JPS629817B2 - - Google Patents

Info

Publication number
JPS629817B2
JPS629817B2 JP54132246A JP13224679A JPS629817B2 JP S629817 B2 JPS629817 B2 JP S629817B2 JP 54132246 A JP54132246 A JP 54132246A JP 13224679 A JP13224679 A JP 13224679A JP S629817 B2 JPS629817 B2 JP S629817B2
Authority
JP
Japan
Prior art keywords
air
temperature
bulb temperature
calculation means
enthalpy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54132246A
Other languages
Japanese (ja)
Other versions
JPS5656552A (en
Inventor
Kunihiro Nagura
Michihiro Yoshida
Takashi Yasui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP13224679A priority Critical patent/JPS5656552A/en
Publication of JPS5656552A publication Critical patent/JPS5656552A/en
Publication of JPS629817B2 publication Critical patent/JPS629817B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷房運転時に圧縮機の発停を室内の
湿度によつて制御するようにした空気調和機の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in an air conditioner in which starting and stopping of a compressor during cooling operation is controlled according to indoor humidity.

(従来の技術) 従来、空気調和機においては、快適な空気調和
機を図るべく、室内空気の温度(例えば吸込空気
温度)と時間とによつてその作動制御が行われて
いるが、より快適な空気調和のためには、冷房
時、室内空気の湿度(例えば吸込空気湿度)も大
きな要因であり、この湿度によつても空気調和機
の作動制御を行うことが望まれる。
(Prior Art) Conventionally, in order to provide a comfortable air conditioner, the operation of an air conditioner has been controlled based on indoor air temperature (for example, intake air temperature) and time. For proper air conditioning, the humidity of the indoor air (for example, the humidity of the intake air) is also a major factor during cooling, and it is desirable to control the operation of the air conditioner based on this humidity as well.

そこで、例えば実開昭53−155846号公報や実公
昭48−24364号公報に開示されるものでは、温度
センサの感温部表面をガーゼ等で湿潤させて湿度
計の如き構成としたり、負特性サーミスタ等の湿
度センサを用いて、室内空気の湿度を直接把握
し、この湿度に応じて圧縮機の発停を制御するよ
うにしたものが知られている。
Therefore, in the devices disclosed in, for example, Japanese Utility Model Application Publication No. 53-155846 and Japanese Utility Model Publication No. 48-24364, the surface of the temperature sensing part of the temperature sensor is moistened with gauze etc. to form a structure similar to a hygrometer, and the negative characteristic is It is known that a humidity sensor such as a thermistor is used to directly detect the humidity of indoor air and control the start/stop of a compressor in accordance with this humidity.

(発明が解決しようとする問題点) しかしながら、前者の如く湿度計のような構成
では、水の補給が常に必要であり、また定期的に
ガーゼ等を取換る必要があり、空気調和用の制御
装置としてはメインテナンスがかかり過ぎ、不適
当である。また、後者の湿度センサを用いる場
合、多種類のものが市販されているものの、これ
らはいずれも湿度が抵抗値として読取れて制御信
号としては扱い易い反面、室温によつて抵抗値が
変化し、また経時劣化が著しく、安定性および信
頼性に欠けるという欠点がある。
(Problems to be Solved by the Invention) However, with the former configuration, which is similar to a hygrometer, it is necessary to constantly replenish water, and it is necessary to periodically replace gauze, etc. It requires too much maintenance and is inappropriate as a control device. In addition, when using the latter type of humidity sensor, although there are many types on the market, all of them can read humidity as a resistance value and are easy to use as a control signal, but on the other hand, the resistance value changes depending on the room temperature. Moreover, it has the disadvantage that it deteriorates significantly over time and lacks stability and reliability.

本発明は斯かる点に鑑みてなされたものであ
り、その目的は、安定性および信頼性の高いサー
ミスタ等の温度センサ(感温素子)を用いて、空
気調和機の運転中において、吸込空気および吹出
空気の乾球温度や空気調和機の各部の温度を検出
し、これらの温度検出信号に基いて吸込空気の湿
度や不快指数を推測するようにすることにより、
冷房運転時、湿度に応じた空気調和機の作動制御
を長期間安定的に且つ信頼性良く行つて、より快
適な空気調和を可能にした新規な空気調和機を提
供せんとすることにある。
The present invention has been made in view of the above points, and its purpose is to use a temperature sensor (temperature sensing element) such as a thermistor with high stability and reliability to detect the intake air during operation of an air conditioner. By detecting the dry bulb temperature of the blown air and the temperature of each part of the air conditioner, and estimating the humidity and discomfort index of the intake air based on these temperature detection signals,
To provide a new air conditioner which enables more comfortable air conditioning by stably and reliably controlling the operation of the air conditioner according to humidity over a long period of time during cooling operation.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段
は、第5図に示すように、凝縮温度、蒸発温度及
び圧縮機吸入温度の各々若しくは凝縮器吸込空気
温度、凝縮器吹出空気温度及び圧縮機入力電流の
各々を検出するセンサ群Aと、該センサ群Aの出
力信号に基いて蒸発器の冷房能力を演算する冷房
能力演算手段20とを設ける。また、吸込空気乾
球温度を検出する吸込空気乾球温度センサ9と、
該吸込空気乾球温度センサ9の出力を受け、吸込
空気乾球温度と仮定吸込空気湿球温度とに基いて
吸込空気のエンタルピを演算する吸込空気エンタ
ルピ演算手段21とを設けるとともに、吹出空気
乾球温度を検出する吹出空気乾球温度センサ10
と、蒸発器フイン表面温度を検出する蒸発器フイ
ン表面温度センサ11と、上記3個の温度センサ
9〜11の出力を受け、吸込空気乾球温度、吹出
空気乾球温度及び蒸発器フイン表面温度に基いて
空気線図から吹出空気のエンタルピを演算する吹
出空気エンタルピ演算手段22とを設ける。そし
て、上記吸込空気エンタルピ演算手段21および
吹出空気エンタルピ演算手段22の出力を受け、
吸込空気と吹出空気の各エンタルピに基いて蒸発
器の交換熱量を演算する交換熱量演算手段25
と、該交換熱量演算手段25の出力を受け、蒸発
器の交換熱量が上記冷房能力演算手段20の冷房
能力に等しくなるよう、上記吸込空気エンタルピ
演算手段21の仮定吸込空気湿球温度を補正する
補正手段26と、該補正手段26の出力を受け、
補正された仮定吸込空気湿球温度と上記吸込空気
乾球温度センサ9の吸込空気乾球温度とに基いて
吸込空気の湿度若しくは不快指数を演算する湿り
状態演算手段27と、該湿り状態演算手段27の
出力を受け、吸込空気の湿度若しくは不快指数に
応じて開閉する湿り状態スイツチ3と、該湿り状
態スイツチ3の開閉に応じて圧縮機の作動を制御
する制御手段28とを設ける構成としたものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. A sensor group A that detects each of the temperature, condenser blown air temperature, and compressor input current, and cooling capacity calculation means 20 that calculates the cooling capacity of the evaporator based on the output signals of the sensor group A are provided. Further, a suction air dry bulb temperature sensor 9 that detects the suction air dry bulb temperature,
A suction air enthalpy calculating means 21 is provided which receives the output of the suction air dry bulb temperature sensor 9 and calculates the enthalpy of the suction air based on the suction air dry bulb temperature and the assumed suction air wet bulb temperature. Blowing air dry bulb temperature sensor 10 that detects bulb temperature
, an evaporator fin surface temperature sensor 11 that detects the evaporator fin surface temperature, and an evaporator fin surface temperature sensor 11 that receives the outputs of the three temperature sensors 9 to 11, and detects the intake air dry bulb temperature, outlet air dry bulb temperature, and evaporator fin surface temperature. A blown air enthalpy calculation means 22 is provided for calculating the enthalpy of blown air from the psychrometric diagram based on the psychrometric diagram. Then, receiving the outputs of the suction air enthalpy calculation means 21 and the discharge air enthalpy calculation means 22,
Exchange heat amount calculation means 25 that calculates the exchange heat amount of the evaporator based on each enthalpy of the intake air and the blown air.
In response to the output of the exchanged heat amount calculation means 25, the assumed suction air wet bulb temperature of the suction air enthalpy calculation means 21 is corrected so that the exchanged heat amount of the evaporator becomes equal to the cooling capacity of the cooling capacity calculation means 20. a correction means 26; receiving the output of the correction means 26;
a humidity state calculation means 27 for calculating the humidity or discomfort index of the intake air based on the corrected assumed intake air wet bulb temperature and the intake air dry bulb temperature of the intake air dry bulb temperature sensor 9, and the humidity state calculation means 27, and a humidity state switch 3 which opens and closes according to the humidity or discomfort index of the intake air, and a control means 28 which controls the operation of the compressor according to the opening and closing of the humidity state switch 3. It is something.

(作用) 以上の構成により、本発明では、吸込空気乾球
温度センサ9で吸込空気乾球温度taiが検出され
ると、吸込空気エンタルピ演算手段21におい
て、この吸込空気乾球温度taiと仮定の吸込空気
湿球温度taiwとに基いて仮定の吸込空気エンタル
ピiaiが演算される。
(Function) With the above configuration, in the present invention, when the suction air dry-bulb temperature tai is detected by the suction air dry-bulb temperature sensor 9, the suction air enthalpy calculation means 21 calculates the assumed value of this suction air dry-bulb temperature tai. An assumed intake air enthalpy iai is calculated based on the intake air wet bulb temperature taiw.

また、上記吸込空気乾球温度taiの検出に加え
て、同時に吹出空気乾球温度taoおよび蒸発器フ
イン表面温度tpが各々そのセンサ10,11で検
出されると、吹出空気エンタルピ演算手段22に
おいて、この3種の温度値から空気線図に基いて
吹出空気エンタルピiaoが演算され、その後、こ
の吹出空気エンタルピiaoと上記吸込空気エンタ
ルピiaiとに基いて交換熱量演算手段25で蒸発
器の交換熱量Qeが演算される。
In addition to detecting the suction air dry-bulb temperature tai, when the blow-out air dry-bulb temperature tao and the evaporator fin surface temperature tp are simultaneously detected by the sensors 10 and 11, respectively, the blow-out air enthalpy calculation means 22 calculates From these three temperature values, the blowout air enthalpy iao is calculated based on the psychrometric diagram, and then, based on the blowout air enthalpy iao and the above-mentioned suction air enthalpy iai, the exchange heat amount calculation means 25 calculates the exchange heat amount Qe of the evaporator. is calculated.

一方、センサ群Aにより空気調和機の各部の温
度や圧縮機の入力電流が検出されると、その各出
力信号に基いて冷房能力演算手段20で蒸発器の
冷房能力Qeが演算される。
On the other hand, when the temperature of each part of the air conditioner and the input current of the compressor are detected by the sensor group A, the cooling capacity calculation means 20 calculates the cooling capacity Qe of the evaporator based on each output signal.

そして、上記蒸発器の交換熱量Qeと冷房能力
Qeとが一致するように、上記仮定の吸込空気湿
球温度taiwが補正手段26で補正されて、実際の
吸込空気湿球温度taiwが把握されると、この実際
の吸込空気湿球温度taiwと上記吸込空気乾球温度
taiとに基いて、湿り状態演算手段27で吸込空
気の湿度若しくは不快指数が演算され、その値に
応じて湿り状態スイツチ3が開閉するので、この
湿り状態スイツチ3の開閉に応じて圧縮機の作動
が制御手段28で制御されると、圧縮機の発停が
室内の湿度若しくは不快指数に応じて行われるこ
とになつて、室内が快適に空調されることにな
る。
Then, the amount of heat exchanged Qe and cooling capacity of the above evaporator
When the above assumed suction air wet bulb temperature taiw is corrected by the correction means 26 and the actual suction air wet bulb temperature taiw is ascertained, this actual suction air wet bulb temperature taiw and Above intake air dry bulb temperature
Based on the humidity state calculation means 27, the humidity or discomfort index of the intake air is calculated, and the humidity state switch 3 is opened or closed according to the calculated value. When the operation is controlled by the control means 28, the compressor is started and stopped according to the humidity or discomfort index in the room, and the room is comfortably air-conditioned.

(実施例) 以下、本発明の実施例を図面に基いて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本発明の第1実施例を示し、1は空気
調和機本体に内蔵された圧縮機であつて、該圧縮
機1の作動回路2には吸込空気の温度と湿度とに
より求めた不快指数の大小に応じて開閉する湿り
状態スイツチとしての不快指数スイツチ3が直列
に接続され、冷房運転時に不快指数が設定値より
も小さいときには、上記不快指数スイツチ3の開
作動により作動回路2を開いて、圧縮機1の作動
を停止させる一方、不快指数が設定値以上のとき
には、上記不快指数スイツチ3の閉作動により作
動回路2を閉じて、圧縮機1を作動させるように
構成されている。尚、上記不快指数Kは、K=
(乾球温度+湿球温度)×0.72+40.6で求められる
ものである。
FIG. 1 shows a first embodiment of the present invention, in which 1 is a compressor built into the main body of an air conditioner, and an operating circuit 2 of the compressor 1 has a temperature and a humidity determined based on the temperature and humidity of the intake air. A discomfort index switch 3, which serves as a wet state switch that opens and closes depending on the magnitude of the discomfort index, is connected in series, and when the discomfort index is smaller than a set value during cooling operation, the operation circuit 2 is opened by opening the discomfort index switch 3. When the discomfort index switch 3 is opened, the operation of the compressor 1 is stopped, while when the discomfort index switch 3 is closed, the operation circuit 2 is closed and the compressor 1 is operated. . In addition, the above-mentioned discomfort index K is K=
It is calculated by (dry bulb temperature + wet bulb temperature) x 0.72 + 40.6.

上記不快指数スイツチ3は、空気調和機本体に
内蔵したコントローラ5によつて開閉制御され
る。該コントローラ5には、凝縮温度tcを検出す
る凝縮温度センサ6と、蒸発温度teを検出する蒸
発温度センサ7と、上記圧縮機1の吸入温度を検
出する吸入温度センサ8とが各々信号の授受可能
に接続されていて、以上の3個の温度センサ6〜
8により、凝縮温度、蒸発温度及び圧縮機吸入温
度を検出するセンサ群Aを構成している。
The discomfort index switch 3 is controlled to open and close by a controller 5 built into the main body of the air conditioner. The controller 5 has a condensing temperature sensor 6 that detects the condensing temperature tc, an evaporating temperature sensor 7 that detects the evaporating temperature te, and a suction temperature sensor 8 that detects the suction temperature of the compressor 1, each of which sends and receives signals. More than three temperature sensors 6~
8 constitutes a sensor group A that detects condensing temperature, evaporation temperature, and compressor suction temperature.

また、上記コントローラ5には、更に、吸込空
気の乾球温度taiを検出する吸込空気乾球温度セ
ンサ9と、吹出空気の乾球温度taoを検出する吹
出空気乾球温度センサ10と、蒸発器フイン(図
示せず)の表面温度tpを検出する蒸発器フイン表
面温度センサ11とが各々信号の授受可能に接続
されている。
The controller 5 further includes a suction air dry-bulb temperature sensor 9 that detects the dry-bulb temperature tai of the suction air, a blow-out air dry-bulb temperature sensor 10 that detects the dry-bulb temperature tao of the blow-out air, and an evaporator. An evaporator fin surface temperature sensor 11 that detects the surface temperature tp of a fin (not shown) is connected to each of the evaporator fins so as to be able to send and receive signals.

そして、上記コントローラ5はCPU(演算処
理装置)やRAM(図示せず)等を内蔵し、上記
6個のセンサ6〜11の温度検出信号に基いて蒸
発器の冷房能力を演算したのち、吸込空気の不快
指数Kを演算するように構成されている。
The controller 5 has a built-in CPU (processing unit), RAM (not shown), etc., and calculates the cooling capacity of the evaporator based on the temperature detection signals of the six sensors 6 to 11, and then calculates the cooling capacity of the evaporator. It is configured to calculate an air discomfort index K.

すなわち、上記コントローラ5では、蒸発器の
冷房能力の演算と、該冷房能力から吸込空気の不
快指数Kを求める演算が行われる。この機能部分
でのコントローラ5の内部構成を第5図に示す。
同図において、20は上記センサ群Aの各検出信
号を受け、該各検出信号に基いて蒸発器の冷房能
力を演算する冷房能力演算手段としての冷房能力
演算回路であつて、該冷房能力演算回路20は、
第3図に示すモリエル線図により冷媒の循環量を
求めることから始まり、先ず冷媒の物性により各
部の物性値を下記式に基いて計算し(以下、t:
温度、i:エンタルピ、p:圧力、c:凝縮器、
e:蒸発器、v:比体積を各々示す)、 p1=p(te) p2=p(tc) i1=i(p1,t1) i5=i(te) i4=i3=i(te) (但しt3=teとする) v1=v(p1,t1) 次いで、圧縮機1の体積効率ηv1を上記p1とp2
との比(圧縮比)より下記式に下づいて演算し、 ηv1=ηv(p2/p1) その後、冷媒循環量Gを下記式 G=ηv1・vcomp/v1 (ここに、vcomp:理論ピストン押しのけ体積
(m3/h) に基いて演算して、最終的に、この冷媒循環量G
と上記蒸発器の入口と出口とのエンタルピi1,i4
とから、蒸発器の冷房能力Qeを下記式 Qe=G・(i1−i4) に基いて演算するものである。
That is, the controller 5 calculates the cooling capacity of the evaporator and calculates the discomfort index K of the intake air from the cooling capacity. The internal configuration of the controller 5 in this functional part is shown in FIG.
In the figure, reference numeral 20 denotes a cooling capacity calculation circuit as a cooling capacity calculation means for receiving each detection signal of the sensor group A and calculating the cooling capacity of the evaporator based on the detection signal. The circuit 20 is
The process begins by determining the amount of refrigerant circulation using the Mollier diagram shown in Figure 3, and first calculates the physical property values of each part based on the physical properties of the refrigerant based on the following formula (hereinafter referred to as t:
temperature, i: enthalpy, p: pressure, c: condenser,
e: evaporator, v: specific volume), p 1 = p (te) p 2 = p (tc) i 1 = i (p 1 , t 1 ) i 5 = i (te) i 4 = i 3 = i (te) (however, t 3 = te) v 1 = v (p 1 , t 1 ) Next, the volumetric efficiency ηv 1 of the compressor 1 is calculated from the above p 1 and p 2
Calculate the ratio ( compression ratio ) of vcomp: Calculated based on the theoretical piston displacement volume (m 3 /h), and finally the refrigerant circulation amount G
and the enthalpies at the inlet and outlet of the above evaporator i 1 , i 4
From this, the cooling capacity Qe of the evaporator is calculated based on the following formula Qe=G·(i 1 −i 4 ).

さらに、第5図において、21は、上記吸込空
気乾球温度センサ9からの検出信号を受け、吸込
空気乾球温度taiと、予め所定値に設定された仮
定吸込空気湿球温度taiwとに基いて、吸込空気エ
ンタルピiaiを下記式 iai=(tai,taiw) で演算する吸込空気エンタルピ演算手段を構成す
る吸込空気エンタルピ演算回路である。また、2
2は、逆に吹出空気のエンタルピiaoを演算する
吹出空気エンタルピ演算手段としての吹出空気エ
ンタルピ演算回路であつて、該吹出空気エンタル
ピ演算回路22は、そのエンタルピの演算に際し
て、空気線図上の特性を利用するものである。つ
まり、理論的には、吸込空気の一部が蒸発器のフ
インに接してフイン温度まで冷やされ、蒸発器フ
インに接触しなかつた空気と混ざつて吹出空気と
なるので、空気線図上で吸込空気、吹出空気及び
蒸発器フイン表面温度相当飽和空気温度はそれぞ
れ順に一直線上に乗る。このことから、第4図に
示す空気線図により、上記蒸発器フイン表面温度
センサ11からの蒸発器フイン表面温度tpを示す
点と、吸込空気乾球温度センサ9からの吸込空気
乾球温度taiを示す点とを直線で結び、この直線
と吹出空気乾球温度センサ10からの吹出空気乾
球温度taoを示す直線との交点が吹出空気を示す
点であり、このことから吹出空気の湿球温度
taowと吹出空気のエンタルピiaoとを求めるよう
機能する。
Further, in FIG. 5, 21 receives a detection signal from the suction air dry bulb temperature sensor 9, and based on the suction air dry bulb temperature tai and the assumed suction air wet bulb temperature taiw set to a predetermined value in advance. This is a suction air enthalpy calculation circuit constituting a suction air enthalpy calculation means that calculates suction air enthalpy iai using the following formula: iai=(tai, taiw). Also, 2
Reference numeral 2 denotes a blowout air enthalpy calculation circuit 22 as a blowout air enthalpy calculation means for calculating the enthalpy iao of the blowout air. It uses In other words, theoretically, some of the intake air comes into contact with the evaporator fins and is cooled to the fin temperature, and mixes with the air that has not come into contact with the evaporator fins to become the blown air. The suction air, the blowout air, and the saturated air temperature equivalent to the evaporator fin surface temperature are all arranged in a straight line. From this, the psychrometric diagram shown in FIG. The intersection point between this straight line and the straight line indicating the dry bulb temperature tao of the blown air from the blown air dry bulb temperature sensor 10 is the point indicating the blown air, and from this, the wet bulb of the blown air temperature
It functions to find taow and the enthalpy of blown air, iao.

さらに、第5図において25は、吸込空気およ
び吹出空気の両エンタルピ演算回路21,22の
出力を受け、吸込空気と吹出空気の両エンタルピ
iai,iaoから蒸発器の交換熱量Qeを下記式 Qe=Gae(iao−iai) (ここに、Gaeは空気の流量である) に基いて演算する交換熱量演算手段としての交換
熱量演算回路である。26は、上記吸込空気エン
タルピ演算回路21の仮定吸込空気湿球温度taiw
を補正する補正手段としての補正回路であつて、
該補正回路26は、吸込空気と吹出空気との熱量
差特性、つまり吹出空気は温度が低くなり、除湿
された空気が吹出されてくるので、吸込空気との
エンタルピ差に相当する熱量が奪われたことにな
り、この熱量は冷媒側の交換熱量(すなわち蒸発
器の冷房能力)と一致することから、上記冷房能
力演算回路20の冷房能力Qeに対して、上記交
換熱量演算回路25の交換熱量Qeが等しくなる
ように、仮定の吸込空気湿球温度taiwを繰返し補
正することにより、仮定の吸込空気エンタルピ
iaiを増減変化させて、蒸発器の交換熱量Qeをそ
の冷房能力Qeに一致させて、実際の吸込空気湿
球温度taiwを推測するものである。
Furthermore, in FIG. 5, 25 receives the outputs of the enthalpy calculation circuits 21 and 22 for both the intake air and the blowout air, and
This is an exchange heat amount calculation circuit as an exchange heat amount calculation means that calculates the exchange heat amount Qe of the evaporator from iai and iao based on the following formula Qe = Gae (iao − iai) (where Gae is the flow rate of air). . 26 is the assumed intake air wet bulb temperature taiw of the intake air enthalpy calculation circuit 21.
A correction circuit as a correction means for correcting the
The correction circuit 26 calculates the difference in heat value between the intake air and the blown air, that is, the temperature of the blown air becomes lower, and since dehumidified air is blown out, the amount of heat corresponding to the enthalpy difference with the intake air is taken away. Since this amount of heat matches the amount of exchanged heat on the refrigerant side (that is, the cooling capacity of the evaporator), the amount of exchanged heat of the exchanged heat amount calculation circuit 25 is equal to the cooling capacity Qe of the cooling capacity calculation circuit 20. By iteratively correcting the assumed suction air wet bulb temperature taiw so that Qe is equal, the hypothetical suction air enthalpy
The actual intake air wet bulb temperature taiw is estimated by increasing or decreasing iai to match the exchange heat amount Qe of the evaporator with its cooling capacity Qe.

加えて、27は、上記補正回路26で補正され
た後の吸込空気エンタルピ演算回路21の仮定
(実際)吸込空気湿球温度taiwと、上記吸込空気
乾球温度センサ9の吸込空気乾球温度taiとに応
じて、既述の不快指数演算式に基いて室内の不快
指数Kを演算する湿り状態演算手段を構成する湿
り状態演算回路、28は該湿り状態演算回路27
の出力を受け、室内の不快指数Kが設定値よりも
小さい場合には、上記不快指数スイツチ3を開作
動させる一方、設定値以下の場合には閉作動させ
ることにより、この不快指数スイツチ3の開閉に
応じて圧縮機1の作動を発停制御する制御手段と
しての制御回路である。
In addition, 27 indicates the assumed (actual) intake air wet bulb temperature taiw of the intake air enthalpy calculation circuit 21 after being corrected by the correction circuit 26 and the intake air dry bulb temperature tai of the intake air dry bulb temperature sensor 9. 28 is a humidity state calculation circuit 27 which constitutes a humidity state calculation means for calculating the indoor discomfort index K based on the above-mentioned discomfort index calculation formula.
When the indoor discomfort index K is smaller than the set value, the discomfort index switch 3 is opened, and when it is below the set value, the discomfort index switch 3 is closed. This is a control circuit serving as a control means for controlling the operation of the compressor 1 to start and stop in response to opening and closing.

したがつて上記第1実施例においては、6個の
温度センサ6〜11を使用しつつ、吸込空気エン
タルピ演算回路21では、実際の吸込空気乾球温
度taiと、仮定の吸込空気湿球温度taiwとに基い
て仮定の吸込空気エンタルピiaiが演算されると
ともに、吹出空気エンタルピ演算回路22では、
実際の吸込空気乾球温度taiと、吹出空気乾球温
度taoと、蒸発器フイン表面温度tpとに基いて吹
出空気エンタルピiaoが演算され、その後、この
両者のエンタルピ差(iai−iao)に基いて交換熱
量演算回路25で蒸発器の交換熱量Qeが演算さ
れると、この交換熱量Qeが冷房能力演算回路2
0で演算された蒸発器の冷房能力Qeに一致する
よう、補正回路26で上記吸込空気エンタルピ演
算回路21での仮定吸込空気湿球温度taiwが繰返
し補正されて、実際の吸込空気湿球温度taiwが推
測される。
Therefore, in the first embodiment, while using the six temperature sensors 6 to 11, the intake air enthalpy calculation circuit 21 calculates the actual intake air dry bulb temperature tai and the assumed intake air wet bulb temperature taiw. The hypothetical intake air enthalpy iai is calculated based on the above, and the outlet air enthalpy calculation circuit 22 calculates the following:
The blowout air enthalpy iao is calculated based on the actual suction air dry bulb temperature tai, blowout air dry bulb temperature tao, and evaporator fin surface temperature tp, and then based on the enthalpy difference (iai−iao) between the two. When the exchange heat amount Qe of the evaporator is calculated by the exchange heat amount calculation circuit 25, this exchange heat amount Qe is calculated by the cooling capacity calculation circuit 2.
The assumed suction air wet bulb temperature taiw in the suction air enthalpy calculation circuit 21 is repeatedly corrected in the correction circuit 26 to match the cooling capacity Qe of the evaporator calculated at is estimated.

そして、このように実際の吸込空気湿球温度
taiwが推測された後は、この吸込空気の湿球温度
taiwとその乾球温度taiとに基いて湿り状態演算
回路27で室内の不快指数Kが演算されると、そ
の値の設定値に対する大小に応じて不快指数スイ
ツチ3が制御回路28により開閉されるので、圧
縮機1はこの不快指数スイツチ3の開閉に応じて
発停することになる。その結果、例えば吸込空気
の湿度が設定値より大きく且つその温度も設定値
より大きいとき、つまり不快指数Kが設定値より
大きい場合には、不快指数スイツチ3が閉状態に
あるので、圧縮機1が作動して、冷房運転が行わ
れる。そして、吸込空気の温度が設定値以下にな
つても、吸込空気の湿度が設定値よりも大きい時
には、不快指数Kが設定値よりも大であるので、
圧縮機1は作動し続け、冷房除湿運転が続けられ
る。更に、吸込空気の湿度が設定値以下になり、
その温度も設定値以下になつて、不快指数Kが設
定値以下になると、不快指数スイツチ3が開作動
するので、圧縮機1の作動が停止して、冷房運転
が停止される。よつて、室内空気の温度が比較的
低くても湿度が高い不快な状態においても冷房除
湿運転を行うことができるので、快適な空気調和
を行うことができる。
And thus the actual intake air wet bulb temperature
After taiw is estimated, the wet bulb temperature of this intake air
When the indoor discomfort index K is calculated by the humidity state calculation circuit 27 based on taiw and its dry bulb temperature tai, the discomfort index switch 3 is opened or closed by the control circuit 28 depending on the magnitude of the value relative to the set value. Therefore, the compressor 1 starts and stops depending on whether the discomfort index switch 3 is opened or closed. As a result, for example, when the humidity of the suction air is higher than the set value and its temperature is also higher than the set value, that is, when the discomfort index K is higher than the set value, the discomfort index switch 3 is in the closed state, so the compressor 1 is activated and cooling operation is performed. Even if the temperature of the intake air falls below the set value, if the humidity of the intake air is greater than the set value, the discomfort index K is greater than the set value.
The compressor 1 continues to operate, and the cooling and dehumidifying operation continues. Furthermore, the humidity of the intake air becomes below the set value,
When the temperature also falls below the set value and the discomfort index K becomes below the set value, the discomfort index switch 3 is opened, so that the operation of the compressor 1 is stopped and the cooling operation is stopped. Therefore, the cooling and dehumidifying operation can be performed even in an uncomfortable state where the indoor air temperature is relatively low but the humidity is high, so that comfortable air conditioning can be performed.

しかも、上記不快指数スイツチ3を開閉制御す
るコントローラ5(制御回路28)からの制御信
号は、6個の温度センサ6〜11からの各温度検
出信号に基いて該コントローラ5内で演算した結
果のものであるので、各温度センサ6〜11の高
安定性および高信頼性によつて、上記不快指数に
応じた圧縮機1の作動制御を長期間安定して且つ
信頼性良く行うことができる。
Moreover, the control signal from the controller 5 (control circuit 28) that controls opening and closing of the discomfort index switch 3 is based on the results calculated within the controller 5 based on the temperature detection signals from the six temperature sensors 6 to 11. Therefore, due to the high stability and high reliability of each temperature sensor 6 to 11, the operation control of the compressor 1 according to the discomfort index can be performed stably and reliably for a long period of time.

また、第2図は本発明の第2実施例を示し、
(尚、第1図と同一部分については同一の符号を
付してその説明を省略する)、センサ群A′とし
て、凝縮器の吸込空気温度tcinを検出する凝縮器
吸込空気温度センサ12、凝縮器の吹出空気温度
tcoutを検出する凝縮器吹出空気温度センサ13
および圧縮機1の入力電流Icompを検出する圧縮
機入力電流センサ14を用いるとともに、コント
ローラ5に内蔵する冷房能力演算回路(第2図に
は図示せず)として、上記凝縮器の吸込空気温度
tcin及び吹出空気温度tcoutに基いて凝縮器交換
熱量Qcを下記式 Qc=Gac・Cpa・(tcout−tcin) (ここに、Gac:空気の流量、Cpa:空気の比
熱)で演算すると共に、圧縮機1の入力電力
Wcompを圧縮機入力電流Icompに基いて下記式 Wcomp=W(Icomp) で演算したのち、蒸発器の冷房能力Qeを、上記
凝縮器交換熱量Qcと圧縮機入力電力Wcompとに
基いて下記式 Qe=Qc−Wcomp で演算するものである。しかして、この蒸発器の
冷房能力Qeが演算された後は上記第1実施例と
同様にして、不快指数Kがコントローラ5で演算
される。したがつて、本例においても上記第1実
施例と同様の作用効果を奏することができる。も
のである。
Further, FIG. 2 shows a second embodiment of the present invention,
(The same parts as in FIG. 1 are given the same reference numerals and their explanations are omitted.) Sensor group A' includes a condenser suction air temperature sensor 12 that detects the condenser suction air temperature tcin; Blow air temperature of the device
Condenser outlet air temperature sensor 13 that detects tcout
In addition, a compressor input current sensor 14 is used to detect the input current Icomp of the compressor 1, and a cooling capacity calculation circuit (not shown in FIG.
Based on tcin and outlet air temperature tcout, calculate the condenser exchange heat amount Qc using the following formula Qc = Gac・Cpa・(tcout − tcin) (where Gac: air flow rate, Cpa: specific heat of air), and Machine 1 input power
After calculating Wcomp using the following formula Wcomp = W (Icomp) based on the compressor input current Icomp, the cooling capacity Qe of the evaporator is calculated using the following formula Qe based on the above condenser exchange heat amount Qc and compressor input power Wcomp. It is calculated by =Qc−Wcomp. After the cooling capacity Qe of the evaporator is calculated, the discomfort index K is calculated by the controller 5 in the same manner as in the first embodiment. Therefore, in this example as well, the same effects as in the first example can be achieved. It is something.

尚、本発明は圧縮機1の作動回路2にコントロ
ーラ5の制御回路28で開閉制御される湿度スイ
ツチと温度スイツチとを並列に設けて、両スイツ
チにより圧縮機1の作動制御を行うようにしても
よい。
In addition, in the present invention, a humidity switch and a temperature switch, which are controlled to open and close by the control circuit 28 of the controller 5, are provided in parallel in the operating circuit 2 of the compressor 1, so that the operation of the compressor 1 is controlled by both switches. Good too.

また、以上の説明では、湿り状態演算回路27
で不快指数Kを演算したが、その他、湿度を演算
してもよいのは勿論である。
In addition, in the above explanation, the humidity state calculation circuit 27
Although the discomfort index K was calculated in the above, it goes without saying that humidity may also be calculated.

(発明の効果) 以上説明したように、本発明によれば、冷房運
転時、吸込空気および吹出空気の乾球温度と空気
調和機の各部の温度等を検出し、これらの検出温
度と仮定の吸込空気湿球温度とに基いて仮定の吸
込空気エンタルピと実際の吹出空気エンタルピと
を演算し、この両エンタルピの差に応じた蒸発器
の交換熱量がその冷房能力に等しくなるよう、上
記仮定の吸込空気湿球温度を補正し、このことに
より実際の吸込空気湿球温度を把握して、室内空
気の湿度や不快指数に応じて圧縮機の作動制御を
行うので、湿度計や湿度センサを用いることな
く、室内空気の湿度に応じた冷房運転制御を長期
間安定的に且つ信頼性良く行うことができ、よつ
て快適な空気調和を得ることができる。特に、吸
込空気の温度と湿度とにより求めた不快指数に応
じて圧縮機の作動制御を行う場合には、温度が比
較的低く湿度が高い不快な状態においても冷房除
湿運転が可能となり、より一層快適な空気調和が
得られる利点を有するものである。
(Effects of the Invention) As explained above, according to the present invention, during cooling operation, the dry bulb temperatures of intake air and outlet air, the temperatures of various parts of the air conditioner, etc. are detected, and these detected temperatures and hypothetical The assumed intake air enthalpy and the actual outlet air enthalpy are calculated based on the intake air wet bulb temperature, and the above assumption is calculated so that the amount of heat exchanged by the evaporator according to the difference between the two enthalpies is equal to its cooling capacity. A hygrometer or humidity sensor is used to correct the intake air wet bulb temperature, thereby determining the actual intake air wet bulb temperature and controlling the compressor operation according to the humidity and discomfort index of the indoor air. The cooling operation can be controlled stably and reliably over a long period of time in accordance with the humidity of the indoor air, thereby providing comfortable air conditioning. In particular, when compressor operation is controlled according to the discomfort index determined from the temperature and humidity of the intake air, cooling and dehumidifying operation becomes possible even in uncomfortable conditions where the temperature is relatively low and the humidity is high. This has the advantage of providing comfortable air conditioning.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は第1実
施例を示す全体概略構成図、第2図は第2実施例
を示す全体概略構成図、第3図は冷房運転時のモ
リエル線図、第4図は空気湿球温度を求めるため
の空気線図、第5図はコントローラの内部構成を
示すブロツク図である。 1……圧縮機、2……作動回路、3……不快指
数スイツチ、5……コントローラ、6……凝縮温
度センサ、7……蒸発温度センサ、8……吸入温
度センサ、9……吸込空気乾球温度センサ、10
……吹出空気乾球温度センサ、11……蒸発器フ
イン表面温度センサ、12……凝縮器吸込空気温
度センサ、13……凝縮器吹出空気温度センサ、
14……圧縮機入力電流センサ、A,A′……セ
ンサ群、20……冷房能力演算回路、21……吸
込空気エンタルピ演算回路、22……吹出空気エ
ンタルピ演算回路、25……交換熱量演算回路、
26……補正回路、27……湿り状態演算回路、
28……制御回路。
The drawings show embodiments of the present invention; FIG. 1 is an overall schematic configuration diagram showing the first embodiment, FIG. 2 is an overall schematic configuration diagram showing the second embodiment, and FIG. 3 is a Mollier wire during cooling operation. 4 are psychrometric diagrams for determining the air wet bulb temperature, and FIG. 5 is a block diagram showing the internal configuration of the controller. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Operating circuit, 3... Discomfort index switch, 5... Controller, 6... Condensing temperature sensor, 7... Evaporation temperature sensor, 8... Intake temperature sensor, 9... Intake air Dry bulb temperature sensor, 10
... Blow air dry bulb temperature sensor, 11 ... Evaporator fin surface temperature sensor, 12 ... Condenser suction air temperature sensor, 13 ... Condenser blow air temperature sensor,
14...Compressor input current sensor, A, A'...Sensor group, 20...Cooling capacity calculation circuit, 21...Suction air enthalpy calculation circuit, 22...Blowout air enthalpy calculation circuit, 25...Exchange heat amount calculation circuit,
26... Correction circuit, 27... Moisture state calculation circuit,
28...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 凝縮温度、蒸発温度及び圧縮機吸入温度の
各々若しくは凝縮器吸込空気温度、凝縮器吹出空
気温度及び圧縮機入力電流の各々を検出するセン
サ群A,A′と、該センサ群A,A′の出力信号に
基いて蒸発器の冷房能力を演算する冷房能力演算
手段20とを備えるとともに、吸込空気乾球温度
を検出する吸込空気乾球温度センサ9と、該吸込
空気乾球温度センサ9の出力を受け、吸込空気乾
球温度と仮定吸込空気湿球温度とに基いて吸込空
気のエンタルピを演算する吸込空気エンタルピ演
算手段21と、吹出空気乾球温度を検出する吹出
空気乾球温度センサ10と、蒸発器フイン表面温
度を検出する蒸発器フイン表面温度センサ11
と、上記3個の温度センサ9〜11の出力を受
け、吸込空気乾球温度、吹出空気乾球温度及び蒸
発器フイン表面温度に基いて空気線図から吹出空
気のエンタルピを演算する吹出空気エンタルピ演
算手段22と、上記吸込空気エンタルピ演算手段
21および吹出空気エンタルピ演算手段22の出
力を受け、吸込空気と吹出空気の各エンタルピに
基いて蒸発器の交換熱量を演算する交換熱量演算
手段25と、該交換熱量演算手段25の出力を受
け、蒸発器の交換熱量が上記冷房能力演算手段2
0の冷房能力に等しくなるよう、上記吸込空気エ
ンタルピ演算手段21の仮定吸込空気湿球温度を
補正する補正手段26と、該補正手段26の出力
を受け、補正された仮定吸込空気湿球温度と上記
吸込空気乾球温度センサ9の吸込空気乾球温度と
に基いて吸込空気の湿度若しくは不快指数を演算
する湿り状態演算手段27と、該湿り状態演算手
段27の出力を受け、吸込空気の湿度若しくは不
快指数に応じて開閉する湿り状態スイツチ3と、
該湿り状態スイツチ3の開閉に応じて圧縮機の作
動を制御する制御手段28とを備えたことを特徴
とする空気調和機。
1 Sensor groups A and A' that detect each of the condensing temperature, evaporation temperature, and compressor suction temperature, or each of the condenser suction air temperature, condenser outlet air temperature, and compressor input current, and the sensor groups A and A' a cooling capacity calculation means 20 for calculating the cooling capacity of the evaporator based on the output signal of the evaporator, and a suction air dry bulb temperature sensor 9 for detecting the suction air dry bulb temperature; A suction air enthalpy calculation means 21 receives the output and calculates the enthalpy of the suction air based on the suction air dry-bulb temperature and the assumed suction air wet-bulb temperature, and a discharge air dry-bulb temperature sensor 10 detects the discharge air dry-bulb temperature. and an evaporator fin surface temperature sensor 11 that detects the evaporator fin surface temperature.
and a blowout air enthalpy which receives the outputs of the three temperature sensors 9 to 11 and calculates the enthalpy of the blowout air from an psychrometric diagram based on the suction air dry bulb temperature, the blowout air dry bulb temperature, and the evaporator fin surface temperature. a calculation means 22; an exchange heat amount calculation means 25 which receives the outputs of the suction air enthalpy calculation means 21 and the blowout air enthalpy calculation means 22 and calculates the exchange heat amount of the evaporator based on each enthalpy of the suction air and the blowout air; Upon receiving the output of the exchange heat amount calculation means 25, the exchange heat amount of the evaporator is calculated by the cooling capacity calculation means 2.
a correction means 26 for correcting the assumed intake air wet bulb temperature of the intake air enthalpy calculation means 21 so that the assumed intake air wet bulb temperature is equal to the cooling capacity of 0; A humidity state calculation means 27 calculates the humidity or discomfort index of the intake air based on the intake air dry bulb temperature of the intake air dry bulb temperature sensor 9; or a humidity state switch 3 that opens and closes depending on the discomfort index;
An air conditioner characterized by comprising: control means 28 for controlling the operation of the compressor in accordance with opening and closing of the humidity state switch 3.
JP13224679A 1979-10-12 1979-10-12 Air conditioner Granted JPS5656552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13224679A JPS5656552A (en) 1979-10-12 1979-10-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13224679A JPS5656552A (en) 1979-10-12 1979-10-12 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5656552A JPS5656552A (en) 1981-05-18
JPS629817B2 true JPS629817B2 (en) 1987-03-03

Family

ID=15076778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13224679A Granted JPS5656552A (en) 1979-10-12 1979-10-12 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5656552A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439792B2 (en) * 2008-10-15 2014-03-12 パナソニック株式会社 Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824364U (en) * 1971-07-26 1973-03-22
JPS54129740A (en) * 1978-03-31 1979-10-08 Mitsubishi Electric Corp Dehumidification controller for refrigeration circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53155846U (en) * 1977-05-13 1978-12-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824364U (en) * 1971-07-26 1973-03-22
JPS54129740A (en) * 1978-03-31 1979-10-08 Mitsubishi Electric Corp Dehumidification controller for refrigeration circuit

Also Published As

Publication number Publication date
JPS5656552A (en) 1981-05-18

Similar Documents

Publication Publication Date Title
CN106662355B (en) Air-conditioning air-breather equipment
US10962249B2 (en) Air conditioning apparatus and air conditioning control method
JPS58120054A (en) Air conditioner
CN107355954A (en) A kind of all-fresh air thermostatic constant wet control system and method
JP7026781B2 (en) Air conditioning system
JP4047639B2 (en) Industrial air conditioner
JP2016138666A (en) Air conditioner
CN109556257B (en) Air conditioner and dehumidification control method thereof
CN107062470A (en) A kind of air conditioner and its constant temperature dehumidification control method
JP2004324973A (en) Air conditioner and operating method of air conditioner
JP2536258B2 (en) Operation control device for air conditioner
KR101579827B1 (en) Home appliance and controlling method for the same of
JPS629817B2 (en)
EP3671055B1 (en) Heat exchanging ventilation device
CN111059735B (en) Air treatment equipment and control method, device and controller thereof
JPH10141730A (en) Heat-exchange ventilation device
JPH03148545A (en) Air conditioner with capacity adjustment
JPH0443173B2 (en)
JP2005127639A (en) Air conditioner
JP3444360B2 (en) Constant temperature and constant room equipment
JPS60144546A (en) Controller of defrosting operation of air conditioner
JPS5851531Y2 (en) Air conditioner control device
JP2504267B2 (en) Operation control device for air conditioner
JPH05288375A (en) Method and apparatus for detecting humidity of humidifier
JPH04332331A (en) Humidity control method and air-conditioner