JPS6297368A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6297368A
JPS6297368A JP61123502A JP12350286A JPS6297368A JP S6297368 A JPS6297368 A JP S6297368A JP 61123502 A JP61123502 A JP 61123502A JP 12350286 A JP12350286 A JP 12350286A JP S6297368 A JPS6297368 A JP S6297368A
Authority
JP
Japan
Prior art keywords
insulating film
electrode
transistor
substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61123502A
Other languages
Japanese (ja)
Other versions
JPH0340510B2 (en
Inventor
Fujio Masuoka
富士雄 舛岡
Hisakazu Iizuka
飯塚 尚和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61123502A priority Critical patent/JPS6297368A/en
Publication of JPS6297368A publication Critical patent/JPS6297368A/en
Publication of JPH0340510B2 publication Critical patent/JPH0340510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To implement high integration density, by making the thickness of an insulating film on a first dielectric layer larger than the thickness of a capacitor electrode. CONSTITUTION:A first electrode 43 is provided on an insulating film 42. Then a thick insulating film 50 is deposited. A part on the first electrode 43 is made to remain. The surface of a substrate at the gate part of an MOS transistor is exposed, and a gate oxide film 47 is formed. A part of the electrode 43 neighboring the MOS transistor is made thin. When data is written in memory cells in (i) rows and (j) columns in this constitution, a voltage of -5 volts is applied on the substrate 41 and a voltage of +12 volts is applied to the electrode 43. Then, an inverted layer 44 is formed on the surface of the substrate 41. Under this state, a voltage of +12 volts is applied to an address selecting line or a column line 53. Then the potential of a gate electrode 48 of the transistor 49 becomes +12 volts and the transistor is turned ON. The data is written in a memory element 45 from a digital line 46. Then, the column line 53 is made to be 0 volt and the transistor is turned OFF. The data is accumulated in a capacitor element 45. Thus the reading and the writing can be performed at a high speed.

Description

【発明の詳細な説明】 本発明は、半導体記憶装置に係わり、特にダイナミック
メモリセルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device, and particularly to a dynamic memory cell.

この種の半導体記憶装置として、1個のトランジスタで
1個のメモリセルを構成に対向したものか知られている
。これは、第1図に平面図で示に対向した如き構成を有
し1等価回路は第2図の如くなる。構造の概略を1セル
について説明する。半導体基板例えばP型S1基板に、
互いに離隔してn+領域0υ。
As this type of semiconductor memory device, one in which one transistor constitutes one memory cell is known. This has a structure opposite to that shown in the plan view in FIG. 1, and one equivalent circuit is as shown in FIG. 2. The outline of the structure will be explained for one cell. For a semiconductor substrate, for example, a P-type S1 substrate,
n+ regions 0υ separated from each other.

([2)が設けられこの両領域間にチャンネル部(13
)が形成されている。チャンネル部上には、絶縁膜を介
して多結晶S i 19 (14)が設けられている。
([2) is provided between these two areas, and a channel portion (13
) is formed. Polycrystalline Si 19 (14) is provided on the channel portion with an insulating film interposed therebetween.

この多結晶S i 14 (14)は、ゲート電極とな
る。この多結晶Si層(14)上には別の絶縁膜が設け
られ。
This polycrystalline S i 14 (14) becomes a gate electrode. Another insulating film is provided on this polycrystalline Si layer (14).

所定開孔部(15)を介して、AJO列ライン(16)
と接続される。前記n+頭域(11) 、(12)ゲー
ト電極(1優とで構成されるMOS)ランジスタが番地
選択用として使用される。
AJO column line (16) through a predetermined opening (15)
connected to. The n+ region (11) and (12) gate electrodes (MOS) transistors each having one gate electrode are used for address selection.

一方、半導体基板上には、絶縁膜を介して第2の多結晶
Si層(17)が設けられ、このSi層(17)と基板
との間で、容量素子(18)が形成されている。
On the other hand, a second polycrystalline Si layer (17) is provided on the semiconductor substrate via an insulating film, and a capacitive element (18) is formed between this Si layer (17) and the substrate. .

さらに、前記n+領領域1υは例えば拡散層で形成され
、ディジットライン(19)として慟らく。
Further, the n+ region 1υ is formed of, for example, a diffusion layer, and can be used as a digit line (19).

このようなメモリセルにおいて0番地選択用MO8)ラ
ンジスタのゲート電極と、前記容量素子の一方の電極と
なる多結晶8iとの分離が必要なtめ、セル面積が犬と
なりてしまう。又、列ラインとゲート電極との接触をと
る九めのコンタクトボールの占める面積も無駄となって
いt、これらは、集積度の低下或いはメモリセル面積の
増加となり、最近の半導体の高集積化の方向と相反する
ものである。
In such a memory cell, it is necessary to separate the gate electrode of the 0 address selection MO transistor 8) from the polycrystalline 8i which becomes one electrode of the capacitive element, resulting in a small cell area. In addition, the area occupied by the ninth contact ball, which makes contact between the column line and the gate electrode, is also wasted.This reduces the degree of integration or increases the memory cell area, which is a problem with the recent high integration of semiconductors. It is contrary to the direction.

本発明は、上記点に鑑みてなされたものでその目的とす
る所は、高集積密度の半導体記憶装置を提供するもので
ある。
The present invention has been made in view of the above points, and an object thereof is to provide a semiconductor memory device with high integration density.

本発明の他の目的は、メモリセルの占有面積に比較して
メモリ容量の大な半導体記憶装置を提供するものである
Another object of the present invention is to provide a semiconductor memory device having a large memory capacity compared to the area occupied by memory cells.

本発明のさらに他の目的は、高速読み出しの可能な半導
体記憶装置を提供するものである。
Still another object of the present invention is to provide a semiconductor memory device capable of high-speed reading.

以下1本発明の詳細を図面音用いながら説明する。第3
図は本発明装置の一笑施91を示す平面図であり、@4
図は@3図の■−■線による断面図を示す。
The details of the present invention will be explained below with reference to the drawings and sounds. Third
The figure is a plan view showing the device 91 of the present invention, @4
The figure shows a sectional view taken along the line ■-■ of Figure @3.

まず、構造について説明すると、半導体基体として例え
ば比較的高抵抗のp+型シリコン基@ (41)が用意
される。この基板の一部上に絶@膜例えば二酸化シリコ
ン(42〕を介して、第1雪、極(43〕が設けられて
いる。絶縁膜としては、8i0.、Si、N、。
First, to explain the structure, for example, a relatively high resistance p+ type silicon base @ (41) is prepared as a semiconductor substrate. A first snow pole (43) is provided on a part of this substrate via an insulating film such as silicon dioxide (42).The insulating film includes 8i0., Si, N, etc.

AI、0.等を適宜組み合わせt積層・体を用いてもよ
い、この第1電極(43)は、多結晶8iで構成し几、
その製造は通常のCV D (Chemical Va
pourDeposition )法によって行なりf
を0勿論M o 、 W 。
AI, 0. This first electrode (43) is made of polycrystalline 8i,
Its production is by the usual CVD (Chemical Va
pourDeposition) method f
0 Of course M o , W .

AI等の金属材料で構成してもかまわない、第1電極(
43)に半導体基板+1)に対し正の1圧を印加するこ
とにより、基板表面にn型反転す(44)を形成する。
The first electrode (which may be made of a metal material such as AI)
By applying a positive voltage of 1 to 43) to the semiconductor substrate +1), an n-type inversion (44) is formed on the surface of the substrate.

このn型反転N!I(44)と前記@ 111.極(4
3)を両電極とじtキャパシタ(45)が構成される。
This n-type inversion N! I (44) and the above @ 111. pole (4
3) are connected to both electrodes to form a t-capacitor (45).

一方、このn型反転層(44)と離隔して基板内にn中
領域(46)が設けられている。n+中領域46)は、
例えば通常の拡散法によって形成し友、このn+領領域
46)は1紙面に対して垂直な方向に延びており、ディ
ジットラインとして使用される。
On the other hand, an n medium region (46) is provided within the substrate, spaced apart from the n-type inversion layer (44). The n+ middle region 46) is
For example, this n+ region 46), which is formed by a conventional diffusion method, extends in a direction perpendicular to the plane of the paper and is used as a digit line.

勿論、n+領領域46〕の製法は熱拡散以外でもよく又
、導電性物質で構成してもよい。
Of course, the method for manufacturing the n+ region 46 may be other than thermal diffusion, and it may also be formed from a conductive material.

このn+領領域46)と前記反転1 (44)との間上
にゲート絶縁膜(47)を介して@2電極(48)が設
けられている。ゲート絶縁膜(47)は1例えば100
OA厚さの8 i 0.を用いた。勿論、他の絶縁材料
を用いてもよい、又第2電極(48)としては、多結晶
Siを用い九が、第1電極町様Mo、W、Aj等の金属
材料を用いても良い、この第2電極はゲート電極となる
ものであp、このゲート電極(48)、n中領域(46
)、 反ET@(44)、P、R膜(47) ト”?!
M OS ) ランジスタ(49〕が構成される。
An @2 electrode (48) is provided between this n+ region 46) and the inversion 1 (44) via a gate insulating film (47). The gate insulating film (47) is 1, for example 100
OA thickness 8 i 0. was used. Of course, other insulating materials may be used.Although polycrystalline Si is used for the second electrode (48), metal materials such as Mo, W, Aj, etc. may be used for the first electrode. This second electrode serves as a gate electrode, p, this gate electrode (48), and n middle region (46).
), Anti-ET @ (44), P, R Membrane (47) To”?!
A transistor (49) is configured.

このMOS)ランジスタ(49)のゲート電極(48)
は、第1’l極(43)上に?縁膜(50ンを介した状
態で延長されている。この絶縁膜(50)は前記ゲート
絶縁膜(47)に比し1両絶縁膜が同質の場合肉厚とし
ておくことが望ましい0例えば厚さ8000Aとなした
・この絶縁膜(50)の材料はA120B 、 S i
、N。
Gate electrode (48) of this MOS) transistor (49)
Is it on the 1st pole (43)? This insulating film (50) is preferably made thicker than the gate insulating film (47) when both insulating films are of the same quality. The material of this insulating film (50) is A120B, Si
,N.

等を含むものでも勿論構わない。絶縁膜(50)上に延
在しl第212を極(48)と前記第1を極(43)と
にはさまれ九部分の容量(Cりが、前記トランジスタ(
49)のゲート騙板間容量(Cs)に比し小となるべく
構成するのが高速動作上望ましい。
Of course, it is also possible to include the following. A capacitance (C) extending over the insulating film (50) and sandwiched between the first pole (48) and the first pole (43) is connected to the transistor (
For high-speed operation, it is desirable to configure the capacitance to be as small as possible compared to the gate-to-plate capacitance (Cs) of 49).

との念めには、膜厚を厚く構成しても良いし。Just in case, you can configure the film to be thicker.

誘′嘱率の小なる物質でe縁膜(50)を構成してもよ
い。ゲート電極(48)上は、保護絶罎膜(51)が被
層されており、この膜には所定開孔部(52)が設けら
れている。そして、この開孔部(52)において列ライ
ンを構成する外部配線(53)とのコンタクトがとられ
る。開孔部(52)を設ける位シバ本発明において特に
重要であり、開孔部の少くとも一部が前記第1fi極(
43)上に設けられることが肝要である。
The e-edge film (50) may be made of a material with a low dielectric constant. A protective insulating film (51) is coated on the gate electrode (48), and a predetermined opening (52) is provided in this film. Contact is made through this opening (52) with an external wiring (53) forming a column line. The provision of the opening (52) is particularly important in the present invention, and at least a portion of the opening is provided with the first fi pole (52).
43) It is essential that it be provided above.

第4図では開孔部の全体を、前記第1雪極上に配置した
例を示している。このような実施列装Hlにおいて、メ
モリ容量部面積を従来同様300μm”とし九にもかか
わらずメモリセルの占有面積は従来装置−〜−程度とす
ることが出来之。この結果デイジツト線で付随する寄生
容量が小となり、従来と同じセンスアンプを便用しても
感度は向上し。
FIG. 4 shows an example in which the entire opening is placed on the first snow pole. In such an implementation array H1, the area of the memory capacitance portion is set to 300 μm as in the conventional case, and the area occupied by the memory cell can be reduced to about the same as in the conventional device. Parasitic capacitance is reduced, and sensitivity is improved even when using the same sense amplifier as before.

スピードも向上させることか出来九〇 第4図に示に対向した記憶装置の製造方法の要点を説明
する。eq膜(42) 上ニ第1 [極(43) を設
ケ友後。
The main points of the method for manufacturing the storage device shown in FIG. 4 will be explained below. After installing the first electrode (43) on the eq membrane (42).

肉厚絶縁膜(50)を沙11えばCVD法により被着す
る。
A thick insulating film (50) is then deposited by, for example, the CVD method.

そして、嘉l電極(43)上は少なくとも残し、MOS
トランジスタのゲート部基板表1M1iヲ露出させる。
Then, at least the top of the electrode (43) is left, and the MOS
The gate portion of the transistor substrate 1M1i is exposed.

そして、この状態で熱酸化法によってゲート酸化膜(4
7) i 形成する。第111C極(43)(7)MO
S トランジスタに隣接する部分は、写真露光の関係か
ら。
In this state, a gate oxide film (4
7) i form. 111th C pole (43) (7) MO
S The area adjacent to the transistor is due to photographic exposure.

一部肉厚絶→膜(50)が除去され念状態で酸化される
定め、肉薄となっている。
Part of the thickness is gone - the membrane (50) is removed and oxidized in a state of mind, making it thinner.

さて、このような構成のメモリセルは5例えば第5図に
示す如きマトリクス配列されて用いられる0図において
、  101,102等は個々のメモリセルを示し5x
o3ysrtsセンスアンプを示している。
Now, 5 memory cells having such a configuration are used in a matrix arrangement as shown in FIG.
o3ysrts sense amplifier is shown.

今1Ffj列のメモリセルを第4図に対応させて説明す
る。i行j列のメモリセルに情報書き込むを行う場合を
説明する。基板(41)に−5Vol t pi 1電
ri、(43)に+12Voltt印加しておく。これ
によV基板(41)表面には自由電子が誘起され反転層
(44)が形成される。この状態で番地1へ択線或いは
列ライン(53)に+12Voltを印加すると、前記
トランジスタ(49)のゲート電穫(48ンの電位は+
127altとなりトランジスタにオン状態となる。こ
れにより、ディジライン(46)からデータが、メモリ
素子(45)に対して8き込まれる。
Now, the memory cells in the 1Ffj column will be explained in correspondence with FIG. A case will be described in which information is written to the memory cell in the i-th row and the j-th column. -5 Volt pi 1 electric current is applied to the substrate (41), and +12 Voltt is applied to the substrate (43). As a result, free electrons are induced on the surface of the V-substrate (41) and an inversion layer (44) is formed. In this state, when +12 Volt is applied to the selection line or column line (53) to address 1, the gate voltage (48) of the transistor (49) becomes +
127alt, and the transistor is turned on. As a result, data is written from the Digiline (46) into the memory element (45).

ついで、列ライン(53)を□vottとし、トランジ
スタがオフ状態となると、データは容量素子(45)に
蓄積される。
Then, when the column line (53) is set to □vott and the transistor is turned off, data is stored in the capacitive element (45).

このようなメモリセルをマトリクス配列し、大容量メモ
リを構成し−hJ合、ディジット線(46〕にはセルの
メモリ容重(45)に比較して大きな容量がついている
。この友め、メモリ情報全貌み出す時。
When such memory cells are arranged in a matrix to form a large capacity memory, the digit line (46) has a large capacity compared to the memory capacity (45) of the cell. When the whole picture comes out.

トランジスタ(49)のゲートt!を極(48)に電圧
を印してゲーhft開くと、ディジット線の容量にメモ
リセルの電荷がマスクされ、センスアンプでセンスする
のが離しい。従ってメモリセルの容量はディジット線の
容量に比して犬とすることが望ましい。逆に言えば、メ
モリセルの容量が同一の場合。
Gate t! of transistor (49)! When a voltage is applied to the pole (48) to open the gate hft, the charge in the memory cell is masked by the capacitance of the digit line, making it difficult to sense it with the sense amplifier. Therefore, it is desirable that the capacitance of the memory cell be smaller than the capacitance of the digit line. Conversely, if the memory cells have the same capacity.

ディジット線に付随する寄生容itを小ならしめること
が出来れば感度、スピードを向上させることかできる。
If the parasitic capacitance it associated with the digit line can be reduced, sensitivity and speed can be improved.

この結果は前述の通りである。This result is as described above.

さらに、MO8)ランジスタのゲート延在部と。Furthermore, MO8) a gate extension of a transistor.

第1電極(43)との間の容量が小である几め、第6図
に等価回路で示す如く、メモリセルの寄生容量Cpij
も小となる。この几め1列ライン(j)の駆動能力が小
であっても使用が可能となった。又、列ラインをAJ等
で構成したとしても、一般に分布抵抗を持ち、メモリセ
ルの容量とでCR時定数の遅れを生じる。このCが小と
なる几め、高速度で読み出し、書き込みが可能となり几
、特に、大容量メモリシステムの実現には有力である。
Since the capacitance between the first electrode (43) and the first electrode (43) is small, the parasitic capacitance Cpij of the memory cell is reduced as shown in the equivalent circuit in FIG.
will also be small. Even if the driving capacity of this refined single-row line (j) is small, it can now be used. Furthermore, even if the column line is constructed of AJ or the like, it generally has distributed resistance, and a delay in the CR time constant occurs due to the capacitance of the memory cell. The method of reducing C allows high-speed reading and writing, which is particularly effective for realizing large-capacity memory systems.

以上の実施例においては1反転領域(44)を形成し几
場合を説明し友が、予め、第1電極下にn+領領域形成
しておけば、特に、第1電極に反転電圧を印り口する必
要はなくなる。又、nチャンネル素子でなく、pチャン
ネル素子であっても本発明が適用されることは勿論であ
る。
In the above embodiment, one inversion region (44) is formed, and if an n+ region is formed in advance under the first electrode, in particular, an inversion voltage can be applied to the first electrode. There's no need to speak. Furthermore, it goes without saying that the present invention can be applied to not only n-channel devices but also p-channel devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の1トランジスタ/lセルのメモリ装置
の概略平面図、@2図は第1図に示し几装置の等価回路
図、第3図は本発明の一実施例裂trt、全説明する几
めの平面図、第4図は嘉3図の■−VLS断面図、第5
図はメモリマトリクス配列を説明するための図、鼾6図
は本発明の詳細な説明するtめの等価回路図。 図に訃いて、 11112・・・n+領領域13・・・チャンネル部。 +4 参17・・・多結晶8i、15・・・開孔部、1
6・・・列ライン、18・・・容量素子、41・・・p
−st、42・・・8i0!、43・・・第11極、4
4・−・反転1.45・・・キャパシタ、46・・・n
+領領域47・・・ケート絶縁膜、48・・・第2電極
、49・・・MO8)ランジスタ、50・・・絶縁膜、
51・・・保、護絶碌膜、52・・・開孔部、53・・
・配線、  1011102・・・メモリセル。 103・・・センスアンプ。 代理人 弁理士   則 近 憲 佑 同     竹 花 喜久男
FIG. 1 is a schematic plan view of a conventional 1-transistor/l-cell memory device, FIG. 2 is an equivalent circuit diagram of the device shown in FIG. The plan view of the structure to be explained, Figure 4 is the ■-VLS sectional view of Figure 3, and Figure 5 is
The figure is a diagram for explaining a memory matrix arrangement, and the sixth figure is a tth equivalent circuit diagram explaining the present invention in detail. Referring to the figure, 11112...n+ region 13...channel portion. +4 Reference 17... Polycrystalline 8i, 15... Opening part, 1
6... Column line, 18... Capacitive element, 41... p
-st, 42...8i0! , 43... 11th pole, 4
4.--Inversion 1.45...Capacitor, 46...n
+ region 47... Kate insulating film, 48... Second electrode, 49... MO8) transistor, 50... Insulating film,
51... Protection, protective membrane, 52... Opening part, 53...
・Wiring, 1011102...Memory cell. 103...Sense amplifier. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana

Claims (1)

【特許請求の範囲】[Claims] 1導電型の半導体基体と、この半導体基体の表面の第1
領域上に第1の絶縁膜を介して形成され前記第1領域に
対向したキャパシタ電極を構成する第1導電体層と、前
記第1領域から間隔をおいて前記半導体基体に形成され
かつ前記半導体基体と反対導電型でディジットラインを
構成する第2領域と、前記第1及び第2領域間の前記半
導体基体表面上に第2の絶縁膜を介して存在する第1部
分とこの第1部分より延在して前記第1導電体層上に第
3の絶縁膜を介して設けられる第2部分とを有するゲー
ト電極を構成する第2導電体層と、この第2導電体層上
を含む前記半導体基体上を被覆するとともに前記第2導
電体層の第2部分上に開口部を有する第4の絶縁膜と、
この第4の絶縁膜上に存在し前記第2導電体層の第2部
分とは前記開口部を通してコンタクトされかつ列ライン
となる外部配線とを具備し、前記第3の絶縁膜の厚さが
前記キャパシタ電極の厚さよりも大なることを特徴とす
る半導体記憶装置。
1 conductivity type semiconductor substrate, and a first conductivity type semiconductor substrate on the surface of this semiconductor substrate.
a first conductor layer forming a capacitor electrode opposite to the first region and formed on the region via a first insulating film; and a first conductor layer formed on the semiconductor substrate at a distance from the first region and the semiconductor a second region having a conductivity type opposite to that of the substrate and forming a digit line; a first portion existing on the surface of the semiconductor substrate between the first and second regions via a second insulating film; a second conductive layer constituting a gate electrode having a second portion extending and provided on the first conductive layer via a third insulating film; a fourth insulating film that covers the semiconductor substrate and has an opening on the second portion of the second conductor layer;
External wiring exists on the fourth insulating film and is in contact with the second portion of the second conductive layer through the opening and serves as a column line, and the thickness of the third insulating film is A semiconductor memory device characterized in that the thickness is greater than the thickness of the capacitor electrode.
JP61123502A 1986-05-30 1986-05-30 Semiconductor memory device Granted JPS6297368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123502A JPS6297368A (en) 1986-05-30 1986-05-30 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123502A JPS6297368A (en) 1986-05-30 1986-05-30 Semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14569580A Division JPS5660051A (en) 1980-10-20 1980-10-20 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6297368A true JPS6297368A (en) 1987-05-06
JPH0340510B2 JPH0340510B2 (en) 1991-06-19

Family

ID=14862204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123502A Granted JPS6297368A (en) 1986-05-30 1986-05-30 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6297368A (en)

Also Published As

Publication number Publication date
JPH0340510B2 (en) 1991-06-19

Similar Documents

Publication Publication Date Title
US4115795A (en) Semiconductor memory device
US5416735A (en) Non-volatile random access memory with ferroelectric capacitor
KR100218275B1 (en) Ferroelectric memory device with bulk-type one transistor structure
EP0031490B1 (en) One device field effect transistor ac stable random access memory array
US5012309A (en) Semiconductor memory device comprising capacitor portions having stacked structures
JPH06334190A (en) Eeprom and logical lsi chip including such eeprom
KR840007312A (en) Semiconductor Memory with Multilayer Capacitor Memory Cells
JP2621181B2 (en) MIS type semiconductor memory device
US4118794A (en) Memory array with larger memory capacitors at row ends
JPH05299605A (en) Semiconductor storage device
KR940002835B1 (en) Dynamic random access memory having a junction fet and fabricating method thereof
JPS6297368A (en) Semiconductor memory device
US4571607A (en) Semiconductor device
JPS6220709B2 (en)
JPS6221273B2 (en)
JPS6297367A (en) Semiconductor memory device
JPS6220708B2 (en)
JPS61140171A (en) Semiconductor memory device
JPH0821688B2 (en) Semiconductor memory device
KR100269208B1 (en) A thin film transistor ferroelectric random access memory with a common word line and an operating method thereof
JP2555870B2 (en) Semiconductor memory device
CA1095621A (en) Capacitor storage memory
JPS5833711B2 (en) semiconductor memory device
JPS6034272B2 (en) semiconductor equipment
JPH0430747B2 (en)