線2をブランキング板5でON,OFFする
ものである。なお、図中3は被加工試料、および
4は試料移動台を示す。
In FIG. 1, the dose control is performed by the dose signal output from the dose control signal generation circuit 9 (see FIG. 2a).
) and a sawtooth wave (FIG. 2b) as a reference voltage of the comparator circuit 8 are inputted from the reference voltage generator 12 to the comparator circuit 8 to perform pulse width modulation.
Furthermore, the signal obtained from the electron beam intermittent signal generator 13 (FIG. 2 d) for specifying a desired pattern position is input to the multiplication circuit 7, and this signal and the above modulation signal (FIG. 2 c) The product is calculated and shaped into a dose control signal (Fig. 2e) that can be used for drawing. This control signal is input to a conventionally used blanking circuit 6, and the electron beam 2 emitted from the cathode 1 is turned on and off by a blanking plate 5. In addition, in the figure, 3 indicates a sample to be processed, and 4 indicates a sample moving table.

照射量制御信号発生回路9には所望のパターン
が得られるように(2)式の条件を満足した(1)式の照
射量N(X,Y)が予め計算され、計算機11か
らインタフエイス10を介してプログラムされ
る。尚、プログラムされる回線は第1図では省略
している。
The dose control signal generation circuit 9 calculates in advance the dose N(X, Y) of equation (1) that satisfies the condition of equation (2) so that the desired pattern can be obtained, and the dose N(X, Y) of equation (1) is calculated in advance from the computer 11 to the interface 10. programmed via. Note that the lines to be programmed are omitted in FIG.

該照射量信号N(X,Y)を上記説明したごと
く、基準電圧発生部12と比較回路8とによりパ
ルス幅変調を行なう。ブランキング信号と掛算を
行なつた後、ビームブランキングを行ない、近接
効果補正を行なうことができる。
As explained above, the irradiation dose signal N(X, Y) is subjected to pulse width modulation by the reference voltage generating section 12 and the comparator circuit 8. After multiplication with the blanking signal, beam blanking can be performed and proximity effect correction can be performed.

近接効果補正の具体例を第3図bの場合を用い
て説明する。
A specific example of the proximity effect correction will be explained using the case shown in FIG. 3b.

この近接効果を補正するには図形内の露光量が
一様となるように照射量を補正すれば良い。第3
図cは第3図bに基づいて矩形内の照射量を補正
した一例である。第3図bで示したB走査の場
合、隅に当る部分の相対照射量を1とすると、中
央部を1/2とする必要がある。またA走査の場合
には1/2照射量から始つて中央部は1/4照射量に補
正する必要がある。
In order to correct this proximity effect, the amount of exposure may be corrected so that the amount of exposure within the figure is uniform. Third
Figure c is an example in which the dose within the rectangle is corrected based on Figure 3b. In the case of the B scan shown in FIG. 3b, if the relative irradiation amount at the corner portions is 1, it is necessary to reduce the relative irradiation amount to 1/2 at the center portion. In addition, in the case of A-scanning, it is necessary to start with 1/2 irradiation dose and correct it to 1/4 irradiation dose in the central area.

このような照射量の関数あるいはデータを図形
の分布状況及び露光量強度分布から逆算しなけれ
ばならない。この場合の露光量強度分布は実験的
に求めることができる。この分布関数は前述した
ような色々な条件の影響を受け実験的に求めたも
のでないと意味がない。従つて、第3図cの照射
量N(X,Y)は上記の分布関数に大きく影響さ
れ、高度な数値解析法を用いて計算機処理される
ことが望ましい。尚、第3図cは第2図a信号の
具体例である。矩形内の照射量をより一様にする
のではなく、式(2)のような条件を満足するごとく
N(X,Y)を作成しても構わない。このN
(X,Y)を比較回路8に入力し、前述の様にパ
ルス幅変調を行なつて、近接効果補正が実現され
る。
Such a function or data of the exposure dose must be calculated backward from the distribution of the figure and the exposure intensity distribution. The exposure intensity distribution in this case can be determined experimentally. This distribution function has no meaning unless it is determined experimentally, as it is influenced by the various conditions mentioned above. Therefore, the dose N(X, Y) in FIG. 3c is greatly influenced by the above distribution function, and is preferably processed by computer using advanced numerical analysis methods. Incidentally, FIG. 3c is a specific example of the signal shown in FIG. 2a. Instead of making the irradiation amount within the rectangle more uniform, N(X, Y) may be created so as to satisfy the condition such as equation (2). This N
By inputting (X, Y) into the comparison circuit 8 and performing pulse width modulation as described above, proximity effect correction is realized.

一方、電子ビーム断続信号発生部13での鋸歯
状波の繰り返し周波数は、電子ビーム走査速度に
存在するが、繰り返し周期が0.1μm以下相当に
なるように設定する必要がある。
On the other hand, the repetition frequency of the sawtooth wave in the electron beam intermittent signal generating section 13 depends on the electron beam scanning speed, but must be set so that the repetition period is equivalent to 0.1 μm or less.

以上説明したごとく、本発明によれば、微細な
大きさの図形と、微細な図形間間隔をもつ微細パ
ターンを、近接効果によつてパターンが乱される
ことなく、設計通りの描画パターンを描画後の現
像によつて得ることができる。また、本発明によ
れば矩形パターンごとの露光量制御ばかりでな
く、さらに矩形内の露光量制御をも可能ならしめ
るものである。
As explained above, according to the present invention, a designed drawing pattern can be drawn without the pattern being disturbed by the proximity effect, with a fine size figure and a fine pattern having a minute interval between figures. It can be obtained by subsequent development. Further, according to the present invention, it is possible not only to control the exposure amount for each rectangular pattern, but also to control the exposure amount within a rectangle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するためのブ
ロツク図および第2図は本発明を説明するための
タイムチヤート、第3図は近接効果補正を説明す
るための説明図である。 図において、1は陰極、2は電子線、5はブラ
ンキング板、6はブランキング回路、7はかけ算
回路、8は比較回路、9は照射量制御信号発生回
路、10はインターフエイス、11は計算機、1
2は基準電圧発生部、13は電子ビーム断続信号
発生部。
FIG. 1 is a block diagram for explaining an embodiment of the present invention, FIG. 2 is a time chart for explaining the present invention, and FIG. 3 is an explanatory diagram for explaining proximity effect correction. In the figure, 1 is a cathode, 2 is an electron beam, 5 is a blanking plate, 6 is a blanking circuit, 7 is a multiplication circuit, 8 is a comparison circuit, 9 is a dose control signal generation circuit, 10 is an interface, and 11 is a calculator, 1
2 is a reference voltage generating section, and 13 is an electron beam intermittent signal generating section.

Claims (1)

【特許請求の範囲】[Claims] 1 電子線を用いて被加工物上に微細なパターン
を描画するようにした電子線描画装置において、
描画時に近接領域から受ける電子ビーム露光量を
制御するように重み付けされた照射量信号を発生
する照射量制御回路手段、前記照射量制御回路手
段から出力した信号をパルス幅変調するためのパ
ルス幅変調手段、所望のパターン位置で露光する
ための電子ビーム断続信号発生手段、前記断続信
号発生手段からの断続信号と前記パルス幅変調手
段からの変調信号の積を得るための掛け算回路手
段、および前記掛け算回路手段から発生する信号
にもとづいて電子ビームをオンオフするブランキ
ング手段を具備してなり、被描画パターンの近接
効果を補正するために主電子線の照射量を制御可
能に構成したことを特徴とする電子線描画装置。
1. In an electron beam drawing device that draws a fine pattern on a workpiece using an electron beam,
Dose control circuit means for generating a weighted dose signal to control the electron beam exposure dose received from a nearby area during drawing, and pulse width modulation for pulse width modulating the signal output from the dose control circuit means. means for generating an intermittent electron beam signal for exposing at a desired pattern position; multiplication circuit means for obtaining the product of the intermittent signal from the intermittent signal generating means and the modulation signal from the pulse width modulating means; and the multiplier. It is characterized by comprising a blanking means for turning on and off the electron beam based on a signal generated from the circuit means, and configured to be able to control the irradiation amount of the main electron beam in order to correct the proximity effect of the pattern to be drawn. Electron beam lithography equipment.
JP2666479A 1979-03-09 1979-03-09 Apparatus for electron-beam lithography Granted JPS55120134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2666479A JPS55120134A (en) 1979-03-09 1979-03-09 Apparatus for electron-beam lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2666479A JPS55120134A (en) 1979-03-09 1979-03-09 Apparatus for electron-beam lithography

Publications (2)

Publication Number Publication Date
JPS55120134A JPS55120134A (en) 1980-09-16
JPS6253939B2 true JPS6253939B2 (en) 1987-11-12

Family

ID=12199666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2666479A Granted JPS55120134A (en) 1979-03-09 1979-03-09 Apparatus for electron-beam lithography

Country Status (1)

Country Link
JP (1) JPS55120134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319653U (en) * 1989-07-05 1991-02-26
JPH0413245U (en) * 1990-05-25 1992-02-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278725A (en) * 1988-05-02 1989-11-09 Fujitsu Ltd Charged grain beam exposure device
JPH0226015A (en) * 1988-07-15 1990-01-29 Toshiba Mach Co Ltd Method and apparatus for electron beam lithography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319653U (en) * 1989-07-05 1991-02-26
JPH0413245U (en) * 1990-05-25 1992-02-03

Also Published As

Publication number Publication date
JPS55120134A (en) 1980-09-16

Similar Documents

Publication Publication Date Title
US6433348B1 (en) Lithography using multiple pass raster-shaped beam
US4870286A (en) Electron beam direct drawing device
US6376136B1 (en) Charged beam exposure method
US4937458A (en) Electron beam lithography apparatus including a beam blanking device utilizing a reference comparator
US6605811B2 (en) Electron beam lithography system and method
JPS6253939B2 (en)
JP3321234B2 (en) Electron beam writing method and writing apparatus
JPH03183118A (en) Method and apparatus for electron beam exposure
JPS63168946A (en) Culling-out scanning method
JPS6228572B2 (en)
JPH0135340B2 (en)
JPS6262047B2 (en)
JPH11186130A (en) Charged particle beam exposure device, exposure method, stencil mask and methods for measuring beam edge defocusing quantity and determining required refocus
JPS60130031A (en) Pulse beam generating device
JPS5632726A (en) Method for electron beam lithography
JPS6231488B2 (en)
JPH05304080A (en) Drawing method by charged particle beam
JPS58145122A (en) Electron beam exposure device
JPS63285933A (en) Pattern lithography
JPH10242025A (en) Variable area type method for plotting electron beam
JPS6139354A (en) Blanking device for electron-beam exposure equipment
JPS59119834A (en) Electron beam exposure
JPH01239926A (en) Beam drawing device
JPS6041223A (en) Electron beam exposure
JPS6041222A (en) Electron beam exposure